Complete list of publications (last updated 2023/July/12):

 

A list of citations can be found here.


Edited books:


 
1. G- Hernandez-Duenas & M. A. Moreles. Mathematical and Computational Models of Flows and Waves in Geophysics. Springer (Book) (1), pp 1-195 (2022).
 
 
 
 
 
 
Figure: Book about Geophysical applications.  
 
 

Published papers:


S. Shah & G. Hernández-Dueñas.
Journal of Scientific Computing (2024)

 

 

 

 

Figure: Two-layer flow in channels.


 
Physics of Fluids (2024)

 

 

 

 

Figure: Graph of aerosols & rain.


Néstor A. Sánchez-Goycochea & G.- Hernández-Dueñas.Chi
Journal of Mathematical Analysis and Applications (2024)

 

 

 

Figure: Graph of transition function from saturated to unsaturated regions.


 
C. Blachut, C. González-Tokman & G.- Hernández-Dueñas.
Journal of Nonlinear Science (2023)
 
 
 
 
 
 
 
 
Figure: Identification of coherent structures using dynamical systems

 
C.A. Rosales-Alcantar & G.- Hernández-Dueñas
ESAIM: Mathematical Modeling and Numerical Analysis (2023).
 
 
 
 
 
 
 
 
 
Figure: Circulation pattern in blood flow simulation

 
 
G. Hernandez-Duenas, M.A. Moreles  & P. Gonzalez-Casanova
Physics of Fluids (2023)
 
 
 
Figure: Bathymetry estimation with the steepest descent method

 
G. Hernandez-Duenas, S. Pérez-Esteva, A. Uribe & C. Villegas-Blass
Ann. Henri Poincaré (2022). https://doi.org/10.1007/s00023-021-01092-7
 
 
 
Figure: Diagram of different limiting regimes for the Landau problem
 

 
G. Hernandez-Duenas, M. Pascale Lelong, and Leslie M. Smith
Journal of Physical Oceanography (2021).
 
The numerical model simulations upon which this study is based are too large to archive. The velocity and density data at 200 inertial periods as well as the data for the particles' trajectories from 200 to 210 inertial periods are available here.  
 
Figure: Horizontal contours of linear potential vorticity.

 
G. Hernandez-Duenas & J. Balbas
ESAIM: Mathematical Modeling and Numerical Analysis (2021).
 
 
 Figure: Schematic of a two layer shallow water flow

 
G. Hernandez-Duenas, G. Ramirez-Santiago
International Journal for Numerical Methods in Fluids (2020)https://doi.org/10.1002/fld.4887
 
 
Figure: Schematic for blood-flow model 

 
 12. Weak- and Strong- Friction Limits of Parcel Models: Comparisons and Stochastic Convective Initiation Time.  G. Hernandez-Duenas, S. Stechmann and L. Smith. Quarterly Journal of the Royal Meteorological Society (2019), Volume 145, No. 722, pp 2272-2291  (2019). 
Link to Journal 

 

Figure: Bistability perspective of conditional stability


 
11. A positivity-preserving central-upwind scheme for isentropic two- phaseflows through deviated pipes.
G. Hernandez-Duenas, Ulises Velasco-García and Jorge Velasco Hernández. ESAIM: Mathematical Modelling and Numerical Analysis (2019). 

Figure: Schematic of the two-phase flows in deviated pipes.


 10. A Hybrid Method to Solve Shallow Water Flows with Horizontal Density Gradients.  G. Hernandez-Duenas. Journal of Scientific Computing (2017), Volume 73 (2-3) pp 753-782.
 Link to Journal   
 
 
 
Figure: Radial dam break over flat topography (height, density and pressure)

 
G. Hernandez-Duenas and Abdelaziz Beljadid.
Advances in Water Resources 96 (2016) 323-338.
 
 
 
Figure: Schematic of channel in numerical experiment of dam break.

 
G. Hernandez-Duenas, Leslie M. Smith, and Samuel N. Stechmann.
Journal of Atmospheric Sciences
, Vol 72, No. 6 (2015), pp. 2379-2393
 
 
Figure: Growth rates versus horizontal wavenumbers for different values of rainfall speed. 

 
G. Hernández-Dueñas and Alejandro Uribe.
Journal of Functional Analysis, 268 no. 7 (2015), pp. 1755-1807
 
 
 
Figure: Propagation of a coherent state in a Zoll-type domain.

 
Jorge Balbás and G. Hernández-Dueñas. 
ESIAM: Mathematical Modelling and Numerical Analysis (M2AN) 48 (2014) 665-696.
 
Figure: Dam break simulation at different times.
Blue: Water height. Brown: Bottom topography. Gray: Walls.
 

 
G. Hernandez-Duenas, Leslie M. Smith, and Samuel N. Stechmann
Journal of Fluid Mechanics747 (2014), 247-287
 
 
 
 Figure: Dipole evolution given by the Boussinesq model

 
4.  Minimal models for precipitating turbulent convection
G. Hernandez-Duenas, Andrew J. Majda, Leslie M. Smith, and Samuel N. Stechmann.
Journal of Fluid Mechanics717 (2013), 576-611.
 
 
 
 
Figure: Contours of rain water. Scattered convection (left) versus squall lines (right).

 
3. Shallow Water Flows in Channels.
G. Hernández and Smadar Karni.
J. Sci. Comput. 48 (2011), no. 1-3, 190-208.
 
 
Figure: Exact and numerical steady state (discontinuous transcritical) solutions to shallow water.

 
2. A Hybrid Algorithm for the Baer-Nunziato Model Using the Riemann Invariants.
Smadar Karni and G. Hernández-Dueñas.
Sci Comput45, (2010), 382-403.
 
Figure 1: Schematic: Gas flow over a porous particle bed.

1.A Hybrid Scheme for Flows in Porous Media.
Smadar Karni and G. Hernández-Dueñas.
Hyperbolic Problems: Theory, Numerics, Applications.
Proceedings of Simposia in Applied Mathematics, Volume 67, Part 2, (2009), 715-724.
Amer. Math. Soc., Providence, RI, (2009).

Link to Journal


Submitted papers:


 1.  S. Shah & G.- Hernandez-Duenas. A weakly-compressible two-layer shallow water model in general channels.
 
2. O. Guerrero-Medina & G. Hernandez-Dueñas. Exploring the excess of cloud condensation nuclei and rain suppression using a minimal 3D Boussinesq model with bulk cloud microphysics.

Papers in preparation:

1. Jeffrey J. Early, Gerardo Hernández-Dueñas, Leslie M. Smith & M.-Pascale Lelong. Exact expressions for available potential energy and available potential vorticity.


Extended abstracts:


A Scheme for Shallow Water Flow with Area Variation.
Smadar Karni and G. Hernández-Dueñas.
American Institute of Physics.
AIP Conference Proceedings
International Conference on Numerical Analysis and Applied Mathematics
Rethymno, Crete, Greece, 18-22 September 2009. 1168 (2009), 1433-1436.

Link to Journal