
Phys. Fluids 35, 027109 (2023); https://doi.org/10.1063/5.0136017 35, 027109

© 2023 Author(s).

Bathymetry and friction estimation from
transient velocity data for one-dimensional
shallow water flows in open channels with
varying width 

Cite as: Phys. Fluids 35, 027109 (2023); https://doi.org/10.1063/5.0136017
Submitted: 23 November 2022 • Accepted: 16 January 2023 • Accepted Manuscript Online: 18 January
2023 • Published Online: 07 February 2023

 Gerardo Hernández-Dueñas,  Miguel Angel Moreles and  Pedro González-Casanova

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Metaball-Imaging discrete element lattice Boltzmann method for fluid–particle system of
complex morphologies with case studies
Physics of Fluids 35, 023308 (2023); https://doi.org/10.1063/5.0135834

Effect of a textured surface on the occurrence and development of cavitation on the hydrofoil
Physics of Fluids 35, 025109 (2023); https://doi.org/10.1063/5.0136468

Aeroacoustic control mechanism on near-wall-wing of Aero-train based on plasma jet
Physics of Fluids (2023); https://doi.org/10.1063/5.0136669

https://images.scitation.org/redirect.spark?MID=176720&plid=1977913&setID=405127&channelID=0&CID=725233&banID=520885224&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=13cb7f834198e7a63e028bdd3ed6dfe27658f897&location=
https://doi.org/10.1063/5.0136017
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0136017
https://orcid.org/0000-0002-4845-6723
https://aip.scitation.org/author/Hern%C3%A1ndez-Due%C3%B1as%2C+Gerardo
https://orcid.org/0000-0003-1643-1844
https://aip.scitation.org/author/Moreles%2C+Miguel+Angel
https://orcid.org/0000-0003-2185-5385
https://aip.scitation.org/author/Gonz%C3%A1lez-Casanova%2C+Pedro
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0136017
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0136017
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0136017&domain=aip.scitation.org&date_stamp=2023-02-07
https://aip.scitation.org/doi/10.1063/5.0135834
https://aip.scitation.org/doi/10.1063/5.0135834
https://doi.org/10.1063/5.0135834
https://aip.scitation.org/doi/10.1063/5.0136468
https://doi.org/10.1063/5.0136468
https://aip.scitation.org/doi/10.1063/5.0136669
https://doi.org/10.1063/5.0136669


Bathymetry and friction estimation from transient
velocity data for one-dimensional shallow water
flows in open channels with varying width

Cite as: Phys. Fluids 35, 027109 (2023); doi: 10.1063/5.0136017
Submitted: 23 November 2022 . Accepted: 16 January 2023 .
Published Online: 7 February 2023

Gerardo Hern�andez-Due~nas,1 Miguel Angel Moreles,2,a) and Pedro Gonz�alez-Casanova3

AFFILIATIONS
1Instituto de Matem�aticas - Juriquilla, Universidad Nacional Aut�onoma de M�exico, Blvd. Juriquilla 3001, Quer�etaro 76230, Mexico
2Centro de Investigaci�on en Matem�aticas, Jalisco s/n, Valenciana, Guanajuato, Gto 36240, Mexico
3Instituto de Matem�aticas - CdMx, Universidad Nacional Aut�onoma de M�exico, �Area de la Investigaci�on Cient�ıfica, Circuito exterior,
Ciudad Universitaria, 04510 Coyoacan, CDMX, Mexico

a)Author to whom correspondence should be addressed: moreles@cimat.mx

ABSTRACT

The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled
with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction
coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing
numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be
obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we
propose to solve the inverse problem to estimate the bathymetry and the Manning’s friction coefficient from transient velocity data. This is
done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine
uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is
obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved
numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136017

I. INTRODUCTION

The shallow water equations (SWE) model a variety of geo-
physical flows, and a vast amount of applications exist in the litera-
ture. They can be derived from depth-integrating the
Navier–Stokes equations in the case where the horizontal length
scale is much greater than the vertical length scale. Our interest is
in the one-dimensional shallow water approximation, also known
as the St-Venant equations. We refer the reader to Refs. 1 and 2
and references therein for more details on shallow water theory
and the inverse problem to be addressed here.

Direct problems for the shallow water systems, such as modeling
inundation of small-scale coastal regions3 or hydrodynamic modeling
of open-channel flows, involve the solution of 1D shallow water
systems.4 Such a system has been intensively studied during the last
decades. Computing the corresponding solutions requires the knowl-
edge of the bed bathymetry, appropriate initial and boundary condi-
tions, and possibly specific model parameters such as friction

coefficients. The inverse problems of computing the bed bathyme-
try and/or the friction’s coefficients from available data are cur-
rently an intensive research area where several works have been
formulated to solve these problems under different situations. See,
for example, Refs. 5–10 and references therein. We particularly
mention the recent work11 where the reconstruction of ocean
bathymetry from the free surface velocity and elevation is pro-
posed. Such approach is applied to real data.

In this work, we focus on the signature that the bathymetry leaves
on the perturbations in transient flows given by the shallow water
equations in open channels with vertical walls and varying width. This
leads to the solution of an inverse problem to estimate the channel’s
bathymetry and Manning’s friction coefficient from prescribed tran-
sient velocity data. To the best of our knowledge, this problem has not
been addressed in the literature.

Estimating the bathymetry and Manning’s friction coefficient from
transient velocity measurements is considerably more challenging

Phys. Fluids 35, 027109 (2023); doi: 10.1063/5.0136017 35, 027109-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0136017
https://doi.org/10.1063/5.0136017
https://doi.org/10.1063/5.0136017
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0136017
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0136017&domain=pdf&date_stamp=2023-02-07
https://orcid.org/0000-0002-4845-6723
https://orcid.org/0000-0003-1643-1844
https://orcid.org/0000-0003-2185-5385
mailto:moreles@cimat.mx
https://doi.org/10.1063/5.0136017
https://scitation.org/journal/phf


compared to a situation where the flow corresponds to a steady state. In
this work, using a cost functional constrained to the shallow water equa-
tions, we formulate an algorithm capable of recovering the bathymetry
from a set of point values of the fluid’s velocity in the channel.
Specifically, we formulate a cost functional that includes the SWE through
Lagrange multipliers. Boundary and initial conditions are included. The
constrained optimization problem is solved by a continuous descent
method. Namely, the gradient is computed analytically by the adjoint state
method, then discretized. Several benchmark problems are presented in
order to verify the numerical performance of the proposedmethod.

The paper is organized as follows. In Sec. II, the bathymetry
model and the friction estimation problem are studied. We prove that
the velocity data determine uniquely the derivative of the bathymetry
in a linearized shallow water system. That is, the inverse problem is
identifiable. Due to the hyperbolic character of the system, the speed
of propagation of the data is finite. Thus, we obtain here an estimate
for the time at which we need to observe the data. This time is used
successfully in the nonlinear case, except in those cases where both the
bathymetry and the Manning’s friction coefficients are estimated
simultaneously. In Sec. III, the constrained optimization problem is
solved by a continuous descent method. Namely, the gradient is
computed analytically, then discretized. In Sec. IV, we develop well-
balanced Roe-type upwind schemes for the direct and adjoint prob-
lems in the adjoint state method. The schemes follow closely the one
introduced in Ref. 12 to solve the direct problem for the transient shal-
low water system in the case of channels with varying width. In Sec. V,
the performance of the techniques presented in this paper is numeri-
cally verified for different problems. Specifically, we consider different
situations to argue on the merits and robustness of the algorithm.

II. THE BATHYMETRY AND FRICTION ESTIMATION
PROBLEM
A. The inverse problem

The underlying physical problem deals with water flows in rectangu-
lar channels with irregular bathymetry, varying width, and friction. The
model is the 1D SWE,13 which is written as a hyperbolic balance law as

rh

rhu

 !
t

þ
rhu

rhu2 þ g
2
rh2

 !
x

¼
0

1
2
gh2rx � grhBx � gn2

rh

R4=3
ujuj

0
@

1
A; a < x < b; t > 0:

(1)

Here, h is the depth of the layer, u is the velocity, B(x) is
the bathymetry, rðxÞ is the channel’s width at position x,
g ¼ 9:81m s�2 is the acceleration of gravity, n is the Manning’s
friction coefficient, and R ¼ rh

rþ2h is the hydraulic radius. The
hydraulic radius is the ratio of the wet area and the wetted perime-
ter. See Ref. 14 for more details on the friction term. Figure 1
shows the schematic of the model. The velocity is in units of meters
per second, while x; h;r are in units of meters and time in seconds.
The friction coefficient is in units of sm�1=3.

There exists a variety of techniques to measure the velocity in
open channels. See, for instance, Ref. 15, where river discharge estima-
tions and measurements of velocity using an aircraft system are ana-
lyzed. The inverse problem to solve is stated as follows:

Assume that the cross-sectional velocity u is measured at the points
ðxj; tkÞ; j ¼ 1; 2;…;N; k ¼ 1; 2;…;K . Namely, uðxj; tkÞ � ûj;k. With
these velocity data, it is possible find an estimation of the bathymetry
B � BðxÞ andManning’s friction coefficient n, in the 1D SWE.

B. The observation time for a linearized SWE—A
theoretical result

The interest here is to prove that the velocity data determine
uniquely the bathymetry and the Manning coefficient. That is, the
inverse problem is identifiable. Let us consider a channel with constant
width and no friction, then an identifiability result is valid for a linear-
ized SWE. In this case, we obtain an estimate for the time at which we
need to observe the data. Specifically, for a flat bathymetry at depth H
and domain size L, the time required for the observed data is deter-
mined by the speed of propagation, consequently given by T ¼ Lffiffiffiffi

gH
p .

As we will see below, this same time has shown to be a good estimate
for the nonlinear cases, except for the numerical tests where we are
also estimating the Manning’s friction coefficient.

Let us derive the observation time in the linear case. The simpli-
fied equation, constant width, and no friction, reads

h
hu

� �
t

þ
hu

hu2 þ g
2
h2

 !
x

¼ 0
�ghBx

� �
: (2)

Let h be a perturbation ofH, namely,

h ¼ gþ H; jgj � H:

Substituting gt from the first equation on the second, and disregarding
second-order terms, we obtain

FIG. 1. Schematic of the shallow water model. The left panel shows the flow profile along the channel. The right panel shows the top view.
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g
u

� �
t

þ Hu
gg

� �
x

¼
0

� g
H
ðgþ HÞBx

 !
: (3)

The flux and its derivative are

FLðg; uÞ ¼
Hu
gg

� �
; DFLðg; uÞ ¼

0 H
g 0

� �
:

The eigenvalues of the latter are 6
ffiffiffiffiffiffi
gH
p

, hence, the speed of propaga-
tion

ffiffiffiffiffiffi
gH
p

.
For identifiability, set C ¼ Bx. Assume that given C1 and C2 there

is a common solution ðg; uÞ. Then, in the second equation of (3), we
have

ðgðx; tÞ þ HÞðC1ðxÞ � C2ðxÞÞ ¼ 0:

Assume there is an interval (a, b) such that C1ðxÞ 6¼ C2ðxÞ;
a < x < b, then on that interval, gðx; tÞ ¼ �H, which is an
impossibility.

The slope of the characteristics are 61=
ffiffiffiffiffiffi
gH
p

. Hence, for a
domain of length L, the solution will contain all information at (x, t)
for t � T ¼ Lffiffiffiffi

gH
p .

Let us recall a general uniqueness result for first-order hyperbolic
systems in the form

ut þ AðuÞux ¼ 0: (4)

Assume that in a neighborhood of 0, the matrix AðuÞ has real
eigenvalues

k1ðuÞ < k2ðuÞ <… < kNðuÞ:

Theorem 1. If u 2 C2 satisfies (4) for 0 � t � T and uðx; 0Þ ¼ 0
for a � x � b; then uðx; tÞ ¼ 0, where 0 � t < T and
aþ kNð0Þt � x � bþ k1ð0Þt:

Proof. Theorem 4.2.2 H€ormander in Ref. 16. (
In our case, we start by writing Eq. (2) in the form

h
u

� �
t

þ
hu

1
2
u2 þ gh

 !
x

¼ 0
�gBx

� �
; (5)

and in terms of g, we get

g

u

 !
t

þ
ðgþ HÞu

1
2
u2 þ gðgþHÞ

0
@

1
A

x

¼
0

�gBx

 !
: (6)

Differentiating with respect to x, we have

g
u

� �
t

þ u gþ H
g u

� �
g
u

� �
x

¼ 0
�gBx

� �
: (7)

The corresponding matrix is

Aðg; uÞ ¼ u gþ H
g u

� �

and

Að0; 0Þ ¼ 0 H
g 0

� �
:

Consequently, k1ð0Þ ¼ �
ffiffiffiffiffiffi
gH
p

; kNð0Þ � k2ð0Þ ¼
ffiffiffiffiffiffi
gH
p

, and the
speed of propagation coincides with the linear equation for smooth
solutions.

We summarize the results as follows:
Theorem 2. If u 2 C2 satisfies (7) for 0 � t � T and uðx; 0Þ ¼ 0

for a � x � b; then uðx; tÞ ¼ 0, where 0 � t < T and aþ ffiffiffiffiffiffi
gH
p

t � x
� b� ffiffiffiffiffiffi

gH
p

t:
Notice that in the linear case in this Theorem 2, we are using

implicitly the existence of a global solution, locally smooth, with discon-
tinuities propagating along the characteristics. In the nonlinear case, a
global solution only exits weakly. See, for instance, Liu and Yang.17

III. SOLUTION BY A CONTINUOUS DESCENT METHOD

In this section, we formulate the inverse problem as a minimization
problem, and we develop the continuous descent method for its solution.
We follow a functional approach, that is, we optimize on Hilbert spaces
of functions using Fr�echet differentiation. We refer to Ref. 18 for this and
other methods of applied analysis to be used in the sequel.

Let the bathymetry B, and Manning’s coefficient n, be given. The
corresponding solution u of the St.-Venant equations is written as
uðx; t;B; nÞ.

Consider the bathymetry B as a function defined on an interval
(a, b) belonging to the Hilbert space of square integrable functions
L2ða; bÞ. Since Manning’s coefficient is a real number, it is natural to
introduce the least squares functional,

J : L2ða; bÞ �R ! R;

ðB; nÞ 7! JðB; nÞ;
(8)

given by

JðB; nÞ ¼ 1
2

X
j;k

uðxj; tk;B; nÞ � ûj;k
� �2

: (9)

Our goal is to minimize J constrained to h, u solving the shallow water
system (1).

The constrained optimization problem is solved by a continuous
descent method. Namely, the gradient is computed analytically, then
discretized.

A. The analytic gradient

Using the adjoint state method, let us construct an expression of
the gradient of J.

Let h	; 	iL2ðX�ð0;TÞÞ be the normalized inner product in
L2ðX� ð0;TÞÞ, given by

h f ; giL2ðX�ð0;TÞÞ ¼
1

ðb� aÞT

ðT
0

ðb
a
f ðx; tÞgðx; tÞdxdt:

Here, X ¼ ða; bÞ:
Let u be a continuous function defined on X� ð0;TÞ,

[u 2 CðX� ð0;TÞÞ]. Consider the (linear) observation operator

m : CðX� ð0;TÞÞ 
 L2ðX� ð0;TÞÞ ! RN�K ;

mu ¼ fuðxj; tkÞg:
(10)

For later reference, let us recall the adjoint operator m�, which
satisfies
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hmf ; giRN�K ¼ h f ;m�giL2ðX�ð0;TÞÞ:

We have Cauchy data

uðx; 0Þ ¼ u0ðxÞ; hðx; 0Þ ¼ h0ðxÞ; a < x < b:

For definiteness, assume a left inflow boundary where discharge,
Q¼ hu, and surface w are specified. Here, h ¼ w� B.

In terms of the observation operator, the functional J becomes

JðB; nÞ ¼ 1
2
jjmuð	; 	;B; nÞ � ûjj2;

where jj 	 jj is the Euclidean norm on RN�K .
Let us also consider the Lagrangian

lðB; n; h; u; k; lÞ ¼ 1
2
jjmu� ûjj2 þ

k

l

 !
;

 ðrhÞt þ ðrhuÞx

ðrhuÞt þ ðrhu2 þ
g
2
rh2Þx �

g
2
h2rx þ grhBx þ gn2

rh

R4=3
ujuj

!* +
L2ðX�ð0;TÞÞ

; (11)

where k and l are Lagrange multipliers.
Consider h; u solutions of the St-Venant equations as functions

of (B, n). Then, regardless of the Lagrange multipliers, J can be written
as the composition

JðB; nÞ ¼l � ðh; uÞðB; nÞ:

Assuming Fr�echet differentiability, by the chain rule, it follows that

DJðB; nÞ ¼ Dlðh; uÞDðh; uÞðB; nÞ: (12)

Consequently, in the adjoint state method, one chooses appropri-
ate Lagrange multipliers to obtain an expression for the gradient of J.
In this case, we have the following:

Theorem 3. Let B and n be given, and let h, u solve the shallow
water equations. Suppose that the velocity measurements are taken in
space and time ðx; tÞ 2 ½a; b � ½0;T for T > 0: Furthermore, assume
the Lagrange multipliers solve the adjoint equations

rkt þ rukx þ rult þ ðru2 þ grhÞlx

þ ghrx � grBx � gn2
1
h
þ 2

r

� �1=3

2� 1
3
r
h

� �
ujuj

 !
l¼ 0

rhlt þ 2rhulx þ rhkx � gn2
rh
R4=3

2jujl¼m
�ðmu� ûÞ

(13)

with final and boundary conditions

kðx;TÞ ¼ 0; lðx;TÞ ¼ 0; x 2 ða; bÞ (14)

and

kðb; tÞ ¼ 0; lðb; tÞ ¼ 0: t 2 ð0;TÞ: (15)

Then the Fr�echet derivative of the functional J is

DJðB; nÞðn1; n2Þ ¼ hn1;�
ðT
0
ðgrhlÞx dti þ hl; 2g n

rh

R4=3
ujujin2:

Consequently,

rJðB; nÞ ¼
�ðgrhlÞx

hl; 2g n rh

R4=3
ujuji

0
B@

1
CA:

Here, ð	Þ denotes the time average

�f ðxÞ ¼ 1
T

ðT
0
f ðx; tÞdt:

The proof is classical and straightforward. The chain rule (12) is
computed applying basic Fr�echet differentiation rules, then integrating
by parts to construct the adjoint system. See Ref. 2 and references
therein.

We note that if the direct problem is solved for times t 2 ½0;T
with initial conditions at t¼ 0 as specified in Sec. V, the adjoint prob-
lem has zero final conditions at time t¼T, and the solution is com-
puted backward in time from t¼T to t¼ 0.

B. A line search method

The bathymetry and Manning’s friction coefficient are inferred
iteratively. We start with an initial guess, which in principle must be
not too far from the target. In each step, one computes the gradient
and advances in the steepest search direction. The amplitude to
advance in the steepest direction is initially obtained empirically. One
then modulates it to minimize the error. We continue iteratively until
an error threshold is achieved. The algorithm is summarized as
follows.

Algorithm (Continuous descent). Given a starting point B0 and
no, a convergence tolerance e, and k 0; while jjrJðBk; nkÞjj > e;

Compute the steepest search direction

pk ¼ ðp1;k; p2;kÞ ¼ �rJðBk; nkÞ: (16)

Here, p1;k and p2;k are, respectively, the descent directions correspond-
ing to the bathymetry and the Manning’s coefficient, at iteration k. Set

Bkþ1 ¼ Bk þ akp1;k; nkþ1 ¼ nk þ akp2;k; (17)

k kþ 1; end (while)
Since

rJðB; nÞ ¼
�ðgrhlÞx

hl; 2g rh
R4=3

ujuji

0
B@

1
CA;

we have
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pk ¼
ðgrhlÞx

�hl; 2g rh
R4=3

ujuji

0
@

1
A:

We recall that the overline denotes the time average. The steepest
search direction for the bathymetry is a function of x only, and a con-
stant for Manning’s friction coefficient. At each iteration step where pk
from Eq. (16) is already computed, we choose the coefficient ak in Eq.
(17) as follows. One starts with an initial value (ak ¼ 0:5 unless other-
wise noted) and computes ðBkþ1; nkþ1Þ according to Eq. (17). One
then calculates the error in the velocity with that estimated bathyme-
try. If the error decreases when ak is reduced by a certain factor (0.8
here), we keep reducing it until the error does not decrease any more.

Also note that when either the Manning’s friction coefficient or
the bathymetry is known, we can estimate the other parameter by con-
sidering only one of the entries in pk.

IV. NUMERICAL METHODS
A. A Roe-type scheme for the hyperbolic systems (1)
and (13)

A wide variety of numerical schemes have been proposed to solve
the shallow water equations. Such schemes use different approaches
and satisfy desirable properties for different goals. In Ref. 12, a Roe-
type well-balanced numerical scheme is proposed. That is, it exactly
preserves steady sates at rest, adding accuracy when computing near
steady-state flows. Imposing appropriate boundary conditions could
lead to a convergence to transcritical discontinuous steady states where
the discharge is constant but the energy is piece-wise constant. Roe-
type well-balanced upwind schemes are known to be very precise near
those flows even in the presence of shockwaves. See, for instance, Fig.
6 in Ref. 19, where the numerical approximations for both the dis-
charge and energy are plotted. The central-upwind scheme presented
in Ref. 20 satisfies both the well-balanced and the positivity-preserving
properties. That is, it recognizes steady states at rest, and it maintains
the positivity of layer’s depth over time. Many other approaches have
also been studied. We refer the interested reader to the above works
and references therein for more information.

1. The direct problem

In quasilinear form, it is well known (see, e.g., Ref. 21) that sys-
tem (1) can be written as

Wt þ AWx ¼ S; (18)

where

W ¼
rh

rhu

 !
;

A ¼
0 1

c2 � u2 2u

 !
; and

S ¼
0

�grhBx þ gh2rx �
gn2A
R4=3
juju

0
@

1
A (19)

are the vector of conserved variables, the coefficient matrix, and the
vector of source terms, respectively. The coefficient matrix has

eigenvalues k1 ¼ u� c; k2 ¼ uþ c, and corresponding eigenvectors
r1 ¼ ð1; u� cÞT and r2 ¼ ð1; uþ cÞT , where c ¼

ffiffiffiffiffi
gh

p
. As a result,

system (1) is conditionally hyperbolic provided h> 0. Hyperbolicity is
lost when h¼ 0 in a dry state.

Roe-type upwind schemes were first introduced in Ref. 22. The
numerical scheme requires the computation of a Roe matrix
�AðW‘;WrÞ for any left and right states W‘ and Wr . The flux

F ¼ FðW;rÞ ¼ rhu;rhu2 þ g
2 rh2

� �T
of the model in conservation

form (1) depends explicitly not only on the solution variables but also
on the model parameter r. For such flux, the Roe matrix �AðW‘;WrÞ
must satisfy �AðW‘;WrÞ ! AðWÞ asW‘;Wr !W, it must have real
eigenvalues with a complete set of eigenvectors, and

DF ¼ �AðW‘;WrÞDWþ 0;�g�h
2
Dr=2

� �T
; (20)

where DF ¼ FðWrÞ � FðW‘Þ; DW ¼Wr �W‘; Dr ¼ rr � r‘, and
�h is an approximation of h between the left and right states. One such
matrix is given by the following Roe linearizations:

�u ¼
ffiffiffiffiffiffiffiffiffi
r‘h‘
p

u‘ þ
ffiffiffiffiffiffiffiffiffi
rrhr
p

urffiffiffiffiffiffiffiffiffi
r‘h‘
p

þ
ffiffiffiffiffiffiffiffiffi
rrhr
p ; �h ¼

ffiffiffiffiffi
r‘
p

h‘ þ
ffiffiffiffiffi
rr
p

hrffiffiffiffiffi
r‘
p þ ffiffiffiffiffi

rr
p ; and

�c ¼
ffiffiffiffiffiffi
g�h

q
:

In Ref. 12, a Roe-type upwind scheme is derived with the aid of a
convenient discretization of the source terms that balance the flux gra-
dients for steady states at rest. That is, the numerical scheme is well
balanced. See Ref. 23 for more details. In order to extend it here for the
case of channels with varying width, one possible discretization of the
source terms is given by

Dx �S ¼
0

�g�r�hDBþ g�h
2
Dr� gn2�r�h

�R4=3
j�uj�u;

0
@

1
A;

where

�r ¼ ffiffiffiffiffiffiffiffiffi
r‘rr
p

; �R ¼ �r�h

�r þ 2�h
; DB ¼ Br � B‘; and Dr ¼ rr � r‘:

Finite differences of the conserved variables and the linearized
source terms are decomposed in terms of the eigenvectors �r1 ¼ ð1; �u
��cÞT ; �r2 ¼ ð1; �u þ �cÞT as

DW ¼ a1�r1 þ a2�r2; DxŜ ¼ b1�r2 þ b1�r2;

where

a1 ¼
�DðrhuÞ þ ð�u þ �cÞDðrhÞ

2�c
;

b1 ¼
�c�r
2

DB� �c�h
2

Drþ n2�c�r

2�R4=3
Dx j�uj�u;

a2 ¼
DðrhuÞ � ð�u � �cÞDðrhÞ

2�c
;

b2 ¼ �
�c�r
2

DBþ �c�h
2

Dr� n2�c�r

2�R4=3
Dx j�uj�u:

More details on the implementation of the numerical scheme can
be found in Ref. 24. For the sake of completeness, we include some
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details here. We denote byWjþ1
2
the Roe averages between the statesWj andWjþ1 in the domain with cells Ij ¼ ½xj�1

2
; xjþ1

2
; xj61

2
¼ xj6Dx=2. The

second-order numerical scheme is given by

Wkþ1
j ¼Wk

j �
Dt
Dx

X
kkj�1=2;p>0

ðakj�1=2;pkkj�1=2;p � bk
j�1=2;pÞ�rkj�1=2;p�

Dt
Dx

X
kkjþ1=2;p<0

ðakjþ1=2;pkkjþ1=2;p � bk
jþ1=2;pÞ�rkjþ1=2;p

�
X2
p¼1

Dt
Dx

1
2
/ hkjþ1=2;p
� �

signð�kj;pÞ � �kj;p
� �

akjþ1=2;pk
k
jþ1=2;p � bk

jþ1=2;p

� �
�rkjþ1=2;p

þ
X2
p¼1

Dt
Dx

1
2
/ hkj�1=2;p
� �

signð�kj�1;pÞ � �kj�1;p
� �

akj�1=2;pk
k
j�1=2;p � bk

j�1=2;p

� �
�rkj�1=2;p: (21)

Here, /ðhÞ ¼ maxð0;maxðminð2h; 1Þ;minðh; 2ÞÞÞ is known as the superbee limiter function, and for each cell Ij, we define

hjþ1=2;p ¼
aj;pkj;p � bj;p

aj0 ;pkj0;p � bj0 ;p
; j0 ¼ j� signðkj;pÞ; �j;p ¼

Dt
Dx

kj;p:

The last two terms in Eq. (21) are the second-order corrections. See Ref. 25 for more details, where the reader can also find the sonic entropy fix
that is usually done for Roe-type upwind schemes and that has also been implemented here. In the case where kj�1;p < 0 < kj;p; kj�1=2;p in the first
term of Eq. (21) is replaced by krj�1=2;p ¼ kj;p ðkj�1=2;p � kj�1;pÞ=ðkj;p � kj�1;pÞ. Symmetrically, if kj;p < 0 < kjþ1;p; kjþ1=2;p in the second term of

Eq. (21), kjþ1=2;p is replaced by k‘jþ1=2;p ¼ kj;p ðkjþ1;p � kjþ1=2;pÞ=ðkjþ1;p � kj;pÞ.

2. The adjoint problem

The adjoint problem can be written in quasilinear form as

k
l

� �
t

þ 0 c2 � u2

1 2u

� �
k
l

� �
x

¼
� u

rh
m
�ðmu� ûÞ þ � gh

r
rx þ gBx þ gn2u

2h� r=3
rhR1=3

juj � 2juj
R4=3

� �	 

l

1
rh

m
�ðmu� ûÞ þ gn2

R4=3
2jujl

0
BB@

1
CCA; (22)

where û is the observed velocity in space and time. We note that k has units of velocity and l is non-dimensional. On the contrary,m is the obser-
vation operator defined in Eq. (10), andm�ðmu� ûÞ is given in units of squared velocity.

The final conditions in Eqs. (14) and (15) are given at time t¼T, and the solution is computed backwards in time from t¼T to t¼ 0. In addi-
tion, we note that the coefficient matrix

A� ¼ 0 c2 � u2

1 2u

� �

is the transpose of the coefficient matrix in the direct problem. The eigenvalues are the same, and the corresponding eigenvectors are

r�1 ¼
��u � �c

1

� �
and r�2 ¼

��u þ �c
1

� �
:

Analogous to the direct problem, the finite difference of the solution variable DW� ¼ ðDk;DlÞT and the linearized source terms

Dx S� ¼
� �u DxM�ðmu� ûÞ

�r�h
þ � g�h

�r
Drþ gDBþ gn2�u

2�h � �r=3

�r�h �R1=3
j�uj � 2j�u

�R4=3

 !" #
�l

1

�r�h
m
�ðmu� ûÞ þ gn2

�R4=3
j2�uj�l

0
BBBB@

1
CCCCA; (23)

where

�l ¼ l‘ þ lr

2
; m�ðmuûÞ ¼m

�ðmu‘ � û‘Þ þm
�ðmur � ûrÞ

2

are decomposed as

DW� ¼ a�1�r
�
1 þ a�2�r

�
2; DxŜ

� ¼ b�1�r
�
2 þ b�1�r

�
2:
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Here, the coefficients in the decompositions are given by

a�1 ¼
ð��u þ �cÞDl� Dk

2�c
; b�1 ¼

ð��u þ �cÞ�S�2 � �S�1
2�c

;

a�2 ¼
ð�u þ �cÞDlþ Dk

2�c
; b�2 ¼

ð�u þ �cÞ�S�2 þ �S�1
2�c

:

The corresponding numerical scheme for the adjoint problem
solved backward in time is given by

W�;kj ¼W�;kþ1j þ Dt
Dx

X
kkþ1j�1=2;p>0

ða�;kþ1j�1=2;pk
kþ1
j�1=2;p � b�;kþ1j�1=2;pÞ r

�;kþ1
j�1=2;p

þ Dt
Dx

X
kkþ1jþ1=2;p<0

ða�;kþ1jþ1=2;pk
kþ1
jþ1=2;p � b�;kþ1jþ1=2;pÞ r

�;kþ1
jþ1=2;p

�
X2
p¼1

Dt
Dx

1
2
/ h�;kþ1jþ1=2;p

� �
signð�kþ1j;p Þ � �kþ1j;p

� �

� a�;kþ1jþ1=2;pk
kþ1
jþ1=2;p � bþ;kþ1jþ1=2;p

� �
r�;kþ1jþ1=2;p

þ
X2
p¼1

Dt
Dx

1
2
/ h�;kþ1j�1=2;p

� �
signð�kþ1j�1;pÞ � �kþ1j�1;p

� �

� a�;kþ1j�1=2;pk
kþ1
j�1=2;p � b�;kþ1j�1=2;p

� �
r�;kþ1j�1=2;p; (24)

where

h�jþ1=2;p ¼
a�j;pkj;p � b�j;p
a�j0;pkj0;p � b�j0;p

:

V. TEST PROBLEMS

The above technique is numerically tested in this section. The
direct problem often involves bathymetries consisting of a bump or a
channel’s throat by which the fluid passes through. Depending on the
parameter regime, the flow may accelerate/decelerate and reduce/
increase its cross-sectional wet area as it passes through the bump
and/or throat. We consider here different situations to show the merits
and robustness of the algorithm.

A. Numerical setup and boundary conditions

The inverse problem consists of inferring the bathymetry B and
Manning’s friction coefficient n from the transient velocity u(x, t). We
assume that the velocity is observed at all spatial positions and at all
times. That is, the velocity data are assumed to be available at all grid
points and at all times. For the direct problem, we initially specify the
total height w and the velocity u. Such data are assumed to be known
at t¼ 0. At each step, the estimated bathymetry is used to obtain the
initial depth h ¼ w� B. Regarding the adjoint problem, which is
solved backwards in time, here, we impose zero Dirichlet final
conditions.

At the left boundary, a dischargeQleft and a surface elevation wleft

are specified at inflow and are extrapolated at outflow for the direct
problem. An inflow/outflow at the left boundary occurs when the
eigenvalues of the coefficient matrix are positive/negative. At the right
boundary, a discharge Qright and a surface elevation wright are specified
at inflow and extrapolated at outflow. An inflow/outflow at the right

boundary occurs when the eigenvalues of the coefficient matrix are
negative/positive. The adjoint problem is used to compute the gradient
rJ . Zero Neumann boundary conditions are implemented for the
adjoint variables k;l. We assume we know the bathymetry elevation
at the boundaries, and we prescribe them to be Bin ¼ Bout ¼ 0 at both
ends.

We quantify the error and the relative error with the L1 norm,
and are given by

e ¼ sup
x
jBapproxðxÞ � Bexactj; and erel ¼

e
supx jBexactðxÞj

;

where Bapprox and Bexact are the approximated and exact bathymetries.
The time window ½0;T where both the direct and the adjoint

problems are solved need to be chosen carefully. The end time T
needs to be large enough to have the needed information to invert
the problem. However, if T is too large, it induces strong interac-
tions with the boundary, where the bathymetry is prescribed. In
any case, we have found that the bathymetry estimation is not very
sensitive to the end time. We use T as estimated for the linear case
in Sec. II B, except for the cases where the Manning’s friction coef-
ficient is also estimated.

B. Bathymetry bump

The synthetic data in this first numerical test is obtained with a
particular choice of a bathymetry elevation and channel’s geometry.
The exact bathymetry to be estimated is given by

BexactðxÞ ¼

1
2

1� 4 x � 1
2

� �� �2
 !

þ 0:02 sin 16p x � 1
4

� �� �

if x 2 0:25; 0:75½ ;
0

if x 2 0; 1½ n 0:25; 0:75½ :

8>>>>>>>><
>>>>>>>>:

(25)

The channel’s width is given by

rðxÞ ¼ 2min 2:4ðx � 0:5Þ2 þ 0:35; 0:5
� �

: (26)

The 3D view of the channel is shown in the left panel of Fig. 2.
Following Ref. 14, the Manning’s friction coefficient is fixed to
n ¼ 0:009 sm�1=3 in this numerical test, and the bathymetry is the
only model’s parameter to estimate.

We first test the algorithm in a simple setting. In particular,
the velocity considered here corresponds to a subcritical smooth
steady state (in the absence of friction). Smooth steady states are
characterized by two invariants. Namely, the discharge Q ¼ hu and
the energy E ¼ 1

2 u
2 þ gðhþ BÞ are both constant throughout the

domain when the friction coefficient n vanishes. One could use
such invariants to estimate the bathymetry. However, the algo-
rithm presented here is designed for transient flows as well, and
the setting in this numerical experiment is meant to test the accu-
racy in the approximated bathymetry. Given the bathymetry B, a
corresponding steady state may be computed by specifying two
quantities. Here, we specify the discharge Qin ¼ 1 at inflow at the
left boundary and the total height wout ¼ Bout þ hout ¼ 1:5 at
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outflow at the right boundary. Figure 2 shows the total height w ¼
hþ B and exact bathymetry B in the top right panel, while the bot-
tom right panel shows the exact velocity that is observed.

In general, the initial guess needs to be close enough to the target
in order to converge to the correct state. However, here, we test the
robustness of the algorithm by considering an initial guess Bo¼ 0. The
numerical results for the inverse problem are given in Fig. 3. In the left
panel, the exact solution is identified with the solid blue line, while the
initial guess is denoted by the black dashed line. The final approxima-
tion is computed using 80 steps in the algorithm described in Sec. III B
and a resolution of 200 grid points.

Taking a characteristic depth H¼ 1.5, domain size L¼ 1, and
g¼ 9.81, the time for linear identifiability is T ¼ L=

ffiffiffiffiffiffi
gH
p ¼ 0:26. The

direct and adjoint problems are then solved in the time window ½0;T.
In the panel, we show the estimation of the bathymetry for the steps 0,
20, 40, 60, and 80. The final step is not easy to distinguish because it is
very close to the target. The error is shown in the right panel. The
maximum error is e ¼ 9:1� 10�3, which corresponds to a relative
error of erel ¼ 1:77%. The maximum error is located near the left
boundary. Away from that region, the error is reduced to 2:9� 10�3,
which corresponds to a relative error of 0:57%.

C. A transient flow with friction

The ultimate goal in this work is to estimate the bathymetry in
transient flows. For that end, the observed velocity in these numerical
tests is time dependent, and the synthetic data are constructed as fol-
lows. Given the bathymetry in Eq. (25), the initial condition in the
direct problem is the smooth supercritical steady state associated with
the discharge Qsteady ¼ 8 and the total height wout ¼ Bout þ hout ¼ 1.
However, the discharge imposed at the left boundary is Qin ¼ 9:6,
which is 20% higher compared to that corresponding to the steady
state. The resulting transient flow consists of a perturbation to a steady
state. The right-going shockwave propagates and passes through the
bump in the bathymetry. This generates a time-dependent velocity,
which is used as the synthetic data in the adjoint problem.

Taking a characteristic depth H¼ 2, domain size L¼ 1, and
g¼ 9.81, the time for linear identifiability is T ¼ L=

ffiffiffiffiffiffi
gH
p ¼ 0:23. This

is our end time for this numerical test. The Manning’s friction coeffi-
cient here is fixed to n ¼ 0:009 sm�1=3. Figure 4 shows the approxi-
mated bathymetry in steps 1–3 and 45 in the left panel. For
completeness, the error is exhibited in the right panel. The maximum
error in the last step (away from the left boundary) is e ¼ 7:2� 10�3,

FIG. 2. Left panel: 3D view of the channel. Top right panel: Exact total height w ¼ hþ B (black dashed line) and bathymetry (blue solid line) are shown. Bottom right panel:
Velocity as a function of x. The solution corresponds to a steady state with discharge Qin ¼ 1 at inflow (left boundary) and total height wout ¼ 1:5 at outflow (right boundary).

FIG. 3. Left panel shows the exact bathymetry (solid blue line) given by Eq. (25), the initial guess Bo ¼ 0 (black dashed line) and the intermediate steps (dotted lines in differ-
ent colors and mark sizes). The right panel shows the error jBn � Bexactj at steps 20, 40, 60, and 80.
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which corresponds to a relative error of erel ¼ 1:39%. Away from
that region, the error is reduced to 1:1� 10�3, which corresponds
to a relative error of 0:21%. Flows in realistic applications may
not be in steady-state equilibrium. Estimating the bathymetry
from transient velocity measurements is a lot more challenging
compared to a situation where the flow corresponds to a steady
state. The present algorithm has shown to be efficient in those
circumstances.

Figure 5 shows the time evolution of the total height (left col-
umn) and velocity (right column) at times t ¼ 0:003 6; 0:035 55, and
0.08. The total height is computed both using the exact and the
approximated bathymetries. The exact total height is denoted by the
dashed blue line, while the approximated solution is identified with
the dashed red line. The steady-state total height is also shown for ref-
erence (black dotted line). The exact and approximated topographies
are denoted by the solid blue and dotted red lines, respectively.

The approximated solution is very accurate even in this time-
dependent problem, and the differences are hard to be distinguished.

D. Bump in a channel with varying width, friction,
and discontinuous top surface

Discontinuous weak solutions of hyperbolic systems like the shal-
low water equations may appear in finite time. The robustness of the
algorithm is tested here by estimating the bathymetry from velocity
data with discontinuities. The exact bathymetry is given by

BðxÞ ¼
1
4

cos 10p x � 1
2

� �� �
þ 1

	 

if 0:4 < x � 0:6;

0; otherwise;

8><
>:

and the width r is given by Eq. (26).

FIG. 5. Left column: Approximated (blue dashed line) and exact (red dashed line) total heights at times t ¼ 0:0036; 0:0355, and 0.08 in descending order for the transient flow
of Sec. V C. The exact (solid black line) and approximated (dotted red line) bathymetries are also shown. The steady-state height is included to highlight the difference com-
pared to the transient flow (dotted black line). Right column: approximated (dotted red line) and exact (dashed blue line) velocities.

FIG. 4. Left panel: Exact bathymetry (blue solid line), the initial guess (black dashed line), and the intermediate steps in the algorithm (dotted lines). Right panel: Error in steps
1–3 and 45.
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The computed state in this numerical test is a steady state with
shockwave in the absence of friction. However, here the Manning’s
friction coefficient is set to n ¼ 0:009 sm�1=3, following Ref. 14. The
initial height at the left and right boundaries are win ¼ 1:1 and
wout ¼ 0:75, respectively. An initial shock is placed at xshock ¼ 0:65
with left and right states given by wleft ¼ 1:417; uleft ¼ 8:085; and
wright ¼ 0:931; uright ¼ 12:198, respectively. The energy is initially
piecewise constant, satisfying Ein ¼ 46:59 for x � xshock, and Eout
¼ 83:52 for x > xshock. This shockwave is stationary in the absence of
friction. The right panel of Fig. 6 shows the 3D view of the channel
(yellow surface), the bathymetry B (black surface), and the initial
height’s elevation w (blue surface).

Taking a characteristic depth H¼ 2.5, domain size L¼ 1, and
g¼ 9.81, the time for linear identifiability is T ¼ L=

ffiffiffiffiffiffi
gH
p � 0:21. This

is our end time for this numerical test. The top left panel of Fig. 6
shows the estimated bathymetry given by the algorithm in Sec. III B at
steps 1–5 and 12. The initial state is Bo ¼ 0. This is significantly far
from the target, which consists of a bump at the center of the domain.
The first step already has a bump-like structure, with a small jump
near the shockwave. At step 5, the bathymetry is close to the target,
and at the final step 12, the approximation is virtually on top of the
exact bathymetry. The error as a function of x is shown in the bottom
left panel for different steps, where the convergence to the exact solu-
tion is evident. At step 12, the error is below e ¼ 4:4� 10�3, which
corresponds to a relative error of erel ¼ 0:87% of the maximum bathy-
metry’s elevation. We note that the algorithm works well even in the
presence of shockwaves and friction.

E. Bathymetry and Manning’s friction coefficient
inversion

In this test, we invert both the bathymetry and the Manning’s fric-
tion coefficient simultaneously. Although the value of n in Sec. VD is
realistic, it may not have a strong effect in the flow in the time window
considered here. As a sensitivity test, we have increased the target value

of the exact Manning’s friction coefficient to nexact ¼ 0:027 sm�1=3,
which is three times larger compared to the previous one. We chose a
smaller time window with T¼ 0.02. However, in this case, it took 2000
iteration steps to converge to the exact solution with an error of
e ¼ 3:9� 10�3, which corresponds to a relative error of erel ¼ 0:77%
of the maximum bathymetry’s elevation.

Using the same symbols as in Fig. 6, the top left panel of Fig. 7
shows the exact bathymetry, and the approximated bathymetry at the
initial and intermediate steps 101, 201, 301, 401, and 2000. The error
is shown in the bottom left panel. Although it took many more steps,
the error at the final step is very small.

We can simultaneously estimate both the bathymetry’s elevation
and the Manning’s friction coefficient in the algorithm in Sec. III B.
The second component of the gradientrJ has the approximated fric-
tion coefficient n as a factor itself. As a result, the initial value cannot
be zero because it represents an equilibrium value in the algorithm.
We set the initial value of the Manning’s friction coefficient as
no ¼ 0:0027 ¼ 1

10 nexact. The bottom right panel of Fig. 7 shows the
estimated Manning’s friction coefficient as a function of step number.
The estimated value is already close to the exact value after about 20
steps. We only show 200 steps to see the variations in the early steps.
However, the plot for 2000 steps (not shown) shows a convergence to
the exact value.

The top right panel of Fig. 7 shows the bathymetry B and the ini-
tial surface elevation with a shockwave used in the present numerical
test and the previous Sec. VD. The algorithm provides very accurate
results in flows with or without friction, steady or transient states, with
initial guesses that are significantly far from the exact solutions.

F. Manning’s coefficient inversion in the presence
of wet–dry states

The numerical test in this last section is motivated by laboratory
experiments of dam breaks conducted in converging/diverging chan-
nels. See, for instance, Chap. 5 of the book14 for a list of experiments

FIG. 6. Top left panel: Exact bathymetry (blue solid line), the initial guess (black dashed line), and the intermediate steps in the algorithm (dotted lines). Bottom left panel: Error
in steps 1–5 and 12. Right panel: 3D view of the channel (yellow surface), the exact bathymetry (black surface), and the initial surface elevation w ¼ Bþ h (blue surface).
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in channels with different bed slopes and different wet and dry
conditions. The experiments in Ref. 14 Sec. 5.3.4 were taken from
Ref. 26. The channel has vertical walls and width variations along
the x-axis, approximately given by the graph in the left panel of
Fig. 8. The channel’s length is 21.2m, and its width is 1.4 m from 0
to 5m, and from 16.8 to 21.2m. The minimum width is 0.6m at
xm ¼ 8:5m.

In the experiment, the flow is initially given by

uðx; t ¼ 0Þ ¼ 0;wðx; t ¼ 0Þ

¼ 0:3m if x < xm ¼ 8:5m;
Hout ¼ 10�5 m; otherwise;

�
(27)

which corresponds to a flow initially at rest, where the downstream
part of the channel is dry (a threshold value of Hout ¼ 10�5 has been
used). The gate is assumed to be instantaneously removed. The left
boundary is a solid wall. We have used zero Dirichlet left boundary
conditions in the velocity and Neumann left boundary conditions for
the height. The right boundary extrapolates the data at outflow and
imposes Hout at inflow. Once the dam breaks, the flow evolves as

illustrated in the left panel of Fig. 9 at t ¼ 4 s. The resolution here is
Dx ¼ 21:2m=200.

The bathymetry is flat B¼ 0. So, we are interested in estimating
the Manning’s friction coefficient, which is unknown. Unfortunately,
the depth at two locations (P1 and P2 in Fig. 9) are the only quantities
reported in this experiment. In Ref. 27, it was found that one good
approximation for the Manning’s friction coefficient is
n ¼ 0:0084 sm�1=3. Here, we create synthetic velocity data based on
this value to approximate the friction coefficient based on those veloc-
ity measurements. The purpose of this numerical test is to show that
the algorithm works well even in the presence of wet–dry states, in
connection with the above experiment.

The approximated Manning’s coefficient is shown for different
steps in the left panel of Fig. 9. One can observe that the Manning’s
coefficient is very close to the exact value after 20 steps in the algo-
rithm. The approximated values were obtained using a time window
½0;T with T ¼ 4 s before the flow reaches the boundaries. We note
that the amplitude in Eq. (17) is chosen much smaller here
(a ¼ 5� 10�4) in this case, where both bathymetry and friction are
estimated simultaneously in the presence of wet and dry states.

FIG. 8. Left panel: Approximated channel’s width as a function of x (top view of the channel). The points P1 and P2 indicate the locations where the depth was measured in the
corresponding experiment in Ref. 14. Right panel: Total height w ¼ hþ B at time t ¼ 4 s with initial conditions (27) and the boundary conditions below.

FIG. 7. Top left panel: Exact bathymetry (blue solid line), the initial guess (black dashed line), and the intermediate steps in the algorithm (dotted lines). Bottom left panel: Error
in steps 1, 101, 201, 301, 401, and 2000. Top right panel: The exact topography (solid blue line) and the exact total height (black dashed line) are displayed. Bottom right panel:
The approximated Manning’s friction coefficient is shown as a function of iteration step (solid blue line), and the exact coefficient is included for reference in the dashed red
line.
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In the experimental data in Refs. 14 and 26, the height was mea-
sured in time at two particular locations. One at the left boundary
P1 ¼ 0, and the other one near the right boundary P2 ¼ 18:5m. The
right panel in Fig. 9 compares the real and numerical values. We
observe a good agreement, especially at the location P2 near the right
boundary, for the entire simulation. The numerical approximation at
P1 is accurate for the first part of the simulation, and overestimates it
for the second half. Boundary conditions and the adjustment of the
Manning coefficient might affect the predictions.

VI. CONCLUSIONS

In this work, we formulated a constrained optimization problem
to estimate the bed channel bathymetry and Manning’s friction coeffi-
cient from available data of the fluid’s velocity. The continuous problem
is first presented and analyzed. A quadratic functional, which by means
of Lagrange multipliers incorporates the shallow water equations, is
minimized using the Fr�echet derivative. We proved that the velocity
data determine uniquely the derivative of the bathymetry in a linearized
shallow water system. That is, we proved that the inverse problem is
identifiable in the linearized system, which helped us estimate the time
window that is needed for the inverse problem in the nonlinear case,
except for the cases where both the bathymetry and the Manning’s fric-
tion coefficients are estimated simultaneously. A continuous descent
method is formulated to obtain the minimal solution. Both direct and
adjoint systems are proposed to be solved by a second-order Roe-type
upwind numerical scheme. However, the algorithm works for any other
efficient and robust numerical scheme. We estimate the bathymetry of
transient flows as well as the Manning’s friction coefficient. Several
benchmark problems are presented in order to verify the numerical per-
formance of the proposed method. A simple steady-state case is first for-
mulated to verify the reliability of the algorithm before transient flows
can be treated. In this first case, we considered a steady-state velocity
and a bathymetry bump with a sinusoidal perturbation. In a second test,
we considered a transient flow consisting of a right-going perturbation
to a steady state. Finally, we simultaneously estimated both the bathym-
etry and the Manning’s friction coefficient in a channel with varying
width and discontinuous top surface, and a numerical test was presented
to estimate the Manning’s coefficient in the presence of wet–dry states,
motivated by experimental data. We obtained very accurate approxima-
tions of the bathymetry in all cases.

We have provided an algorithm that works very well even in
transient flows in channels with vertical walls of varying width, discon-
tinuous top surfaces, and even wet–dry states. The need for a good ini-
tial guess and the empirical initial coefficient (ak) in the search

direction are often limitations for approaches like the one presented
here. However, we have shown that our algorithm is not very sensitive
to those parameters, and we provided criteria to choose the best coeffi-
cient ak together with conditions to stop our algorithm. Furthermore,
our setting is flexible and may be adapted to estimate other parameters
or systems.

From a theoretical perspective, the continuous descent method in
Sec. III can be extended to higher dimensions on irregular domains.
However, the computational complexity is much greater. We aim to
report on these in future works.

The identifiability result in Sec. II for the linear shallow water
equation is local. That is, for identifying bathymetry in an interval of
length L, we need data only in that interval with a final time greater
than T ¼ L=

ffiffiffiffiffiffi
gH
p

. We use the same time and data for the nonlinear
case based on Theorems 1 and 2. We conjecture that the local identifi-
cation is valid for smooth flows before shocks are formed. We clarify
that in this work we assume that the velocity observations are available
at all grid points for simplicity in the computation of the source term
in the adjoint equations. It is open to determine the minimal data
required for identification. These are challenging research problems to
be addressed in future works.
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