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A Hybrid Scheme for Flows in Porous Media
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Abstract. The Baer-Nunziato model is used to describe the flow of compress-
ible gas in a porous bed. We are concerned with flows in which the porosity
changes discontinuously across a so-called compaction wave, and consider the
related Riemann problem. A recent study [CAL] has illustrated the failure
of various numerical schemes to compute correct solutions across compaction
waves. The errors were linked to the failure of the scheme to maintain constant
entropy across the interface. We propose a hybrid strategy that reverts to a
nonconservative formulation across the porosity jump and solves directly for
the entropy. The formulation trivially respects the jump conditions, and may
be combined with one’s preferred conservative scheme away from the interface.
Numerical tests illustrate the merits of this strategy.

1. Introduction

The Baer-Nunziato (BN) model is given by

(1.1)

(ρgφg)t + (ρgφgug)x = 0

(ρgφgug)t + (ρgφgu2
g + pgφg)x = pg(φg)x

(Egφg)t + (ug(φgEg + φgpg))x = pgus(φg)x

(ρsφs)t + (ρsφsus)x = 0

(ρsφsus)t + (ρsφsu
2
s + psφs)x = pg(φs)x

(Esφs)t + (us(φsEs + φsps))x = pgus(φs)x

(φs)t + us(φs)x = 0

Here ρ, u, p and E denote the density, velocity, pressure and energy of the respective
phases, both assumed ideal and satisfy the Equation of State (EOS)

(1.2) E =
1

2
ρu2 +

p

γ − 1
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Particle Bed

Gas

Figure 1. Compressible flow in a gas permeable particle bed

and φ is the porosity, satisfying

(1.3) φg + φs = 1 .

The BN model was originally proposed to describe flame propagation in gas-
permeable reactive granular materials [BN]. Here the terms due to combustion
processes, drag and heat transfer are neglected. It is an averaged two-phase flow
model, expressing mass conservation, and momentum and energy balance of the
gas and solid phases. The last equation governs the evolution of the porosity. The
system is nonconservative due to momentum and energy exchange between the
phases. The underlying conservation is revealed upon addition of the momenta
(energy) equations of the individual phases. The presence of the non-conservative
terms has major consequences both theoretically and computationally . The eigen-
values of system (1.1) are given by

(1.4) ug − cg, ug, ug + cg, us − cs, us, us, us + cs

corresponding to familiar waves in the Euler subsystems of the respective phases,
and an additional so-called compaction wave that carries changes in porosity and
propagates with the speed of the solid phase, us. Here c =

√

γp/ρ denotes the
speed of the sound.

We are interested in flows where the porosity is piecewise constant (See the
schematic in Figure 1). In this case, the system reduces to two single-phase Euler
subsystems which “talk” to each other through a set of jump conditions that hold
across the porosity jump. The jump conditions across the porosity jump may be
obtained using the Riemann Invariants (see, for example [BN, CAL, AW2]),

(1.5) us, ηg, ηs, φgρgvg, φgpg + φsps + φgρgv
2
g ,

1

2
v2

g +
c2
g

γ − 1

all of which do not change across the porosity jump. Here, η = p/ργ denotes the
entropy, vg = ug − us denotes the speed of the gas relative to the speed of the
compaction wave. The system is only conditionally hyperbolic, and may fail to
have a complete set of eigenvectors if

(1.6) (us − ug)
2 = c2

g

In the special case where the particle bed is stationary, us = 0, and the solid
phase is assumed incompressible, system (1.1) reduces to

(1.7)

(ρφ)t + (ρφu)x = 0

(ρφu)t + (ρφu2 + φp)x = pφx

(φE)t + (u(φE + φp))x = 0,
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Figure 2. Schematic of the Riemann problem for the BN system
(1.1) (left) and for the reduced system (1.7) (right).

which is effectively the Euler equations with area variation, where the porosity
φ = φ(x) may be identified with the cross sectional area. Here, the subscript (·)g

has been omitted.
The jump conditions across the stationary porosity jump are

(1.8) [φρu] = 0, [η] = 0, [h] = 0.

Here h =
1

2
u2 +

c2

γ − 1
is the specific enthalpy.

Figure 2 illustrates a typical solution of the Riemann problem consisting of
rarefactions (R), shocks (S), contact waves (C) and a compaction wave (O). We
note that although a compaction wave propagates with the solid phase velocity us,
it is not a contact wave. This is easily appreciated in the stationary case. Using
(1.8) a simple calculation confirms that

[p] = 0 =⇒ [ρ] = 0 =⇒ [u] = 0 =⇒ [φ] = 0

provided u 6= 0, indicating that unlike a contact wave, across a compaction wave
([φ] 6= 0) the pressure does not remain constant ([p] 6= 0) .

We further note that for the BN system (1.1), the two dimensional eigenspace
corresponding to us may be spanned by one eigenvector describing a pure solid
contact and another describing a compaction wave. The overall jump in the solution
across this wave front is, of course, a combination of the respective jumps.

2. A Hybrid Approach

Solutions for the Riemann problem may be nonunique [AW1, AW2, SWK].
Even when unique, they may be difficult to compute. Computations based on the
conservative formulation (1.1) were shown to have difficulties maintaining constant
entropy across the porosity jump, resulting in incorrect jump in the solution [CAL].

Using a conservative formulation is of course necessary when shocks are present.
However, looking beyond conservative formulations has proved beneficial in various
other contexts. For example, using a pressure-based formulation to compute propa-
gating material interfaces [AK] or using equilibrium variables to compute accurate
steady-state solutions to shallow water systems [NXS, GR]. We focus first on
the reduced system (1.7). Note that if instead of recovering the entropy from the
conserved variables one solves for the entropy directly using the entropy evolution
equation

(2.1) ηt + uηx = 0
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0 0.02 0.04 0.06
0

50

100

150

200
Density

0 0.02 0.04 0.06
0

0.5

1

1.5

2

2.5

3
x 10

8 Pressure

0 0.02 0.04 0.06
0

1000

2000

3000

4000
Velocity

0 0.02 0.04 0.06
0

2

4

6

8

10

12
x 10

5 Entropy

0 0.02 0.04 0.06
0

50

100

150

200
Density

0 0.02 0.04 0.06
0

0.5

1

1.5

2

2.5

3
x 10

8 Pressure

0 0.02 0.04 0.06
0

1000

2000

3000

4000
Velocity

0 0.02 0.04 0.06
0

2

4

6

8

10

12
x 10

5 Entropy

Figure 3. Computed and exact solutions corresponding to shock-
tube data (3.2): conservative (left) and hybrid (right) formulations

then if η is constant in the data (ηx = 0), it will automatically remain constant in
the solution (ηt = 0). Any method based on a consistent discretization of (2.1) will
inherit this property. This seems to indicate that (2.1) is a suitable equation to use
across the porosity jump where [η] = 0. Based on this observation, we propose a
hybrid strategy:

(i) Away from the porosity jump solve

(φρ)t + (φρu)x = 0
(φρu)t + (φρu2 + φp)x = pφx

(φE)t + (u(φE + φp))x = 0

(ii) Across the porosity jump solve

(φρ)t + (φρu)x = 0
ηt + uηx = 0

(φE)t + (u(φE + φp))x = 0

We note that the energy flux may be written as φρuh. It is straightforward to
see that if the data correspond to a porosity wave, hence satisfy (1.8), the above
nonconservative formulation based on the entropy equation will recognize and re-
spect this solution. We also point out that in this hybrid approach the conservative
formulation is only used away from the porosity jump, and while technically it has
a nonconservative term on its right hand side, that term in fact vanishes and the
system reduces to effectively the standard Euler system.

The eigenvectors of the above conservative and nonconservative formulations
are given respectively by

RC =













1 1 1

u − c u u + c

h − uc 1

2
u2 h + uc













RNC =













1 1 1

0 −γη
φρ

0

h − uc 1

2
u2 h + uc












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Figure 4. Computed and exact solutions corresponding to inter-
face data (3.3): conservative formulation (left) and hybrid formu-
lation (right)

3. Numerical Results - System (1.7)

In this section we present numerical results for the reduced system (1.7) corre-
sponding to the case of a stationary porosity jump and incompressible solid phase.
The numerical method in all tests is a Roe-type upwind scheme [PLR]

(3.1) Wn+1
j = Wn

j − ∆t

∆x

{

A+

j− 1

2

(

Wn
j − Wn

j−1

)

+ A−

j+ 1

2

(

Wn
j+1 − Wn

j

)

}

with
A+∆W =

∑

k

αkλ+
k rk , λ+

k = max (0, λk)

A−∆W =
∑

k

αkλ−

k rk , λ−

k = min (0, λk)

and
ρ̄ =

√
ρLρR

ū =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR

h̄ =

√
ρLhL +

√
ρRhR√

ρL +
√

ρR

c2 = (γ − 1)

(

h̄ − 1

2
ū2

)

s̄ =
sL + sR

2

The CFL number and the grid size are noted in the examples.
Figure 3 shows the computed and exact solutions for the Riemann problem

considered in [CAL], using CFL number 0.8 and a 2000 point grid. For U =
(ρ, u, p), initial data is given by

(3.2)
UL = (1.6934× 102, 0, 2.96× 108)T

UR = (7.6278× 10−1, 0, 1.0 × 105)T

corresponding to a rarefaction wave that straddles the jump in porosity, a contact
discontinuity and a shock. In this example, φL = 1, φR = 0.25 and γ = 1.23. The
computation on the left, based on the conservative formulation, is in noticeable
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Figure 5. Computed and exact solutions corresponding to initial
data (3.4) (left) and (3.5) (right)

error (see also [CAL]). Visibly, the entropy fails to stay constant across the porosity
jump, the solution appears to jump incorrectly across the porosity change yielding
an incorrect solution. Figure 3 on the right shows the same computation based
on the hybrid formulation which reverts back to the nonconservative formulation
using the entropy equation (2.1) across the porosity jump. This formulation clearly
recognizes and respects interface data, and yields the correct jump in the solution.

The initial data in Figure 4 correspond to exact interface data extracted from
the Riemann problem in the previous example

(3.3)
UL = (1.5113× 102, 2.1231× 102, 2.4836× 108)T

UR = (9.5199× 101, 1.3482× 103, pR = 1.4067× 108)T

with φL, φR and γ as above. It illustrates the failure of the conservative formulation
to keep the entropy constant across the porosity jump, leading to erroneous waves
structure. Using the entropy equation across the porosity jump and the conservative
formulation everywhere else makes it possible to recognize and respect the interface
data and produces a clean and error free solution.

Figure 5 shows the computed solution by the hybrid scheme for two more
Riemann problems, both corresponding to φL = 1, φR = 1.25 and γ = 1.4. On the
left, the solution corresponding to the initial data

(3.4)
UL = (1.0555,−1.0651, 1.5)T

UR = (1.0,−1.0, 1.0)T

producing a left going rarefaction, and a right going shock; on the right, the solution
corresponding to the initial data

(3.5)
UL = (6.894 × 10−1,−1.6941, 1.5)T

UR = (1.0,−0.5, 1.0)T

producing a left and right moving rarefactions. The CFL number is 0.8 and the
grid has 400 points. Again, the jump conditions across the interface are captured
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very well, and the computed solutions are in excellent agreement with the exact
solutions, also shown.

4. Numerical Results - BN system (1.1)

We now generalize this computational framework to the full Baer-Nunziato
system (1.1). The jump conditions across the porosity jump are

[us] = 0 , [ηg] = 0 , [ηs] = 0 , [Q] = 0 , [P ] = 0 , [H ] = 0 .

Here Q = φgρgvg is the gas mass flux, H = 1

2
v2

g +
c2

g

γ−1
is the gas enthalpy and

P = φgpg + φsps + φgρgv
2
g is the sum of phase momenta fluxes in the frame of

reference of the compaction wave moving with speed us, here vg = ug − us.
We have implemented the following hybrid strategy:

(i) Away from the compaction wave, solve for the conservative variables

WC = (φgρg, φgρgug, φgEg, φsρs, φsρsus, φsEs, φs) ;

(ii) Across the compaction wave, solve for the nonconservative variables

WRI = (us, ηg, ηs, Q, P, H, φs) .

The eigenvectors for the conservative system are essentially the eigenvectors of
the two Euler subsystems and an additional eigenvector corresponding to the com-
paction wave (see for example [CAL, AW2]). We note that the eigenvector cor-
responding to the compaction wave does not play an important role in the present
context since the conservative formulation is used only away from the compaction
wave, where the porosity does not vary and the corresponding wave strength is
zero. The eigenstructure of the nonconservative system based on WRI is

R =

















































0 0 0 −1 0 0 −1

0 1 0 0 0 0 0

0 0 0 0 1 0 0

1 −vg p̃g/ηgc
2
g 1 ρ̃g 0 0 ρ̃g

vg − cg −v2
g p̃g/ηgc

2
g vg + cg 2ρ̃gvg + csρ̃s 0 0 2ρ̃gvg − csρ̃s

−cg/ρ̃g p̃g/(γ − 1)ηg ρ̃g cg/ρ̃g vg 0 0 vg

0 0 0 0 0 1 0

















































Λ = diag (ug − cg, ug, ug + cg, us − cs, us, us, us + cs) .

Here we used the abbreviated notation ˜( · ) = φ( · ) to denote the respective physical
quantities scaled by the porosity. Again, the method used in the following examples
is a Roe-type upwind scheme (3.1).
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Figure 6. Computed and exact solutions corresponding to initial
data (4.1): Gas phase (left) and Solid phase (right) by the hybrid
formulation
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We use U to denote ( ρg, ug, pg, ρs, us, ps, φs) and consider first the Riemann
problem for the initial data

(4.1)
UL = (1, 2, 0.5, 2, 0.3, 5, 0.8)T

UR = (0.2304, 2.4082, 0.0640, 3, 0.3, 13.0547, 0.3)T

corresponding to a single moving compaction wave. The CFL number is 0.8, the grid
size is 400 points, and γ = 1.4. Figure 6 shows the results by the hybrid formulation
which is conservative everywhere except across the compaction wave where it reverts
to the nonconservative formulation based on the Riemann Invariants. The results
illustrate clearly that the interface data is recognized and respected, and no errors
are produced.

The following initial data (see [CAL])

(4.2)
UL = (5.71,−0.75, 6.36, 0.553,−0.0553, 0.4527, 0.3)T

UR = (2.02, 0.86, 1.87, 1.264,−0.115, 1.1234, 0.7)T

correspond to the Riemann solution depicted in the schematic in Figure 7 (left).
Figures 8 and 9 show the computed and exact solutions by the conservative

formulation and the hybrid formulation respectively.
Finally, the solution for the Riemann problem for the initial data (see [SWK])

(4.3)
UL = (0.2, 0, 0.3, 1, 0, 1, 0.8)T

UR = (1, 0, 1, 1, 0, 1.01, 0.3)T
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Figure 8. Computed and exact solutions corresponding to ini-
tial data (4.2): Gas phase (left) and Solid phase (right) by the
conservative formulation
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Figure 9. Computed and exact solutions corresponding to initial
data (4.2): Gas phase (left) and Solid phase (right) by the hybrid
formulation

is depicted by the schematic in Figure 7 (right). Computed and exact solutions by
the hybrid formulation are shown in Figure 10, and are in very good agreement.

5. Summary

The BN system (1.1) with piecewise constant porosities describes two decoupled
Euler sub-sysetms connected via a set of jump conditions across a moving internal
boundary called a compaction wave. Numerical methods based on the conservative
formulation of the system may produce incorrect jump in solutions across the inter-
face. We have presented a hybrid strategy for the solution of the BN system, which
reverts to a formulation based on the set of Riemann Invariants across the moving
interface. The formulation trivially recognizes and respects interface data, and is
well suited for computing propagating compaction waves. The merits of the hybrid
approach have been demonstrated on a variety of shock tube problems for the full
BN system (1.1) and for the reduced system (1.7) corresponding to the special case
where the interface is stationary and the solid phase assumed incompressible.
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Figure 10. Computed and exact solutions corresponding to ini-
tial data (4.3): Gas phase (left) and Solid phase (right) by the
hybrid formulation
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