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Abstract We consider the shallow water equations for flows through channels with arbitrary
cross section. The system forms a hyperbolic set of balance laws. Exact steady-state solu-
tions are available and are controlled by the relation between the bottom topography and
the channel geometry. We use a Roe-type upwind scheme for the system. Considerations
of conservation, near steady-state accuracy, velocity regularization and positivity near dry
states are discussed. Numerical solutions are presented illustrating the merits of the scheme
for a variety of flows and demonstrating the effect of the interplay between the topography
and the geometry on the solution.

Keywords Hyperbolic conservation laws · Balance laws · Upwind schemes · Steady-state
solutions

1 Introduction

The shallow water equations model a variety of atmospheric and geophysical flows. They
may be derived from the Euler equations by cross sectional averaging, and describe flows
that are nearly horizontal. They form a set of nonlinear hyperbolic conservation laws with
geometric source terms representing the topography and geometry constraining the flow.
Delicate balance between the flux gradient and the geometric source terms give rise to a
range of interesting flows including a variety of non-trivial equilibrium solutions. This pa-
per is concerned with shallow water flows through channels of variable cross sectional area,
where the interplay between the bottom topography and the contraction of the channel af-
fects and controls the resulting solution. While the model is formulated for channels with a
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Fig. 1 Schematic of channel cross section

general cross section, it is convenient to think of the channel walls as being approximated
by piecewise linear segments, and the cross section being approximated by piecewise trape-
zoids, see Fig. 1.

Recent years have seen a rapidly growing interest in the development of numerical meth-
ods for shallow water systems in various numerical frameworks [1, 2, 10, 12, 14, 15, 17–20,
22, 23], see also the recent book [4] and references cited therein. Most relevant for the
present work are papers involving shallow water flows in variable geometry, including [9,
13, 24] where an upwind scheme for the single layer shallow water is derived and general-
ized to rectangular channel flows, and [6] where the Q-scheme [5] is used to solve the two
layer shallow water system, the scheme in [8, 25] based on central WENO reconstruction
and [2] using a central-upwind scheme [15].

The paper is organized as follows: In Sect. 2, the model and its properties are described,
Sect. 3 discusses the numerical method, and Sect. 4 presents numerical results. The paper
has two Appendices: Appendix A discusses the structure of steady-state solutions and the
role of boundary conditions, and Appendix B derives the numerical scheme and establishes
its properties.

2 The Model

The shallow water equations for flows through channels with variable cross section is given
by

(
A

Au

)

t

+
(

Au

Au2 + I1

)

x

=
(

0
I2 − gσB(x)hBx

)
(1)

where h denotes the depth of the layer, u the velocity, B(x) the bottom topography, σ (x, y)

the channel geometry, A =
∫ B+h

B
σ (x, y)dy is the cross-sectional wet area, Au = Q is the

flow rate or discharge, σB(x) = σ (x,B(x)) the bottom channel width, and g the grav-
itational constant. We further use w = h + B to denote the total surface height, I1 =
g

∫ w

B
(w − y)σ (x, y)dy = Ap, where p denotes the cross-sectional average of the hydro-

static pressure, and I2 = g
∫ w

B
(w − y)σx(x, y) dy (see Fig. 1). Written in quasilinear form,

the system is given by
(

A

Au

)

t

+
(

0 1
c2 − u2 2u

)(
A

Au

)

x

=
(

0
c2 (hI3 − σBBx)

)
(2)

where I3 = 1
h

∫ w

B
σx(x, y) dy is the averaged width variation, and c2 = gA/σT , where

σT = σ (x,h + B) is the width of the channel at the top surface. Notice that c2 reduces
to the familiar expression c2 = gh for rectangular channels. The system is hyperbolic, with
eigenvectors and eigenvalues

R =
(

1 1
u − c u + c

)
, " =

(
u − c 0

0 u + c

)
, (3)
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and is characterized by the nondimensional Froude number F , where F 2 = u2

c2 . The flow is
described as subcritical for F 2 < 1 and supercritical for F 2 > 1.

The system is endowed with an entropy function

E = AE − I1

satisfying an entropy inequality

∂E
∂t

+ ∂

∂x

(
QE

)
≤ 0.

Strict hyperbolicity is lost for h = 0, when eigenvectors coincide, representing a so-called
“dry state”.

2.1 Steady-State Solutions

Smooth steady-state solutions are characterized by two constants, the flow rate Q, and the
energy E

Q ≡ Au = Const, E ≡ 1
2
u2 + g(h + B) = Const,

of which it is easy to recognize the steady state of rest

u = 0, h + B = Const.

Exact smooth solutions can be found by rootfinding

1
2

Q2

A2
+ g(h + B) − E = 0, A = A(h). (4)

In the straight channel case, smooth steady solutions satisfy (here h′ = hx )

(F 2 − 1)h′ = B ′.

At the crest B ′ = 0, and the solution is either critical (F 2 = 1) or symmetric (h′ = 0). If the
channel is rectangular with variable cross sectional width, then

(F 2 − 1)h′ = B ′ − hσ ′

σ
F 2. (5)

If the crest (B ′ = 0) and the throat (σ ′ = 0) occur at the same point, the right hand side of (5)
vanishes there and the flow is either symmetric or reaches criticality at that point. Otherwise,
criticality occurs where

B ′ = h

σ
F 2σ ′

which is somewhere between the crest and the throat. For general channels, smooth steady-
state solutions satisfy

(F 2 − 1)h′ =
(

1 − (σT − σB) F 2

σT

)
B ′ − hI3

σT

F 2.

In Appendix A, we discuss further the structure of steady-state solutions and the role of
boundary conditions in time dependent problems.
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3 Numerical Method

We write system (2) as

Wt + A(W)Wx = S(W)

and use a Roe-type upwind scheme [21], with upwinding of the geometric source terms as
proposed in [22]. The scheme has the general form

Wn+1
j = Wn

j − $t

$x

{
A+

j− 1
2
(Wn

j − Wn
j−1) + A−

j+ 1
2
(Wn

j+1 − Wn
j )

}
. (6)

Here,

A+$W =
∑

λk>0

(αkλk − βk)rk, A−$W =
∑

λk<0

(αkλk − βk)rk (7)

where λk and rk are the eigenvalues and eigenvectors of some local linearization of the flux
Jacobian, to be specified, and αk and βk are the wave strengths associated with the flux
gradient and the source

$W =
∑

k

αkrk, $xS =
∑

k

βkrk (8)

given by

α1 = (û + ĉ)$A − $Q

2ĉ
, β1 = ĉ2(σ̂B$B − $xĥI3) + Ĝ

2ĉ
(9)

α2 = − (û − ĉ)$A − $Q

2ĉ
, β2 = − ĉ2(σ̂B$B − $xĥI3) + Ĝ

2ĉ
,

where we have used (̄ ) = ()L+()R
2 to denote arithmetic averages, and (̂ ) to denote other

linearized quantities as defined below

Â = 1
2

[∫ wL

BL

+
∫ wR

BR

]
σ̄ (y)dy, σ̄ (y) = 1

2

(
σL(y) + σR(y)

)
,

(10)

û =
√

ALuL + √
ARuR√

AL + √
AR

, ĉ2 = gÂ

σ̂T

,

σ̂T and σ̂B are the linearized widths at the top/bottom surface

σ̂T $(h + B) =
∫ wR

wL

σ̄ (y)dy, σ̂B $B =
∫ BR

BL

σ̄ (y)dy, (11)

and

$xĥI3 = 1
2

[∫ wL

BL

+
∫ wR

BR

]
$σ (y)dy, Ĝ = g

∫ wR

wL

(w − y)σ (x, y)dy. (12)

The above linearization is conservative, and respects steady state of rest (see Appendix B
for details), and in the case of vertical walls σ (x, y) = σ (x), reduces to



J Sci Comput

Â = σ̄ h̄, σ̂T = σ̂B = σ̄ ĉ2 = gh̄, û =
√

ALuL + √
ARuR√

AL + √
AR

,

$xĥI3 = h̄ $σ, Ĝ = g

4
$σ ($(h + B))2.

3.1 A Comment about More General Steady States

The above version of the scheme respects steady state of rest. It is generally not easy to de-
sign a scheme that respects all steady states, even if smooth, and often necessitates nontrivial
rootfinding (see [7, 18, 19]). We would like to make the following observations.

For smooth flows, one may express the governing equations in terms of the equilibrium
variables Q and E as follows

(A)t + Qx = 0,

(Au)t + uQx + AEx = 0.
(13)

This formulation trivially respects all smooth steady states, and does not require resorting
to rootfinding. Of course, system (13) is not in conservation form, but for smooth flows,
computed solutions are conservative to the order of the numerical approximation, which can
be as high as one wishes. Where (13) falls short is in handling discontinuous flows.

In [3], a method was proposed for conservation laws with spatially varying flux functions.
The method uses the so-called f-waves, and is suitable for computations of near steady-state
flows in that the entire residual

$F − $xŜ

is decomposed onto the characteristic fields, for some linearization of the source Ŝ. If a
source linearization can be found so that the steady state is recognized on the discrete level,
the residual is identically zero and so are its projections onto the characteristic fields.

For rectangular channels, we write the fluctuations in terms of the equilibrium variables,
$Q and $E. Using repeatedly the identity $(AB) = Ā$B + B̄$A where ¯( · ) indicates
arithmetic average, we obtain

$

(
σhu2 + g

2
σh2

)
≡ ū$Q + σhu$u + g

2
σ̄$h2 + g

2
h2$σ

= ū$Q + Q̄$u + gσ̄ h̄$h + g

2
h2$σ

= ū$Q + (Q̄ − σ̄ h̄ ū)$u + σ̄ h̄ū$u + gσ̄ h̄$h + g

2
h2$σ

= ū$Q + σ̄ h̄$

(
1
2
u2 + gh

)
+ g

2
h2$σ + (Q̄ − σ̄ h̄ū)$u.

Using

$x
(
Ŝ
)(2) = −gσ̂h$B + 1

2
gĥ2$σ := −gσ̄ h̄$B + 1

2
gh2$σ

we obtain the discrete identity
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(
$F − $xS̄

)(2) = $

(
σhu2 + g

2
σh2

)
+ gσ̄ h̄$B − 1

2
gh2$σ

= ū$Q + σ̄ h̄$E + (Q̄ − σ̄ h̄ū)$u︸ ︷︷ ︸
Conservation Correction Term

.

We make the following comments:

(i) It is easy to see that $F − $xS̄ ≡ 0 for steady state of rest.
(ii) For more general smooth steady states, ($F − $xS̄)(2) = (Q̄ − σ̄ h̄ū)$u ≠ 0. We

observe that

(
Q̄ − σ̄ h̄ū

)
$u =

{
$u$(σh) + $h$(σu) + $σ$(hu)

8

}
$u = O($x)3

is small for smooth flow, so the residual that is being decomposed is very small, which
may explain good behavior of the method for general (smooth) steady state.

(iii) The wave strengths expressed in terms of $Q and $E are given by

Z1 = 1
2
$Q − σ̄

2g
c̄$E − Q̄ − σ̄ h̄ū

2c̄
$u,

(14)

Z2 = 1
2
$Q + σ̄

2g
c̄$E + Q̄ − σ̄ h̄ū

2c̄
$u.

We have used both versions of the upwind scheme (6)–(12) and (14) in the computations of
the next section. In general, we have found them to give very similar results.

3.2 Entropy Fix

It is known that Roe-type schemes require an entropy fix. We have implemented an entropy
fix following [11], as discussed in [16]. It is our experience that implementing an entropy
fix is crucial for computations of drainage problems, where the flow develops centered rar-
efactions in regions of very thin layers (see Sect. 4).

3.3 Velocity Regularization and Positivity

When h ≪ 1 is very small, for example in drainage problems, recovering the velocity u in
the standard way u = Q/A becomes inaccurate and may cause instabilities. This is often
remedied by regularizing the velocity, for example

u = 2Q

A + max(A, ϵ)
. (15)

Typically, ϵ = O(10−5). Other formulas may be used [2, 15]. For drainage problems, we
have also used

u = sign(Au){max(2(EStSt − g(h + B)),0)}1/2 for h < ϵ (16)

which replaces u in very thin layers by a value consistent with the steady-state solution
towards which the solution is converging (e.g. EStSt is the final steady-state energy for the
drainage problem). This formula often gives very smooth and clean convergence, see numer-
ical results in Sect. 4. The current version of the scheme is not positive, but has proven to be
extremely robust in maintaining positivity, for example in drainage problems (see Sect. 4).
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4 Numerical Results

The numerical scheme is formulated in terms of integrals over general channel cross sec-
tion. It is convenient to think of the channel walls as being approximated by straight line
segments, leading to piecewise trapezoidal cross sections. In this section, we present results
for various shallow flows through channels with various geometries, including rectangular,
trapezoidal and general (multi-trapezoidal) cross sectional area. Unless otherwise stated, the
examples use g = 9.81, a grid of 200 points, and a CFL number of 0.9.

4.1 Rectangular Channels

The examples in this subsection involve channels with rectangular variable (in x) cross
sections.

4.1.1 Small Perturbation to Steady State

In the first example, initial data is a small perturbation to steady state of rest. By design, the
scheme (6)–(12) preserves steady state of rest, and the propagation of small perturbations
thereof is computed very accurately. Computed solutions are shown in Fig. 2, for centered

Fig. 2 Propagation of small perturbation to steady state of rest through a contracting rectangular channel,
ϵ = 10−2: Centered contraction (left) and off centered contraction (right), T = 0, 0.02, 0.05, 0.15, 0.25 and
0.5
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Fig. 3 Propagation of small disturbance to steady state of rest through a contracting rectangular channel,
ϵ = 10−5. Total water height, w = h+B , at t = 0.25 (dots) over initial conditions (solid line): central-upwind
[2] (left) and upwind (right) schemes

Fig. 4 Propagation of small perturbation to non-rest steady state through a contracting rectangular channel,
ϵ = 10−2, centered contraction. The total height for the initial perturbation (top left) and the equilibrium
variables for T = 0, 0.8, 1.9, 2.4 and 4 are shown

and off-centered channel contractions. Once the small perturbation leaves the computational
domain, the unperturbed steady state is recovered.

A comparison with results by the central-upwind scheme [2] are shown in Fig. 3 for
ϵ = 10−5, on a grid of 200 points. Results are similar, with the upwind scheme better able to
maintain a sharp profile of the perturbation.

The propagation of a small perturbation to a non-rest steady state is shown in Fig. 4.
Again, once the perturbation leaves the computational domain, the unperturbed steady state
is recovered, indicated by Q and E going back to their constant unperturbed levels.

4.1.2 Convergence to Steady State

The next set of examples illustrates the long time convergence of transient solutions to a
steady state. The channel has vertical walls, with a parabolic contraction. In all cases, the
flow discharge Q was imposed at inflow, and the depth of the layer h was imposed at (sub-
critical) outflow. Figure 5 (top) shows a schematic of the geometry (not drawn to scale)
and includes a straight channel, a channel with centered contraction and a channel with off-
centered contraction. Below the geometry, Fig. 5 shows the topography B and water level
h + B at steady state for (i) subcritical flow (top middle), (ii) smooth transcritical flow (bot-
tom middle) and (iii) transcritical flow with a jump (bottom). The following boundary con-
ditions were specified for (i) straight channel (ii) centered and (iii) off-centered contraction
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Fig. 5 Numerical (symbol) and exact (solid line) water level in steady-state solutions: Geometry (top), sub-
critical flow (top middle), smooth transcritical flow (bottom middle) and transcritical flow with a jump (bot-
tom); Rectangular channel with straight walls (left), centered contraction (middle) and off-center contraction
(right)

Table 1

Qin hout σmin x0 x1

subcritical flow: 4.42 2.0 1.0 −10 10 : straight

0.9 −5 5 : centered

0.9 −3 9.5 : off-centered

smooth transcritical flow: 1.53 0.4058 1.0 −10 10 : straight

0.3384 0.7 −5 5 : centered

0.3356 0.6 −3 9.5 : off-centered

transcritical flow with jump: 0.18 0.34 1.0 −10 10 : straight

0.34 0.66 −5 5 : centered

0.39 0.4 −3 9.5 : off-centered

respectively. The bottom topography in all the examples is B(x) = max {(0.05(4 − x2),0)}.
The geometry is given by a parabolic contraction extending from x0 to x1, as specified in
Table 1. Computed solutions are in excellent agreement with exact solutions, also shown.

Figure 6 shows a comparison between the present upwind scheme and the central scheme
of [2]. The examples were taken from [2]. See Fig. 9 (bottom), Fig. 10 (top) and Fig. 11
(bottom) therein. By design, both schemes respect steady state of rest, but neither is able
to preserve general steady states. The closeness of Q and E to being constants is a good
measure of how well the schemes do in approximating general (smooth) steady states. It is
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Fig. 6 Comparison between the upwind and the central schemes for convergence to steady states. For chan-
nels with vertical walls, equilibrium variables Q and E are shown for a subcritical (left), smooth transcritical
(middle), and discontinuous transcritical (right) flow

striking to note that the present upwind scheme converges to Q and E with relative errors
consistently 2–4 orders of magnitude better than the central-upwind scheme.

4.1.3 Reservoir Drainage after Dam Break

In the next example, a reservoir is being drained through a contracting channel. The water is
initially at rest u = 0, leveled at h + B = 0.8. The water drains through the right boundary,
the left boundary is assumed a line of symmetry of the domain and wall boundary condi-
tions are applied, trapping the water to the left of the bump. Computed solution is shown in
Fig. 7 for various intermediate times, the reservoir has essentially drained by T = 15. The
equilibrium variables Q and E are also shown for the solution at the final time.

Figure 8 compares the computed solution using the velocity regularization (15) and (16)
respectively. It can be observed that the regularization (15) results in a more noisy drained
solution, while regularization (16), which makes use of the steady-state energy EStSt in the
trough converges to a cleaner and generally more accurate solution.

Figure 9 shows reservoir drainage through a contracting channel, this time over a double
bump topography. The water now gets trapped in two troughs. Despite the fact that the
scheme is not positive, the computed solution remains positive and we are able to integrate
this solution for very long time until drainage is reached. The equilibrium variables Q and
E corresponding to the final time are also shown.

4.2 More General Channels

The following tests involve channels of general cross section described by σ (x, y). We
present examples for channels consisting of one, two or several trapezoids. Exact solutions
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Fig. 7 Reservoir drainage after dam break. The equilibrium variables at T = 15 are also shown

Fig. 8 Reservoir drainage after dam break. Comparison at T = 50 of the computed velocity and equilibrium
variables using regularization (15) (top) and regularization (16) (bottom)

Fig. 9 Reservoir drainage after dam break. The equilibrium variables are also shown for T = 30
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Fig. 10 Small perturbation to steady state of non-rest for a trapezoidal channel, ϵ = 2 × 10−3, non-centered
contraction. The total height for the initial perturbation (top left) and the relative errors for the equilibrium
variables for T = 0, 0.014, 0.04, 0.19, and 20 are shown

are also computed and are compared to computations. We use χ[a,b](x) to denote the char-
acteristic function of the interval [a, b].

4.2.1 Propagation of Small Perturbation to Non-Rest Steady State

In this test, the topography is a cosine bump B(x) = χ[0.4,0.6](x) 1
4 (cos(π(x −1/2)/0.1)+1).

The channel has a trapezoidal cross section with variable (in x) wall inclination σ (x, y) =
σB(x) + m(x)y, with m(x) = 2 + χ[0.4,0.8](x) 1

4 (cos(π(x − 0.6)/0.2) + 1), and σB(x) =
min(1,0.7 + 4.8(x − 0.4)2). In this example, the steady-state flow is subcritical, with Q = 4
and hout = 1.4. The size of the perturbation is ϵ = 2 × 10−3. The initial disturbance to the
interface, as well as the relative errors for the equilibrium variables are shown in Fig. 10.
We observe that the unperturbed steady state is recovered very accurately.

4.2.2 Convergence to Steady States for Trapezoidal Channel

We next study the convergence of transient solutions to steady state. The topography and
geometry are the same as in the previous test. For subcritical flow, Q = 4.42 and hout = 1.47.
For smooth transcritical flow, Q = 8.4992 and hout = 1.0388. For discontinuous transcritical
flow, Q = 1.1104 and hout = 0.7195. Computed and exact solutions are shown in Fig. 11,
with very good agreement.

4.2.3 Convergence to Steady States for Piecewise Trapezoidal Channel

In this test, each cross section of the channel consists of two trapezoid, with variable (in x)
wall inclination. The bottom trapezoid, with height y = 1.2, is the same as in the previous
example, and the wall of the top trapezoid has twice the slope of the bottom one. Conver-
gence of transient solutions to steady state are shown in Fig. 12 for subcritical (left), smooth
transcritical (middle) and discontinuous (right) flows. Agreement between computed and
exact solutions is excellent.



J Sci Comput

Fig. 11 Numerical (symbol) and exact (solid line) solutions in steady-state flows: Water level (top), discharge
(middle) and energy (bottom); Subcritical flow (left), smooth transcritical flow (middle) and transcritical flow
with a jump (right)

Fig. 12 Convergence to steady state for a trapezoidal channel (two trapezoids). Total height (top), discharge
(middle), and energy (bottom) are shown for subcritical (left), smooth transcritical (center) and discontinuous
transcritical (right) flows

4.3 Convergence to Steady State for General Channels

The last example concerns flow in a channel whose geometry is given by

σ (x, y) = 1 + 3
4

cos(πx) − 1
4
χ[0.4,0.6](x)(cos(π(x − 1/2)/0.1) + 1)

+ √
y

(
1 − 1

4
χ[0.1,0.7](x)(cos(π(x − 0.4)/0.3) + 1)

)
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Fig. 13 Convergence to a subcritical flow. Exact and numerical solutions are plotted with excellent agree-
ment. The top surface, topography (top left), velocity (top right), and relative errors for the equilibrium
variables (bottom) are shown

Fig. 14 3D view of the channel (left) and the channels with the subcritical flow (right) given in Fig. 13

− 2χ[0,1]

(
(x − 0.3)2 + (y − 1.4)2

r2
1

)
cos

(√
(x − 0.3)2 + (y − 1.4)2

r2
1

π

2

)

− 1.6χ[0,1]

(
(x − 0.75)2 + (y − 1.4)2

r2
2

)
cos

(√
(x − 0.75)2 + (y − 1.4)2

r2
1

π

2

)

,

where r1 = 0.28, r2 = 0.2. The topography is a 3-bump spline with nodes (x, y) = (0.2,0),
(0.3,0.6), (0.4,0.4), (0.5,0.5), (0.6,0.2), (0.7,0.3) and (0.8,0), shown on top left of
Fig. 13. In this example Q = 2.0583 and hout = 1.5. The cross section is approximated
by 50 trapezoids. The results in Fig. 13 show excellent agreement between the computed
and exact steady-state solutions. The relative errors for the equilibrium variables Q and E

are of orders 10−6 and 10−4 respectively. Figure 14 shows a 3D view of the flow.
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Appendix A: Steady States and Boundary Conditions

The structure of steady-state solutions plays a role in specifying boundary conditions in time
dependent problems. We consider the straight channel case, σ = 1, and assume that Q and
E are specified. At a given elevation B(x), h can be found from (4) by rootfinding. Is easy to
compute B(h) and reverse their roles to plot h(B), see Fig. 15. We observe that only values
of B below some B∗ can be supported for given Q and E. Within that range, for any given
value of B , there are two possible values of h, corresponding to subcritical flow (top branch)
and to supercritical flow (bottom branch). At B∗, one has B ′(h) = 0, which can be easily
shown to imply F 2 = u2/(gh) = 1, that is the flow is critical at B∗.

Consider a flow from left to right over a bump in B that vanishes near the domain bound-
aries. A solution that starts off as subcritical at inflow, accelerates as the flow runs over the
bump, and its Froude number increases. The solution moves to the right along the top sub-
critical branch of the curve, until it reaches the crest at some Bmax < B∗, beyond which the
flow starts decelerating, its Froude number decreases, and the solution moves back along the
top subcritical branch, to meet the boundary condition at outflow. For the case Bmax = B∗,
the solution moves along the subcritical branch all the way to B∗, becomes critical and
‘turns’ around to the supercritical branch. It then continues along the supercritical branch,
its Froude number continues to increase, to meet the boundary condition at outflow. This
flow accelerates smoothly from sub- to supercritical flow (similar to Laval nozzle flow in
converging-diverging channels). In reference to Fig. 15, h1 and h2 are the only boundary
conditions at outflow that produce smooth solutions: h1 produces a symmetric subcritical
flow, and h2 an asymmetric transcritical flow. To adjust to any other boundary condition at
outflow the flow must form a discontinuity. Figure 15 (right) shows several curves of h vs. B
for the same Q but different values of E. Each one of those curves corresponds to a differ-
ent smooth steady solution. A flow that starts off as subcritical at inflow along the red curve,
and needs to adjust to h3 at outflow, becomes critical as it reaches Bmax then supercritical
along the bottom red branch. It then jumps from the red curve to the top (subcritical) branch
of the dashed green curve, a curve that corresponds to a (lower) value of E, and contin-
ues smoothly along this branch to meet the outflow boundary condition. The jump between
curves occurs at the point where the shock jump conditions are satisfied. Symmetric and
asymmetric transcritical solutions are illustrated in Fig. 16.

Fig. 15 Smooth (left) and discontinuous (right) steady-state solutions, h vs. B
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Fig. 16 Steady flow in a channel: Symmetric subcritical (left); Asymmetric transcritical (middle); and Asym-
metric transcritical with a shock (right)

Appendix B: Derivation of the Linearization

B.1 Conservation

We consider system (1), and relate the conservative and quasilinear forms. At the differential
level we have

(
Au

Au2 + I1

)

x

=
(

0 1
c2 − u2 2u

)(
A

Au

)

x

+
(

0
c2(−hI3 + σBBx) + I2 − gσBhBx

)
, (17)

where the geometric terms on the right hand side arise from careful application of the Fun-
damental Theorem of Calculus (FTC) to I1. We further note that the underlined geometric
term in (17) cancels out with an identical term in the geometric source in (1), and while it
appears in the derivation of the method, it ‘washes out’ and ends up not playing a role in
the method. We focus on the second component of this vector equation, and seek a discrete
analogue. We use the following discrete version of the FTC

$

∫ b(x)

a(x)

f (y, x)dy ≡
∫ bR

aR

f (y, xR)dy −
∫ bL

aL

f (y, xL)dy

= 1
2

(∫ bL

aL

+
∫ bR

aR

)
$f (y)dy +

∫ bR

bL

f̄ (y)dy −
∫ aR

aL

f̄ (y)dy, (18)

where we have used here and in what follows $( ) = ( )R − ( )L, and (¯) = (( )R + ( )L)/2.
The discrete version of (17) requires the flux difference $(Au2 + I1). We begin by seek-

ing a linearization of û for which

$(Au2) = 2û$(Au) − û2$A

which is satisfied by the familiar expression

û =
√

ALuL + √
ARuR√

AL + √
AR

.

We next apply the discrete FTC (18) to express $I1

$I1 = g$

∫ w

B

(w − y)σ (x, y)dy

= g

2

[∫ wL

BL

+
∫ wR

BR

]
$

(
(w − y)σ (x, y)

)
dy + g

∫ wR

wL

(w − y)σ (x, y)dy

− g

∫ BR

BL

(w − y)σ (x, y)dy
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= g

2

[∫ wL

BL

+
∫ wR

BR

]
(σ̄ (y)$w + (w̄ − y)$σ (y))dy + g

∫ wR

wL

(w − y)σ (x, y)dy

− g

∫ BR

BL

(w − y)σ (x, y)dy

= gÂ$w + $x Î2 + Ĝ − gσ̂Bh$B (19)

where we define

Â := 1
2

[∫ wL

BL

+
∫ wR

BR

]
σ̄ (y)dy, $xÎ2 := g

2

[∫ wL

BL

+
∫ wR

BR

]
(w̄ − y)$σ (y)dy,

Ĝ := g

∫ wR

wL

(w − y)σ (x, y)dy, gσ̂Bh$B := g

∫ BR

BL

(w − y)σ (x, y)dy.

In order to express $w in (19) in terms of the conserved variables, we apply the discrete
FTC (18) to the wet area A(x) =

∫ w

B
σ (x, y)dy and obtain

$A = 1
2

[∫ wL

BL

+
∫ wR

BR

]
$σ (y)dy +

∫ wR

wL

σ̄ (y)dy −
∫ BR

BL

σ̄ (y)dy

= $xĥI3 + σ̂T $(h + B) − σ̂B$B, (20)

where we define

$xĥI3 := 1
2

[∫ wL

BL

+
∫ wR

BR

]
$σ (y)dy, σ̂T $(h + B) :=

∫ wR

wL

σ̄ (y)dy,

σ̂B $B :=
∫ BR

BL

σ̄ (y)dy.

Rearranging (20) yields

$(h + B) = 1
σ̂T

{
$A + σ̂B$B − $xĥI3

}
(21)

and $I1 becomes

$I1 = gÂ

σ̂T

[
$A + σ̂B$B − $xĥI3

]
+ Ĝ + $xÎ2 − gσ̂Bh$B.

This suggest to define

ĉ2 = gÂ

σ̂T

yielding

$I1 = ĉ2$A + ĉ2[−$xĥI3 + σ̂B$B] + Ĝ + $x Î2 − gσ̂Bh$B.

The discrete version of (17) then becomes
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$

(
Au

Au2 + I1

)
=

(
0 1

ĉ2 − û2 2û

)(
$A

$(Au)

)

+
(

0
ĉ2(−$xĥI3 + σ̂B $B) + Ĝ + $xÎ2 − gσ̂Bh $B

)
, (22)

and the last two terms cancel out with identical terms in the numerical approximation of the
geometric source, in the same way that they do at the differential equation level in (1).

It is easy to verify that

$

(
Au

Au2 + I1

)
− $x

(
0

$xÎ2 − gσ̂Bh$B

)
=

∑

k

(λkαk − βk)rk

where

α1 = (û + ĉ)$A − $
(
Au

)

2ĉ
, β1 = ĉ2(σ̂B$B − $xĥI3) + Ĝ

2ĉ
,

α2 = − (û − ĉ)$A − $
(
Au

)

2ĉ
, β2 = − ĉ2(σ̂B$B − $xĥI3) + Ĝ

2ĉ
.

B.2 Respecting Steady State of Rest

Consider the total fluctuation in the first wave family

α1λ1 − β1 = (û − ĉ)
(û + ĉ)$A − $(Au)

2ĉ
− ĉ2(σ̂B$B − $xĥI3) + Ĝ

2ĉ

which, for steady state of rest, u = 0, $(h + B) = 0, reduces to

α1λ1 − β1 = − ĉ

2

(
$A + σ̂B$B − $xĥI3

)
= −(α2λ2 − β2)

and observe that (21) implies the total fluctuation vanishes, which insures that steady states
of rest are recognized and respected.
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