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Summary
In this work, we consider a hyperbolic one-dimensional (1D) model for blood
flow through compliant axisymmetric tilted vessels. The pressure is a function of
the cross-sectional area and other model parameters. Important features of the
model are inherited at the discrete level by the numerical scheme. For instance,
the existence of steady states may provide important information about the flow
properties at low computational cost. Here, we characterize a large class of
smooth equilibrium solutions by means of quantities that remain invariant. At
the discrete level, the well-balanced property in the numerical scheme leads to
accurate results when steady states are perturbed. On the other hand, the model
is equipped with an entropy function and an entropy inequality that can help
us choose the physically relevant weak solutions. A large class of semidiscrete
entropy-satisfying numerical schemes is described. In addition, preservation of
positivity for the cross-sectional area is achieved. Numerical results show the
scheme is robust, stable, and accurate. The ultimate goal of this article is the
numerical application to cases that are more relevant from the medical view-
point. In particular, a numerical simulation of cardiac cycles with appropriate
parameters shows that increasing the rigidity of the artery walls delays the for-
mation of shock waves. Gravity effects are also measured in tilted vessels, and a
simulation using an idealized aorta model was conducted.
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1 INTRODUCTION

The increasing impact of cardiovascular diseases in our lives is a driving motivation to propose and investigate a variety
of mathematical models of blood flow.1-12 Detailed numerical simulations of blood flows in conjunction with laboratory
investigations are very helpful in the diagnosis and treatment of cardiovascular diseases. Three-dimensional (3D) models
can accurately provide most of the details of the local blood flow distribution, flow recirculation, local flow patterns,
and wall shear stresses. However, 3D simulations are computationally expensive and are not always practical to obtain
a rapid evaluation of surgical treatments. As an alternative to complex 3D models, one can use 1D models, which are
simpler and cheaper, and require less computational resources.13-16 It has been shown that 1D models reasonably well
describe the propagation of pressure waves in arteries16 as well as the effects of variations of the mechanical properties
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of arteries due to stenosis or aneurysms on pulse waves.17-19 In Reference 20, it was noted that 1D models are able to
describe the fluid’s evolution after arteriovenous fistula (AVF) surgeries, and experimental validations showed that flow
can be predicted in 6/10 patients. A good agreement between 1D and 3D models was also reported in Reference 13 for
pulsatile blood flows in patient-specific intracranial arterial networks. In Reference 21, another comparison between 1D
and 3D models for blood flow passing through the aorta showed very good agreement when the model parameters are
carefully chosen.

Most existing 1D models are based on conservation of fluid mass and momentum together with an equation of
state that relates the vessel cross-sectional area with the associated pressure. As a result, a hyperbolic system of par-
tial differential equations is obtained.4,15,22 In Reference 10, well-balanced, high-resolution numerical schemes were
constructed for 1D blood flows in elastic vessels with different mechanical properties. The well-balanced property was
obtained using the so-called generalized hydrostatic reconstruction. This technique was first introduced in Reference
23 to obtain a numerical scheme that is well balanced for a predetermined family of stationary solutions in the con-
text of path-conservative schemes. A 1D model was proposed in Reference 4 to study blood flows through compliant
axisymmetric vessels, that is, vessels that distend and increase volume with increasing transmural pressure. Despite its
simplicity, the model provided useful information about blood flow dynamics. For instance, it was found that vessel
tapering postpones shock formation.4 In Reference 11, a more elaborated 1D model for blood flows in vessels with walls
having viscoelastic properties was analyzed. In this case, the advection-diffusion-reaction problem was reformulated by
applying a relaxation technique to obtain a hyperbolic system with stiff source terms in the context of well-balanced
and nonconservative schemes. A high-order nonlinear numerical scheme for 1D blood flow models was implemented
in Reference 24.

Hyperbolic balance laws have been extensively studied, and a variety of numerical schemes have been developed.25,26

Central/central-upwind numerical schemes in References 27,28 use a semidiscrete formulation with the aid of numer-
ical fluxes, and such schemes were further developed in References 29-31. Central schemes are based on the viscous
form of the Lax-Friedrichs scheme, with a possible generalization involving replacing the first-order piecewise con-
stant solution with a MUSCL-type piecewise linear reconstruction to achieve second-order accuracy in smooth regions.27

On the other hand, central-upwind schemes have more precise one-sided local speeds of propagation in the compu-
tation of numerical fluxes. In particular, the local speeds take into account the sign of the eigenvalues, similar to the
upwind-type schemes. See Reference 28 for more details. This reduces the numerical dissipation while maintaining the
simplicity of the central-upwind schemes. Central-upwind schemes are free of Riemann solvers, which represents an
advantage when the eigenvalues of the associated Jacobian have no explicit analytic expressions. See Reference 32,33 and
references therein.

In the present article, we conduct a theoretical analysis of the hyperbolic properties of a 1D model for blood flow
through compliant axisymmetric tilted vessels. The pressure is an increasing function of the vessel cross-sectional
area and vice versa. It may also depend on other parameters, such as the unstressed cross-sectional area and given
elasticity parameters. The hyperbolic model is written in balanced form. The source terms do not involve noncon-
servative products, which avoids both theoretical and numerical complications. The numerical scheme we propose
inherits many other important properties of the model at a discrete level, adding robustness and accuracy to the
numerical approximations. For instance, the model is equipped with an entropy inequality that can be used to deter-
mine the physically relevant weak solutions. At the discrete level, entropy-satisfying semidiscrete schemes may be
constructed. Steady states are by definition those that are time independent, and a large class of such equilibrium
states can be characterized by invariants in this model. In specific situations, they can provide relevant information at
lower computational cost. In Reference 34 it was shown that steady states were particularly helpful in the analysis of
intracranial aneurysms. We show that the numerical scheme satisfies the well-balanced property, adding accuracy near
steady states.

The analysis of the theoretical features of the model and the presentation of a robust and accurate numerical scheme
are important components of the article. Numerical tests show that the numerical scheme is stable, robust, and accu-
rate. The ultimate goal of this article is the numerical application in cases that are more relevant from the medical
viewpoint. Consequently, the model is applied to some of those possible relevant situations. In particular, the effect of
different heterogeneous elastic properties in the formation of shock waves is analyzed in both horizontal and tilted ves-
sels. Ignoring bifurcations and approximating the geometry of the aorta, numerical simulations under appropriate model
parameters show a reasonable qualitative approximation of other observations and results available in the literature
using 1D and 3D models. From the medical viewpoint, the above applications represent one of the main contributions of
this work.
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The remainder of this article is organized as follows. The properties of the model are discussed in Section 2. Solutions
to the Riemann problem are also constructed in this section. Furthermore, we show that the model admits an entropy
function and an entropy inequality in the inviscid case. The details of the semidiscrete central-upwind scheme are pre-
sented in Section 3. In this section, we also prove the well-balanced and positivity-preserving properties. A large class
of entropy-satisfying semidiscrete numerical schemes is also described. Section 4 encompasses a variety of numerical
tests that demonstrate the merits of the numerical scheme. The model is applied to other relevant situations, includ-
ing a cardiac cycle in tilted vessels and blood flow simulations in the aorta. The conclusions are left in Section 5, where
we discuss the main contributions of the article, the limitations of the current approach, and possible implications
of this work.

2 PROPOSED MODEL AND ITS PROPERTIES

There are four basic components that comprise human blood: plasma, red blood cells, white blood cells, and platelets. Red
blood cells become significant in regions with small volume fraction with diameters <200 μm.35 As a result, blood flow is
non-Newtonian in arterioles or capillaries. However, in long vessels, blood behaves as an incompressible and Newtonian
fluid.13,36 Taking this into consideration, here we analyze blood flow through long axisymmetric vessels.

We consider a cylindrical vessel with variable cross-sectional area A(s, t) = 𝜋R(s, t)2 and velocity u(s,t) at time t and arc
length position s. Here, R(s,t) is the cross-sectional radius. The upstream boundary corresponds to s= 0. For horizontal
vessels, we will replace the arc length position with the x coordinate. We assume that at a given position s, the vessel forms
an angle 𝜃(s) with respect to the horizontal axis, and we take into account the gravity effect in tilted or vertical vessels.
See Reference 37 for more details. A schematic diagram of the model is shown in Figure 1.

The elastic properties of the vessel wall can be described by the relation between pressure and cross-sectional area.
However, such relationship is not solely mechanical; it can be affected by contraction of surroundings muscles, phys-
iological features (autoregulation), pathologies (aneurysms), and other conditions.37 On the other hand, the overall
vessel’s elastic properties are mainly determined by the internal radius and wall thickness. One parameterization of the
pressure is provided below. In this work, we consider a general case of a transmural pressure p= p(A,s), which is a mono-
tone function of the cross-sectional area that may also depend on other model parameters, which in turn are explicit
functions of arc length position. This relationship between the pressure and the other variables describes the vessel’s
deformability. The arc length position’s explicit dependence will be used to model the blood flow in a vessel with nonuni-
form elastic properties. The following notation will be used for the partial derivatives of p(A,s) with respect to A and s,
respectively:

𝜕1p =
𝜕p(A, s)
𝜕A

, 𝜕2p =
𝜕p(A, s)

𝜕s
,

which means we can write

𝜕s(p(A(s, t), s)) = 𝜕1p𝜕sA + 𝜕2p.

F I G U R E 1 Sketch of blood flow passing through a compliant
axisymmetric vessel. The two variables to compute in this model are the
cross-sectional area A and discharge Au [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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We note that 𝜕2p is a spatial derivative calculated for a fixed value of A. We will assume that the transmural pressure
vanishes at an unstressed cross-sectional area Ao(s) for horizontal arteries, that is, p(Ao(s),s)= 0. For hyperbolicity the
following condition is required:

𝜕1p(A, s) > 0 for any A > 0.

The model described below was derived in Reference 4 by cross-averaging the Navier-Stokes equations in cylindrical coor-
dinates and focusing on a particular expression for the pressure. Here, we also include gravity effects for nonhorizontal
vessels. In the derivation of the model, the walls were assumed to be streamlined. It is assumed that the vessel’s length
scale L is much larger than its radial extension Ro. Because of this, the ratio 𝜖 = Ro∕L is a small parameter that can be
used to write asymptotic expansions.

The resulting system of PDEs is based on mass and momentum balance, and a primary version of model is written as

At + (Au)s = 0,

(Au)t + (𝛼Au2)s +
A
𝜌
𝜕spint = −2𝜋 𝛼𝜈

𝛼 − 1
u − gA sin(𝜃(s)),

where u is the blood velocity, pint is the internal pressure, 𝜌 is the constant density, 𝜈 is the viscosity, 𝛼 is the Coriolis
velocity-distribution coefficient as will be described below, g is the acceleration of gravity, and 𝜃(s) is the vessel’s angle
with respect to the horizontal axis at arc length position s. See Reference 4 for a detailed derivation of the friction term
with coefficient 𝜈. Furthermore, we assume that the internal pressure is decomposed as pint = pext + p, where pext and p are
the external and transmural pressures, respectively. For simplicity, we also assume that the external pressure is constant
and does not appear in the pressure gradient. The term associated with the pressure gradient can be decomposed as the
sum of a gradient plus a source term:

A
𝜌

ps =
A
𝜌
𝜕1p(A, s)𝜕sA + A

𝜌
𝜕2p = 𝜕s

(
∫

A

Ao(s)


𝜌
𝜕1p(, s)d

)
− 𝜕2

(
∫

A

Ao(s)


𝜌
𝜕1p(, s)d

)
+ A

𝜌
𝜕2p

= 𝜕s

(
1
𝜌

Ap̂
)
+ 1

𝜌
A𝜕2p,

where

p(A, s) = 1
A ∫

A

Ao(s)
p(, s)d, and p̂(A, s) = p(A, s) − p(A, s).

The decomposition p = p + p̂ does not have an explicit physical significance and it is different compared with the usual
decomposition done in other systems such as in the 1D mathematical modeling of shallow water open-channel flows.
The shallow water equations can be derived by cross-sectional averaging of the Euler equations, assuming a hydrostatic
pressure. The integration of the pressure gradient is decomposed into conservative and source terms. In the derivation of
the above model for blood flows, a scaling analysis gives a pressure that is independent in the radial direction before the
pressure gradient is integrated in each cross-section. The equivalent decomposition into conservative and source terms
need the unusual decomposition described in the previous equation.

Note that we are using the symbol  as an integration variable. By integrating by parts and using the condition
p(Ao(s),s)= 0, the following relation is obtained:

p̂(A, s) = 1
A ∫

A(s,t)

Ao(s)
𝜕1p(, s)d.

The “correction” term 𝛼 ≥ 1 takes into account the nonuniform distribution of the velocity in each cross-section and is
given by

𝛼 = U2

Ū2
,
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where U is the velocity in the 3D Navier-Stokes equations, and (⋅) denotes the cross-sectional average. For simplicity, 𝛼 is
assumed constant.

Regarding the viscosity term, a scaling analysis of the Navier-Stokes equations in cylindrical coordinates4 in
the present setting shows that the radial component of the Laplacian is the leading contribution. When the
Navier-Stokes equations are integrated in each cross-section, the contribution of the viscosity term in the radial direction
reduces to

2𝜈𝜋R
[
𝜕U
𝜕r

]
r=R

,

where r is the radius in cylindrical coordinates when solving the Navier-Stokes equations. The velocity profile

U = 𝛾 + 2
𝛾

u
[
1 −

( r
R

)𝛾]
is assumed such that U = u and 𝛾 is related to 𝛼 by 𝛾 = (2 − 𝛼)∕(𝛼 − 1). This is a Hagen-Poiseuille profile. Physically,
this profile vanishes at the walls and reaches its maximum at the artery’s center. The exponent 𝛼 controls the transition
from the wall to the center. We note that 𝛾 → ∞ and U → u as 𝛼 → 1. Substituting the above relations in the momentum
equations results in the viscosity term. See section 2.4 in Reference 4 for further discussion. We always take 𝜈 = 0 when
𝛼 = 1. The above term reduces to

2𝜈𝜋R
[
𝜕U
𝜕r

]
r=R

= −2𝜋 𝛼𝜈u
𝛼 − 1

.

We note that 𝛾 = 2 corresponds to the classic Hagen-Poiseuille profile. In this case 𝛼 = 4∕3, and the above term reduces
to −8𝜋𝜈u.

The model written in conservation/balanced form for blood flow in compliant axisymmetric vessels with constant
density and pressure p= p(A,s) is given by

𝜕tA + 𝜕s(Au) = 0

𝜕t(Au) + 𝜕s

(
𝛼Au2 + 1

𝜌
Ap̂(A, s)

)
= −2𝜋 𝛼𝜈u

𝛼 − 1
− 1

𝜌
A𝜕2p(A, s) − gA sin(𝜃(s)). (1)

Equation (1) forms a hyperbolic system of balance laws, as will be described below. The source terms have no deriva-
tives of the solution (unknown) but only derivatives of the model’s parameters. This is an important distinction because
source terms of this type do not alter the Rankine-Hugoniot conditions. This avoids both theoretical and numerical com-
plications. A model for multiphase blood flows is derived in Reference 38, which involves nonconservative products. In
that setting, weak solutions may be defined based on the theory of nonconservative products.39 The theory of paths found
in Reference 40,41 can be used to construct solutions to the Riemann problem. Possible computational issues are analyzed
in Reference 42.

Special case:
As discussed above, the elastic properties of the vessel can be described by assuming that the pressure depends on

the cross-sectional area A. Physical experiments37 show that p must be a monotonic function of A, which is also required
for hyperbolicity. Although deriving an explicit dependence p= p(A,s) is complicated, valid expressions for arteries and
collapsible tubes such as veins can be found in Reference 10. Other approaches are presented in Reference 37. The numer-
ical tests in the present article are conducted using the transmural pressure introduced in Reference 4, which includes
the effect of the wall’s thickness and the stress-strain response on the elastic properties of the vessel. The pressure is
given by

p(A, s) = Go(s)

[(
A

Ao(s)

)𝛽∕2

− 1

]
, (2)

where Ao =Ao(s) is an unstressed cross-sectional area for horizontal arteries, and Go =Go(s) is the elasticity parameter
proportional to Young’s modulus. Shear stress is ignored and is assumed that the pressure of blood is the only force exerted
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on the vessel walls. The exponent 𝛽 is the stress-strain response parameter and it is assumed to be constant. Adopting the
parameterizations of Go in terms of Young’s modulus and wall thickness in Reference 21, we get

Go(s) =
4
3

EY
hd

rd
, EY = 3

2
𝜌

rd

hd
c2

d, (3)

where EY is Young’s modulus, rd is the radius at diastolic pressure, hd is the wall’s thickness, and cd is the pulse wave
speed.

As mentioned above, other parameterization exists for collapsible tubes, such as veins and arteries, involving different
powers of the fraction A/Ao.10 The expression associated to arteries coincides with the choice above.

System (1) then becomes

𝜕tA + 𝜕s(Au) = 0,

𝜕t(Au) + 𝜕s

{
𝛼Au2 + Go𝛽Ao

𝜌(𝛽 + 2)

[(
A
Ao

) 𝛽+2
2

− 1

]}
= −2𝜋 𝛼𝜈u

𝛼 − 1
+

[(
A
Ao

) 𝛽+2
2

− 1

]
d
ds

(
GoAo𝛽

𝜌(𝛽 + 2)

)

−
AG′

o(s)
𝜌

[(
A
Ao

) 𝛽

2

− 1

]
− gA sin(𝜃(s)). (4)

2.1 Quasi-linear formulation of the model

The hyperbolic properties of system (1) can be analyzed using the quasi-linear form described in the following proposition.

Proposition 1. System (1) can be written in quasi-linear form as

𝜕t

(
A

Au

)
+

(
0 1

c2 − 𝛼u2 2𝛼u

)(
A

Au

)
s

=

(
0

−2𝜋 𝛼𝜈

𝛼−1
u − A

𝜌
𝜕2p(A, s) − gA sin(𝜃(s))

)
, (5)

where

c =

√
A𝜕1p
𝜌

is the equivalent to the speed of sound in gas dynamics. The eigenvalues and corresponding eigenvectors are

𝜆1 = 𝛼u −
√
𝛼(𝛼 − 1)u2 + c2, 𝜆2 = 𝛼u +

√
𝛼(𝛼 − 1)u2 + c2, r1 =

(
1
𝜆1

)
, and r2 =

(
1
𝜆2

)
,

respectively.

We note that the quantities p and p̂ do not appear in the quasi-linear form. In fact, the quasi-linear form is easily
derived from the primary version of the model. The proof uses standard arguments and is omitted here. The characteristic
polynomial is p(𝜆) = 𝜆2 − 2𝛼u𝜆 + 𝛼u2 − c2. We note that the eigenvalues are always real, and the eigenvectors form a
basis unless A= 0 and either u= 0 or 𝛼 = 1. This is because 𝜕1p is positive for A> 0 and it may vanish only when A= 0.
Therefore, hyperbolicity is lost only when the vessel collapses. The eigenvalues and eigenvectors have explicit analytic
expressions, which is an advantage when implementing numerical schemes based on approximate Riemann solvers, such
as Roe-type upwind schemes.

2.2 Steady states

Computational hemodynamics simulations can provide important information about patients with intracranial
aneurysms. Transient simulations can accurately describe pulsatile blood flows. However, in Reference 34, it is shown that
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under certain circumstances, steady-state simulations might provide enough information for clinical assessment at lower
computational cost. For instance, in the above reference, a 5% difference was found between transient and steady states.
The variable utilized in this measure was the time-averaged wall shear stress. Although the results provide qualitatively
accurate hemodynamic information in specific cases, there are other clinical situations where it is necessary to consider
the description of transient flows. The present article focuses on the description of a numerical scheme that can accu-
rately compute near steady states, improving the results obtained in simulations involving convergence to steady states.
In the following proposition, smooth equilibrium solutions are characterized, including the case of positive viscosity, by
providing, either invariants or ODEs for the most general case.

Proposition 2. Smooth steady-state solutions of system (1) are given by the following conditions

Q = Au = const., 𝜕sE = −2𝜋 𝛼𝜈

𝛼 − 1
Q
A2 , (6)

where Q is the discharge, E = 𝛼

2
u2 + p

𝜌
+ gz is the energy of the system, z = ∫ s

so
sin(𝜃(s))ds is the elevation above a reference

height, and so = 0 corresponds to the left end of the vessel. In particular, the energy remains constant when 𝜈 = 0.

The proof uses standard arguments and is omitted here.
Note: For smooth steady-state flows with 𝜈 > 0, the energy is a decreasing/increasing function of s when the velocity is

positive/negative. As a result, the energy decreases in the direction of the fluid’s motion. Discontinuous steady-state solu-
tions may arise when the left and right boundary conditions are not connected by a smooth state. In that case, the solution
must jump to match both boundary conditions. The jump in the solution occurs in the place where the Rankine-Hugoniot
conditions are satisfied. On the contrary, discontinuous steady-state solutions have a piecewise constant energy and a
constant discharge when 𝜈 = 0.

Steady states at rest satisfy the following static conditions:

u = 0, P = p(A, s) + g𝜌z(s) = const. (7)

Because p(Ao(s),s)= 0, a particular steady state at rest for horizontal arteries (𝜃 = 0) is given by

u = 0, A = Ao(s). (8)

We call Ao an unstressed cross-sectional area because the transmural pressure vanishes at A=Ao. However, we can
see from Equation (7) that this is not the only one. We construct the well-balanced property in the special case given by
Equation (8).

When the viscosity 𝜈 is positive, the steady states described in Proposition 2 are given by an ODE in the s variable.
In the special case when the model parameters are independent of s, one can obtain another invariant as stated in the
following corollary.

Corollary 1. Let us assume 𝜈 > 0 and 𝜃 = 0. If the unstressed cross-sectional Ao is constant and the pressure is an explicit
function of cross-sectional area A (p= p(A)), then smooth steady states satisfy

Q = const., 𝛼Q2 ln
(

A
Ao

)
− I − 2𝜋 𝛼

𝛼 − 1
𝜈Qs = const., (9)

where I is defined as

I = ∫
A

Ao

2

𝜌
𝜕1p()d.

Proof. By Equation (6), substituting Aus =−uAs for the steady state, and u=Q/A, we get

𝛼Q2 1
A∕Ao

𝜕s(A∕Ao) −
A2

𝜌
𝜕1p(A)𝜕sA = 2𝜋 𝛼

𝛼 − 1
𝜈Q.

The conclusion of the proof follows after integration with respect to s and using the fact that Q is constant. ▪
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To the best of our knowledge, this is the first time that the invariant quantity expressed in Equation (9) has been
reported. This invariant has no direct physical significance and it is just an antiderivative of −A2𝜕sE − 2𝜋𝛼𝜈∕(𝛼 − 1)Q.
However, this invariant determines the effect of viscosity in such steady states.

For the special case when the pressure is given by (2) and Go and Ao are constants, the quantity I is given by

I = Go

𝜌

𝛽

𝛽 + 4
A2

o

[(
A
Ao

)𝛽∕2+2

− 1

]
.

2.3 Solution to the Riemann problem

Exact solutions to system (1) are not available in general, especially for discontinuous initial conditions. An exception is
the Riemann problem when 𝜃 = 0, 𝜈 = 0 and 𝛼 = 1 and the model parameters, including Ao, are fixed such that p= p(A)
is only a function of A. The initial conditions are given by

A(s, 0) =

{
A𝓁 if s ≤ 0
Ar otherwise

, Q(s, 0) =

{
Q𝓁 if s ≤ 0
Qr otherwise

,

where (A𝓁 ,Q𝓁) and (Ar,Qr) are the constant left and right states, respectively. The corresponding solution con-
sists of two wave families, each of them associated with an eigenvalue 𝜆1 or 𝜆2. The two waves are gen-
uinely nonlinear and can be either a shock wave (discontinuous jump) or a rarefaction wave (smooth function
of 𝜉 = s∕t).

We note that the Riemann problem has no direct physical significance in hemodynamics. However, one
can use the exact solutions to verify the accuracy of the proposed scheme. Numerical tests below will show
that our numerical scheme is second-order accurate in smooth regions and it becomes first-order accurate near
discontinuities.

Rarefaction waves and Riemann invariants for p= p(A):
The first and/or second rarefaction wave families have the following Riemann invariants:

u + C, u − C,

where C = ∫ A
0

c()
 d. These quantities remain constant across such waves, which together with the relation 𝜆1,2 = 𝜉 =

s∕t, leads to rarefaction wave solutions in the first or second family.
Special case for pressure given by Equation (2):
For the special case of pressure given by Equation (2) and assuming that (A𝓁 ,Q𝓁) and (Ar,Qr) are connected by a

rarefaction wave, we have C = 4
𝛽

c, c =
√

Go
𝜌

𝛽

2

(
A
Ao

)𝛽∕2
, and

A(s, t) =

⎧⎪⎪⎨⎪⎪⎩
A𝓁 if s∕t ≤ 𝜆𝓁p ,

A0

[
2𝛽𝜌

G0(𝛽+4)2

(
ur ± 4

𝛽
cr − s

t

)2
]2∕𝛽

if 𝜆𝓁p ≤ s∕t ≤ 𝜆r
p,

Ar if s∕t ≥ 𝜆r
p,

u(s, t) =
⎧⎪⎨⎪⎩

if s∕t ≤ 𝜆𝓁p ,(
4

𝛽+4

)
s
t
+

(
𝛽

𝛽+4

)(
ur ± 4

𝛽
cr

)
if 𝜆l

p ≤ s∕t ≤ 𝜆r
p,

if s∕t ≥ 𝜆r
p.

We note that given any left and right states, the solution to the Riemann problem consists of two elementary waves with
a star region connecting the left and right waves. In the case of a left-rarefaction wave, (Ar,Qr) is replaced by (A*,Q*). On
the contrary, in the case of a right-rarefaction wave, (A𝓁 ,Q𝓁) is replaced by (A*,Q*).

Shock waves for p= p(A)
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When the states (A𝓁 ,u𝓁) and (Ar,ur) are connected through a shock wave, they satisfy (𝛼 = 1)⎧⎪⎨⎪⎩
Δ(Au) = 𝔰ΔA
Δ
(
𝛼Au2 + A

𝜌
p̂(A)

)
= 𝔰Δ(Au),

where Δ(⋅) = (⋅)r − (⋅)𝓁 denotes the difference between left and right states, and 𝔰 is the shock wave speed of propagation.
Straightforward calculations yield

Δu = ∓ ĉ√
A𝓁Ar

ΔA,

where ĉ2 =
Δ
(

Ap̂(A)
𝜌

)
ΔA

> 0. A𝓁 must be greater/smaller than Ar for the first/second family. In any case, we should have
𝜆𝓁p > 𝜆r

p for any of the families. Furthermore, the speed of the shock wave for the first/second family is given by

𝔰 =
√

A𝓁u𝓁 +
√

Arur√
A𝓁 +

√
Ar

∓ ĉ.

As explained for the rarefaction case, a left-shock connects (A𝓁 ,Q𝓁) and (A*,Q*). In that case, (Ar,Qr) was replaced by
(A*,Q*). The opposite occurs for a right shock, where (A𝓁 ,Q𝓁) is replaced by (A*,Q*).

2.4 Entropy inequalities for p=p(A,s), 𝝂 = 0, and 𝜽 = 0

System (1) is endowed with an entropy function in the inviscid case (𝜈 = 0), which can help in choosing the correct weak
solution.43,44 The details are given in the following proposition, and similar results have also been proved in Reference
10. In the next section, we also describe entropy-satisfying semidiscrete numerical schemes and show that a large class
of them inherit this property.

Proposition 3. Let us consider the system of PDEs (1) with parameter values 𝛼 = 1, 𝜈 = 0, and 𝜃 = 0 and general pressure
p(A,s) satisfying 𝜕1p(A,s)> 0 for all A> 0. Then,

 = A
(

1
2

u2 + 1
𝜌

p(A, s)
)

(10)

is an entropy function of the system that satisfies the entropy inequality

𝜕t + 𝜕s(QE) ≤ 0. (11)

Proof. Adding a friction term −𝜖u to the momentum equation and rewriting the flux gradient in terms of the discharge
Q=Au and the energy E = 𝛼

2
u2 + p∕𝜌, we obtain

⎧⎪⎨⎪⎩
At + Qs = 0
Qt + 𝛼uQs + A𝜕sE = −

(
𝜖 + 2𝜋 𝛼𝜈

𝛼−1

)
u.

Multiplying the momentum equation by the velocity and combining it with the first equation, we obtain

𝜕t

(
A 1

2
u2

)
=

(
E −

(
𝛼 − 1

2

)
u2

)
Qs − (QE)s −

(
𝜖 + 2𝜋 𝛼𝜈

𝛼 − 1

)
u2. (12)

The pressure p= p(A,s) is an explicit function of A(s,t) and s. This gives

𝜕t

(
Ap
𝜌

)
= −

(
c2 +

p
𝜌

)
Qs. (13)
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We set 𝛼 = 1 and 𝜈 = 0 so that E − (𝛼 − 1
2
)u2 = p

𝜌
. Adding Equations (12) and (13), we get

𝜕t

[
A
(

1
2

u2 +
p
𝜌

)]
= −c2Qs − (QE)s − 𝜖u2 = c2At − (QE)s − 𝜖u2 = 𝜕t

(
Ap̂(A, s)

𝜌

)
− (QE)s − 𝜖u2,

which concludes the proof. ▪

3 NUMERICAL SCHEME

In this section, we describe the central-upwind numerical scheme implemented for solving Equation (1) and the
scheme’s properties. In particular, a large class of entropy-satisfying semidiscrete numerical schemes is described. The
well-balanced and positivity-preserving properties are also reported in this section.

3.1 Entropy-satisfying semidiscrete schemes for hyperbolic balance laws

Entropy inequalities can help in choosing the correct weak solutions. As shown in Proposition 3, our model has an asso-
ciated entropy function (10) that satisfies the entropy inequality (11). Satisfying the entropy inequality at a discrete or
semidiscrete level is a desirable property of any numerical scheme. For instance, in Reference 45, semidiscrete entropy
inequalities are proposed, and in Reference 46, numerical schemes with that property for the two-layer shallow water
equations are used. In this section, we use a similar approach to show the conditions under which a class of numerical
schemes satisfies the semidiscrete entropy inequalities.

Let us consider a hyperbolic balance law of the form

Wt + (F(W, s))s = S(W, s), (14)

where both the flux and source may have terms that depend on the spatial variable s. Some systems
may be enabled with an associated entropy function (W, s), an entropy flux G(W,s), and an entropy
inequality

𝜕t((W(s, t), s)) + 𝜕s(G(W(s, t), s)) ≤ 0. (15)

For smooth flows, we have 𝜕t = 𝜕
𝜕W

⋅ Wt = − 𝜕
𝜕W

𝜕F
𝜕W

Ws + 𝜕
𝜕W

⋅ S. We require the entropy function and entropy flux
to satisfy

𝜕
𝜕W

𝜕F
𝜕W

= 𝜕G
𝜕W

,
𝜕
𝜕W

⋅ S = −𝜕2G, (16)

where it should be recalled that the notation 𝜕2G(W,s) is the derivative of G with respect to s with W fixed.
We partition the spatial domain into grid cells Ij ∶= [sj− 1

2
, sj+ 1

2
], where Δs is the spatial scale, sj± 1

2
= sj ± Δs

2
, and

sj is the center of the grid cell. Let us denote by Wj(t) the computed cell average of W(s,t) over the cell Ij, which
is defined as

Wj(t) =
1
Δs ∫

sj+ 1
2

sj− 1
2

W(s, t) ds. (17)

Furthermore, let us consider a semidiscrete formulation of Equation (14) given by

d
dt

Wj = −
Fj+ 1

2
− Fj− 1

2

Δs
+ Sj. (18)

Following Reference 46, we provide the following definition to be used below.
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Definition 1. Consider system (14). We say that an associated semidiscrete numerical scheme is entropy-satisfying if
there exists a numerical entropy flux function Gj+ 1

2
consistent with G(U,s) such that

Gj+ 1
2
− Gj− 1

2
≤ 𝜕

𝜕W
(Wj) ⋅

(
Fj+ 1

2
− Fj− 1

2
− ΔsSj

)
.

3.2 A class of entropy-satisfying semidiscrete numerical schemes for the blood flow
model for p=p(A)

Our model (1) has conservative variables and a flux function given by

W =

(
A

Au

)
, F(W, s) =

(
Au

𝛼Au2 + Ap̂(A,s)
𝜌

)
(19)

on the left-hand side, and the source term is given by

S =

(
0

−2𝜋 𝛼𝜈u
𝛼−1

− A𝜕2p(A,s)
𝜌

− gA sin(𝜃(s))

)
. (20)

We note that for the special case with 𝜈 = 0, 𝛼 = 1, and 𝜃 = 0,

𝜕
𝜕W

=
(
−1

2
u2 +

p
𝜌
,u

)
,

𝜕G
𝜕W

=
(
−u3 + uc2,

3
2

u2 +
p
𝜌

)
,

𝜕2G = Q
𝜕2p
𝜌

,
𝜕F
𝜕W

=

(
0 1

c2 − u2 2u

)
, S − 𝜕2F =

(
0

−A
𝜌
𝜕2p

)
,

and the conditions in (16) are satisfied. For the blood flow model, let us consider the case where the pressure p= p(A) is
an explicit function of A. One can provide a large class of entropy-satisfying semidiscrete numerical schemes as follows.
Let us consider a numerical flux of the form

Fj+ 1
2
= ℱ (Wj,Wj+1) − aj+ 1

2
(Wj+1 − Wj), (21)

where ℱ (Wj,Wj+1) is a second (or higher)-order approximation of the flux at the cell interface sj+ 1
2
, and aj+ 1

2
is a free

viscosity parameter that does not appear explicitly in the numerical flux ℱ (Wj,Wj+1). This condition on aj+ 1
2

will be

clarified below. Let us also take a second-order approximation 𝒢 (Wj,Wj+1) of G(W) at sj+ 1
2
, such that

Rj =
𝜕
𝜕W

(Wj) ⋅ (ℱ (Wj,Wj+1) −ℱ (Wj−1,Wj) − ΔsSj) − (𝒢 (Wj,Wj+1) −𝒢 (Wj−1,Wj))

= O(Δs2) (22)

is at least of order O(Δs2). The following proposition provides us with a condition for the vanishing viscosity coefficient
aj+ 1

2
to guarantee that the semidiscrete numerical scheme is entropy-satisfying.

Proposition 4. Let us consider the semidiscrete numerical scheme using numerical flux (21) associated with system (1)
when p= p(A), with conserved variables, flux, and source terms given by Equations (19) and (20). The numerical scheme is
entropy-satisfying provided that

aj± 1
2
≥ −2Rj(Wj−1,Wj,Wj+1)

Aj+Aj+1

2
(uj+1 − uj)2 + Aj+Aj−1

2
(uj − uj−1)2 + p(Aj+1)−p(Aj)

𝜌
(Aj+1 − Aj) +

p(Aj)−p(Aj−1)
𝜌

(Aj − Aj−1)
. (23)
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Note: Because p= p(A) is an increasing function of A> 0, the denominator is nonnegative and it vanishes only in the
trivial case where Aj− 1 =Aj =Aj+ 1,uj− 1 =uj = uj+ 1. In such a situation, Rj = 0, and one can take aj± 1

2
= 0.

Proof. Let us denote by A = − 1
2

u2 + p
𝜌

and Q = u the derivatives of the entropy function with respect to the conserved
variables. We note that we can decompose

Aj(Aj+1 − Aj) + Qj(Qj+1 − Qj)

=
Aj + Aj+1

2
(Aj+1 − Aj) +

Qj + Qj+1

2
(Qj+1 − Qj) −

Aj+1 − Aj

2
(Aj+1 − Aj) −

Qj+1 − Qj

2
(Qj+1 − Qj)

=
Aj + Aj+1

2
(Aj+1 − Aj) +

Qj + Qj+1

2
(Qj+1 − Qj) −

1
2

(Aj + Aj+1

2
(uj+1 − uj)2 +

p(Aj+1) − p(Aj)
𝜌

(Aj+1 − Aj)
)
, (24)

and similarly

Aj(Aj − Aj−1) + Qj(Qj − Qj−1)

=
Aj−1 + Aj

2
(Aj − Aj−1) +

Qj−1 + Qj

2
(Qj − Qj−1) +

Aj − Aj−1

2
(Aj − Aj−1) +

Qj − Qj−1

2
(Qj − Qj−1)

=
Aj−1 + Aj

2
(Aj − Aj−1) +

Qj−1 + Qj

2
(Qj − Qj−1) +

1
2

(Aj−1 + Aj

2
(uj − uj−1)2 +

p(Aj) − p(Aj−1)
𝜌

(Aj − Aj−1)
)
. (25)

Defining

Gj+ 1
2
= 𝒢 (Wj,Wj+1) − aj+ 1

2

[Aj + Aj+1

2
(Aj+1 − Aj) +

Qj + Qj+1

2
(Qj+1 − Qj)

]
,

we obtain

𝜕
𝜕W

(Wj) ⋅
(

Fj+ 1
2
− Fj− 1

2
− ΔsSj

)
− (Gj+ 1

2
− Gj− 1

2
)

= Rj +
aj+ 1

2

2

(Aj + Aj+1

2
(uj+1 − uj)2 +

p(Aj+1) − p(Aj)
𝜌

(Aj+1 − Aj)
)

+
aj− 1

2

2

(Aj−1 + Aj

2
(uj − uj−1)2 +

p(Aj) − p(Aj−1)
𝜌

(Aj − Aj−1)
)
, (26)

which concludes the proof. ▪

High resolution numerical schemes, such as central or central-upwind schemes, use numerical fluxes of the form

ℱ
(

W−
j+ 1

2

,W+
j+ 1

2

)
− aj+ 1

2
(W+

j+ 1
2

− W−
j+ 1

2

), where W±
j+ 1

2

are reconstructed values at the cell interfaces. However, such

schemes reduce to first-order accurate schemes near shock waves, where we actually need the entropy inequality. In
smooth regions, Equation (15) is satisfied as an equality in the continuous limit. Near shock waves or local singularities,
the minmod local reconstruction is trivial, and the vanishing viscosity term reduces to the form of Equation (21).

In smooth regions, condition (23) can be rewritten as

aj± 1
2
≥ −2 Rj

Δs2 (Wj−1,Wj,Wj+1)

Aj+Aj+1

2

(
uj+1−uj

Δs

)2
+ Aj+Aj−1

2

(
uj−uj−1

Δs

)2
+ p(Aj+1)−p(Aj)

𝜌Δs
Aj+1−Aj

Δs
+ p(Aj)−p(Aj−1)

𝜌Δs
Aj−Aj−1

Δs

,

which is bounded as Δs → 0. Near discontinuities, the right-hand side is of order 1. In any case, the condition is not too
restrictive. In fact, for the special case where the pressure is given by Equation (2), 𝛽 = 2,Go,Ao constants, we have

Rj =
1
4
[Aj−1uj−1(uj − uj−1)2 − Aj+1uj+1(uj+1 − uj)2] + Go

4AoAj𝜌

[
Aj−1uj−1(Aj+1 − Aj−1)(Aj+1 − 2Aj + Aj−1)

−2Aj(Aj+1 − Aj)(Aj+1uj+1 − Aj−1uj−1) + (Aj+1 + Aj−1)(Aj+1 − Aj−1)(Ajuj − Aj−1uj−1)
]
, (27)
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which is actually of order O(Δs3) as Δs → 0 in smooth regions, making the right-hand side of Equation (23) of
order O(Δs).

3.3 Semidiscrete central-upwind scheme

The semidiscrete formulation for the cell averages as in (17) is obtained after integrating Equation (14) over each cell Ij,
obtaining Equation (18). The semidiscrete formulation is approximated by

d
dt

Wj(t) = −
Hj+ 1

2
− Hj− 1

2

Δs
+ 1

Δs ∫
sj+ 1

2

sj− 1
2

S(W, s) ds, (28)

where Hj± 1
2

is the numerical flux at the cell interface sj± 1
2
. Typical semidiscrete central-upwind schemes consider flux val-

ues at the interfaces obtained by nonoscillatory polynomial reconstructions. Nonoscillatory behavior is usually achieved
by the use of nonlinear limiters, as described in Reference 27.

Following Reference 28, the flux at the cell interfaces, F(W(sj± 1
2
), t), is approximated by the numerical flux Hj± 1

2
(t)

given by

Hj± 1
2
(t) =

a+
j± 1

2

F
(

W−
j± 1

2

(t)
)
− a−

j± 1
2

F
(

W+
j± 1

2

(t)
)

a+
j± 1

2

− a−
j± 1

2

+
a+

j± 1
2

a−
j± 1

2

a+
j± 1

2

− a−
j± 1

2

(
W+

j± 1
2

(t) − W−
j± 1

2

(t)
)
. (29)

The numerical flux is of HLL type, as described in Reference 47. The interface point-values W±
j± 1

2

(t) are

recovered from the cell averages via a nonoscillatory piecewise polynomial reconstruction that is described in
the next section. The one-sided local speeds in this scheme are approximated using the eigenvalues of the
Jacobian:

a−
j± 1

2

= min
⎧⎪⎨⎪⎩𝛼

+
u

j± 1
2

−

√
𝛼(𝛼 − 1)

(
u+

j± 1
2

)2

+
(

c+
j± 1

2

)2

, 𝛼u−
j± 1

2

−

√
𝛼(𝛼 − 1)

(
u−

j± 1
2

)2

+
(

c−
j± 1

2

)2

, 0
⎫⎪⎬⎪⎭ ,

a+
j± 1

2

= max
⎧⎪⎨⎪⎩𝛼

+
u

j± 1
2

+

√
𝛼(𝛼 − 1)

(
u+

j± 1
2

)2

+
(

c+
j± 1

2

)2

, 𝛼u−
j± 1

2

+

√
𝛼(𝛼 − 1)

(
u−

j± 1
2

)2

+
(

c−
j± 1

2

)2

, 0
⎫⎪⎬⎪⎭ . (30)

We note that a+
j± 1

2

− a−
j± 1

2

> 0 is always positive unless A±
j± 1

2

and u±
j± 1

2

all vanish in a collapsed state with “no fluid

motion.” However, we always start with positive but possibly small values of A.

3.4 Positivity-preserving nonoscillatory reconstruction

The construction of a numerical scheme that is second-order accurate in smooth regions is one of the goals in this work.
The numerical scheme becomes first-order accurate near shock waves to achieve stability. The interface point values
Wj± 1

2
(t) are calculated from the cell averages Wj(t) via piecewise polynomial reconstruction. For that end, the recon-

struction implemented here conserves cell averages, is second-order accurate in smooth regions, has a nonoscillatory
behavior, recognizes steady states at rest, and preserves the positivity of the cross-sectional area A. See References 48-51
for details.

A second-order reconstruction of any quantity q(s,t) is chosen from its cell average qj as

q+
j− 1

2

= qj −
Δs
2

q′
j , q−

j+ 1
2

= qj +
Δs
2

q′
j . (31)
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The limited slopes q′
j are calculated according to Reference 52 as

q′
j =

1
Δs

minmod
(
𝜃(qj − qj−1),

1
2
(qj+1 − qj−1), 𝜃(qj+1 − qj)

)
, (32)

where 1 ≤ 𝜃 < 2, and

minmod(r1, r2, r3, … , rk) =

⎧⎪⎪⎨⎪⎪⎩
min

j
(rj) if rj > 0 ∀j

max
j

(rj) if rj < 0 ∀j

0 otherwise

.

Unless otherwise specified, 𝜃 = 1.5. We note that this minmod limiter is commonly used in central-upwind schemes.
It guarantees the local maximum principle with respect to the cell averages.27

Steady state at rest and positivity of cross-sectional area
The interface data are constructed as follows. The quantity Ao(s) and the pressure are defined at sj± 1

2
, and at each cell

center, both quantities are calculated as

Ao,j =
Ao,j− 1

2
+ Ao,j+ 1

2

2
, pj± 1

2
(A) = p(A, sj± 1

2
), pj(A) =

pj− 1
2
(A) + pj+ 1

2
(A)

2
.

Removing the overbar Āj = Aj for the cell averages, we compute the rescaled values Aj = Aj∕Ao,j inside each cell. One
then reconstructs A

±
j± 1

2

according to (31) to recover

A±
j± 1

2

= Ao,j± 1
2
A

±
j± 1

2

. (33)

We require a trivial reconstruction for steady states at rest (A = 1). Therefore, if we start with a steady state Aj =Ao,j∀j,
the reconstructions A±

j+ 1
2

= Ao,j+ 1
2

are trivial. This procedure will be helpful in achieving the well-balanced property.

Note: It is well known that if the cross-sectional areas Aj in each cell Ij are positive, so are the reconstructions A±
j± 1

2

.

3.5 Well-balanced property

Steady state at rest may also occur for tilted vessels, and the cross-sectional area satisfies p(A, s) + g𝜌z(s) = const. In the
tilted case, the relation A=Ao(s) does not correspond to a steady state, and the reconstruction is more complicated. In
this section, we assume 𝜃(s) = 0 for simplicity. The well-balanced property has been shown to improve the accuracy of
the scheme near steady-state flows.44,53-55 Let us consider a steady state at rest, that is, Aj =Ao,j and Qj = 0 for all j. Then,
the reconstructed point values A±

j± 1
2

given by (33), will trivially yield Āj(t + Δt) = Āj(t).

For the momentum equation, the cell average of the source term Sj in (20) must be discretized to balance the numerical
fluxes (29). Under the above conditions, the minmod reconstruction of Q and A/Ao is trivial ((⋅)−

j+ 1
2

= (⋅)+
j+ 1

2

= (⋅)j+ 1
2
), and

the ± signs will be dropped in those cases. On the other hand, the quantity p(A, s) appearing as a source term satisfies

𝜕2p = 1
A ∫

A(s,t)

Ao(s)
𝜕2p(, s)d − 1

A
p(Ao(s), s)A′

o(s) =
1
A ∫

A(s,t)

Ao(s)
𝜕2p(, s)d,

which clearly vanishes when A=Ao. One must find a second-order discretization that vanishes when A=Ao. One then
approximates the source terms in Equation (20) as

1
Δs ∫

sj+ 1
2

sj− 1
2

2 𝛼𝜈u
𝛼 − 1

ds ≈ 2 𝛼𝜈

𝛼 − 1

u+
j− 1

2

+ u−
j+ 1

2

2
, (34)
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1
Δs ∫

sj+ 1
2

sj− 1
2

A
𝜌
𝜕2p(A(s, t), s)ds ≈

A+
j− 1

2

+ A−
j+ 1

2

2𝜌

⎛⎜⎜⎝1
2 ∫

A+
j− 1

2

Ao,j− 1
2

𝜕2p(, xj)d + 1
2 ∫

A−
j+ 1

2

Ao,j+ 1
2

𝜕2p(, xj)d
⎞⎟⎟⎠ . (35)

If the pressure p= p(A,s) has an explicit expression as in Equation (2), the integral in the last expression could be
computed explicitly or a trapezoidal rule could be used to approximate such an integral. If the pressure is only available
at the cell interfaces, one could also use the approximation 𝜕2p(A, xj) = (p(A, sj+ 1

2
) − p(A, sj− 1

2
))∕Δs. One does not expect

to have strong differences in the numerical results with either choice if the well-balanced property is maintained.
The well-balanced property is described in the following proposition.

Proposition 5. Let Ao,j± 1
2
= Ao(sj± 1

2
) be the unstressed area at the interfaces sj± 1

2
. Let us define the source terms approxima-

tions in (20) according to (34) and (35). Then, the scheme (28) and (29) with the above approximation is well balanced, that
is, d

dt
Wj(t) = 0 for steady states at rest.

The proof is standard. The details can be found in References 49,50.

3.6 Evolution in time

The time integration of the ODE system (28) is done using the second-order strong stability preserving Runge-Kutta
scheme56

W(1) = W(0) + Δt C[W(0)] (36a)

W(2) = 1
2

W(0) + 1
2
(W(1) + Δt C[W(1)]) (36b)

W(t + Δt) ∶= W(2), (36c)

with

C[W(t)] = −
Hj+ 1

2
(W(t)) − Hj− 1

2
(W(t))

Δs
+ Sj(t), (37)

and Sj(t) calculated according to (34) and (35). The Courant-Friedrichs-Lewy (CFL) condition that determines the time
step Δt is

aΔt
Δs

≤ 1
2
, (38)

where a = maxj max(a+
j± 1

2

,−a−
j± 1

2

).

The following proposition shows that this CFL condition guarantees the positivity of the cross-sectional area A when
the solution is computed with the Runge-Kutta method (36).

Proposition 6. Consider the scheme (28) and (29) with the reconstruction algorithm described in Section 3.4 and the
discretization of the source term (34) and (35) . If the cell averages Ā(t) are such that

Āj(t) > 0 ∀j,

then the cell averages Ā(t + Δt) computed with the Runge-Kutta method (36) under the CFL limitation (38) will yield

Āj(t + Δt) ≥ 0 ∀j.

The proof is standard. The details can be found in References 49,50.

4 NUMERICAL RESULTS

In this section, we present several numerical tests to verify the properties of the proposed numerical scheme. The
numerical tests are performed for the special case where the pressure is given by Equation (2). The
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stress-strain response is given by 𝛽 = 2 and the density is 𝜌 = 1050 kg m−3 in all the numerical
tests.

Here, we employ exact solutions of the Riemann problem to analyze the order of accuracy of the numerical approx-
imations as follows. Given a nonvanishing quantity q in the domain [so,s1], which is an approximation to the quantity
qexact, the relative absolute error is defined as

Eq(t) ∶=
1
L ∫

s1

so

|q(s, t) − qexact(s, t)||qexact(s,t)| ds. (39)

In the following numerical test, we take q=R, the vessel’s radius. It does not vanish, and the above expression is valid.
We may also compute the relative absolute error of the velocity, discharge or energy in other numerical tests.

4.1 A Riemann problem

In this test, we set the model parameters as in Reference 4. The elasticity coefficient is Go = 40 kPa. The Young’s modulus
is EY = 300 kPa, and the corresponding wall thickness is hd =Ro/10. The unstressed cross-sectional area is Ao = 2.1 cm2,
which corresponds to an unstressed radius of R0 = 0.82 cm. The viscosity coefficient is set to zero (𝜈 = 0) and 𝛼 = 1. In the
case of a horizontal vessel, the arc length position s coincides with the horizontal position x. To distinguish horizontal
from tilted vessels, we will use the variable x when 𝜃 = 0.

The domain in this numerical test is [0 m,1 m]. We consider the following initial conditions associated with a Riemann
problem:

(A,u)(x, 0) =

{
(1.28 cm2, 1.53 ms−1), if 0 ≤ x < 0.5 m.

(1 cm2, 0.63 ms−1), if 0.5 m ≤ x ≤ 1 m.
(40)

The left state corresponds to a radius of R𝓁 = 0.64 cm, while the right one decreases to Rr = 0.5642 cm. The initial
condition corresponds to a Riemann problem with solution consisting of a left going rarefaction wave and a right shock
wave. The middle state is (Rm = 0.586 cm,um = 2.33 ms−1). The exact solution was constructed with the above procedure,
and the results are displayed in Figure 2. In the figure, the numerical approximation is shown at time t = 0.07 seconds,
and it was obtained with the central-upwind scheme described in Section 3 using a grid resolution of 500 grid points and
free boundary conditions. The left panel displays the exact (solid blue line) and numerical (dotted red line) radii, while
the middle panel shows the velocity. Both variables exhibit very good agreement with the exact solution. The numerical
solution is also accurate near the right shock wave. No spurious oscillations are observed. The numerical smearing near
the discontinuity is typical in many numerical methods and is moderate in the present case. The relative error given by
Equation (39) is 3.17× 10−4 for the radius and 1.4× 10−3 for the velocity. The right panel of Figure 2 shows the transmural
pressure, which decreases with respect to x at a given time. Because the pressure is higher at the left end, the fluid is pushed
toward the right. As a result, the velocity is positive and increases across the rarefaction where the artery’s cross-section
decreases. All variables decrease again across the right-going shock wave.

The proposed numerical scheme is formally second-order accurate in smooth regions and first-order accu-
rate near discontinuities. One can verify the rate of convergence when the exact solution is available, as in the

F I G U R E 2 Riemann problem corresponding to the initial conditions reported in (40) at time t = 0.07 seconds. The vessel’s radius (in
centimeter) is displayed in the left panel, the velocity in units of m s−1 in the middle panel, and the pressure is shown in the right panel. The
exact solution is denoted by a solid blue line, and the numerical approximation is indicated by the dotted red line [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Left: Log-log plot of numerical error for the radius ER calculated according to Equation (39) vs Δx (red asterisks) for the
numerical solution at time t = 0.07 seconds with initial conditions (40) using N = 100,100× 2,… ,100× 26 grid points. Right: The same
numerical error computed in the region [0.28,0.34] when the initial condition is the solution to the Riemann problem at to = 0.0105 seconds
and the end time is t = 0.07 seconds. The red and blue lines have slopes 2 and 1 in the log-log plot, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

Riemann problem. The left panel of Figure 3 shows the log-log plot of the numerical error vs Δx for different grid
resolutions. The radius is the variable employed here to compute the relative error. Because the solution involves
shock waves, the approximation is first-order accurate near discontinuities. The red asterisks are close to the blue
line with slope 1 in the log-log plot. The error was taken at time t = 0.07 seconds over the domain [0 m,1 m]. The
right panel repeats the computation when the numerical error is computed inside the rarefaction wave and when the
initial conditions are the Riemann solution at time to = 0.15T = 0.0105 seconds, instead of piecewise constant initial
conditions. Otherwise, the initial discontinuity may affect the accuracy of the numerical approximation. The numer-
ical error is computed at the same final time t = 0.07 s, starting at to = 0.0105 seconds, and the integral is taken over
the spatial portion of the domain [0.28 m,0.34 m], which corresponds to a portion inside the rarefaction where the
solution is smooth. In this case, the solution involves no discontinuities, and the log-log plot confirms a second-order
approximation.

4.2 Numerical test for the positivity preserving property

The numerical scheme presented here is positivity-preserving according to Proposition 6. We numerically test this
property in this section. To this end, we consider a Riemann problem with initial conditions

(A,u)(x, 0) =

{
(0.1596 cm2, 1 ms−1), if 0 ≤ x < 0.5 m.

(0.5 cm2,−8.279 ms−1), if 0.5 m ≤ x < 1 m.
(41)

Here, 𝜈 = 0, 𝛼 = 1,Go = 40 kPa, and Ro = 0.82 cm. The solution to this Riemann problem consists of two rarefaction
waves connected to an intermediate state (Am,um) = (5 × 10−5 cm2,−4.9456 ms−1). The remaining parameter values are
taken from the previous example.

Figure 4 shows the exact solution (blue line) and numerical predictions (dotted red line) for the radius (left panel)
and velocity (right panel) at t = 0.09 seconds. Here, we use free boundary conditions. We note that the intermediate state
is much smaller with reference to the left and right states, as in a vacuum problem. The computation of the eigenvalues
in the numerical algorithm requires the square root of the cross-sectional area. A numerical complication arises when
numerical errors lead to negative values of the approximated cross-sectional area. The positivity-preserving property is
important to correctly compute the solution near the intermediate small state. The agreement is very good, except for a
very small oscillation in the velocity near the rarefaction edges. The intermediate state covers a very small portion of the
domain. Numerical difficulties are anticipated in those cases (see fig. 11 in Reference 57), and a very fine grid resolution
is required to improve the accuracy near that state. The numerical solution is computed using 100 grid points (“+” signs),
1000 grid points (“o” signs), and 10 000 grid points (dotted line in Figure 4). We clearly observe the improvement in the
numerical approximation near the intermediate state as we increase the grid resolution. An inset with a zoom of the

http://wileyonlinelibrary.com
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F I G U R E 4 Exact (blue line) and numerical approximations (dotted red line) of the radius (left panel) and velocity (right panel) at time
t = 0.09 seconds. The initial conditions are given by (41). An inset with a zoom near the intermediate state is also shown in each panel

F I G U R E 5 Top panels: exact (blue line) and numerical approximations (dotted red line) of the radius (top left panel) and velocity (top
right panel) at time t = 0.004 seconds using a numerical scheme that is not positivity preserving. The initial conditions are given by (41).
Bottom panels: the same as in the top panels but using the numerical scheme proposed here

intermediate state is shown in each panel. The numerical errors are more visible in this inset. Such errors near rarefaction
edges are common in many numerical schemes. The relative errors given by Equation (39) are 2.27× 10−1,5.12× 10−2,
and 6.2× 10−3 for the radius and 2.26× 10−2,3.6× 10−3, and 4.1× 10−4 for the velocity, respectively.

We illustrate the importance of the positivity-preserving property by showing that we may obtain negative values of
A when it is not implemented. Here, we use a regular central scheme without the positivity-preserving property, using
a CFL number of 0.9 and 500 grid points. When the cross-sectional area becomes negative, we correct it increasing it
to a threshold 10−10 m2 to avoid serious numerical complications. Figure 5 shows numerical profiles of radius (top left)
and velocity (top right) at time t = 0.004 seconds. One can observe instabilities in the numerical solution. We repeated
the computations with the positivity-preserving numerical scheme proposed here, and we show the results in the bottom
panels. The results are very accurate, except in the intermediate state. Central/upwind schemes are first-order accurate
near peaks or discontinuities due to the minmod reconstruction, which is requiredfor stability.

4.3 Perturbation to a moving steady state

It has been shown in many situations that the flows are small perturbations from steady states.34 It was shown in Section 3
that the numerical scheme presented here satisfies the well-balanced property. This property improves the accuracy of
numerical approximations near steady states.55 We have characterized the equilibrium solutions in Proposition 2 and the
invariant quantities in Equation (9), even in the case where the viscosity coefficient is positive. In this section, we take
𝛼 = 1.1, and consider a perturbation to one of those equilibrium solutions in horizontal vessels (𝜃 = 0). The quantities
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F I G U R E 6 Elasticity parameter Go (left) and unstressed radius Ro (right) as a function of x [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 7 Steady-state radius (left) and velocity (right) associated with the boundary data (Rb,ub) = (0.82 cm, 1.09 ms−1) and
parameters given by (42) and (43). The solid blue line is for 𝜈 = 2.6 × 10−6 m2 s−1, while the dashed blue line corresponds to 𝜈 = 0 [Colour
figure can be viewed at wileyonlinelibrary.com]

Ro =Ro(x), and Go =Go(x) defined in the domain [0 m,1 m] are given by

Ro(x) = 0.82(1 − 0.2 exp(−100 m−2(x − 0.5 m)2) + 0.1 exp(−100 m−2(x − 0.75 m)2)) cm, (42)

and

Go(x) =

{
20(1 + 0.1 sin(𝜋(x m−1 − 0.3)∕0.4)) kPa if 0.3 m < x ≤ 0.7 m
20 kPa if x ∈ [0, 1 m] ∖ [0.3, 0.7 m].

(43)

Their profiles are shown in Figure 6.
The exact steady states can be computed according to condition (6), even when the viscosity 𝜈 is positive. For the

above parameters, the exact steady state can be observed in Figure 7. The dashed curve shows the inviscid case, 𝜈 = 0,
while the solid line was obtained for the value of 𝜈 = 2.6 × 10−6 m2 s−1, which is a typical value for blood viscosity
at 37◦ reported in Reference 58. As one can see, the case 𝜈 > 0 results in a reduced velocity and increased radius,
as expected.

One then considers the steady state Ast,ust associated to boundary data (Rb,ub) = (0.82 cm, 1.09 ms−1) at both the left
and right boundaries. That is, we start with those values at the left boundary and compute the equilibrium solution in
the remainder of the domain according to (6).

We add a perturbation to the steady state according to

A(x, 0) =
⎧⎪⎨⎪⎩

Ast(x)
(

1 + 1
2

sin(5𝜋(x m−1 − 0.1))
)

if 0.1 < x ≤ 0.3 m

Ast(x) otherwise.

Figure 8 shows the evolution of the perturbation (dotted red line) and the steady state (solid blue line). We have
used Dirichlet boundary conditions Rb,ub on both the left and right boundaries. We can observe that the steady state is

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 8 Numerical solution at times t = 0,0.01,0.05, and 10 seconds in descending order. The initial conditions consists of a
perturbation to the steady state with boundary data (Rb,ub) = (0.41 cm, 1 ms−1) and the quantities Ro,Go are given by (42) and (43). The left
column shows the radius, while the right one the velocity of the fluid. The blue solid line corresponds to a steady state and the red dotted line
is the evolution of the perturbation.

recovered when the perturbation leaves the domain at t = 10 seconds in spite of the fact that the perturbation is large. The
solution is computed for long times until it converges to the initial steady state.

Figure 9 shows the discharge and energy profiles at time t = 10 seconds, which are constant for smooth flows when
𝜈 = 0. Here, the discharge is still constant, but the energy decreases as x increases, as expected by Proposition 2. By
plotting flat quantities, such as the discharge, we obtain more information about the accuracy of the scheme because we
can easily see numerical errors. The top left panel of Figure 9 shows the difference between the steady-state discharge
(blue solid line) and the numerical solution at t = 10 seconds (red dotted line). The relative absolute errors for Q and E are
1× 10−3 and 2.56× 10−4, respectively. The bottom panels show |Q−Qexact|/Qexact and |E −Eexact|/Eexact, confirming our
observations.

4.4 Cardiac cycle

The profile shown in Figure 10 is an example of velocity as a function of time imposed at the upstream boundary in a
cardiac cycle. The time series was obtained from Reference 4, and it was approximated using the first 15 elements of its
Fourier decomposition. Initially, the velocity at the left boundary increases up to speeds above 1 ms−1. As a result, the
fluid is pushed to the right and shock waves could form in the blood flow, which is an undesired phenomenon.

Shock wave formation inside or outside the physiologically relevant regions was studied in Reference 4. The physio-
logical relevant domain was defined in Reference 4 as 2.8 m downstream from the inlet boundary. Here, we would like to



HERNANDEZ-DUENAS AND RAMIREZ-SANTIAGO 389

F I G U R E 9 Top: Exact steady state (solid blue line) and numerical approximation (red dotted line) of discharge (left) and energy
profiles (right) at time t = 10 seconds. Bottom: Relative error for discharge (left) and energy (right)

F I G U R E 10 Left: Velocity at the left boundary in a cardiac cycle as a function of time. Right: Profiles for Go (black solid line), Go,− (red
dotted line), and Go,+ (blue dashed line)

analyze the effect of varying elastic properties in the artery during the formation of shock waves. Shock wave formation in
blood flows could be problematic from a physiological viewpoint, and it does not happen in healthy individuals. See Refer-
ence 59 for an extended analysis. Here, we analyze the effect of increasing the rigidity of the walls and study how that can
delay or accelerate the formation of a shock wave. The parameters are g = 9.81 ms−1, 𝛼 = 1.1, 𝛽 = 2, 𝜌o = 1050 kg m−3,
and 𝜈 = 3.2 × 10−6 m2 s−1.

The domain here is [0,5 m]. We consider three cases for the elastic properties of the vessel, given by

Go(x) = 4 × 104, Go,± =
⎧⎪⎨⎪⎩

40
(

1 ± 1
2

sin
[
𝜋

x− 1
2

4

)]
kPa if 0.5 m < x ≤ 4.5 m

40 kPa if x ∈ [0, 5 m] ∖ [0.5, 4.5 m].

A vessel with uniform elasticity is modeled here with the constant parameter Go. Assuming a constant Young’s modulus,
Go,+ corresponds to a vessel with thicker (more rigid) walls at the center (more rigid), and Go,− denotes a vessel with walls
that are less thick (less rigid) at the center of the vessel.

Let us take the Young’s modulus to be EY = 300 kPa. The corresponding wall thicknesses are hd =Ro/10 for Go, and

hd,± = 1
10

Ro

[
1 ± 1

2
sin

(
𝜋

x− 1
2

4

)]
for Go,±. That is, for the nonuniform parameters, the wall thickness may vary from 5% to

15% of the unstressed radius.
The right panel of Figure 10 shows a profile of the different elasticity parameter Go. Furthermore, the initial conditions

are

A(x, 0) = Ao(x) = 0.82 cm, u(x, 0) = 0, 0 ≤ x ≤ 5 m. (44)
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F I G U R E 11 Radius (left) and velocity (right) profiles at times t = 0.34 seconds (top), t = 0.48 seconds (middle), and t = 0.59 seconds
(bottom) obtained with elastic parameters Go (black solid line), Go,+ (blue dashed line), and Go,− (red dotted line). The initial conditions are
given by (44).

As mentioned above, the velocity is prescribed at the left boundary by the time series shown in the left panel of
Figure 10. Zero Neumann boundary conditions are applied to A at the left boundary and both A and Q at the right
boundary.

The numerical solutions are shown in Figure 11 for Go (black solid line), Go,− (red dotted line), and Go,+ (blue dashed
line). In each panel, we show the radius profiles for all elasticity parameters (left column) and the corresponding velocity
profiles (right column). Section 4.3 in Reference 4 provides estimates for the first time the shock wave forms, denoted by
ts. This is done for constant parameters and no source terms. Our elasticity parameters Go,± depend on x. Taking the min-
imum (20 kPa), intermediate (40 kPa), and maximum (60 kPa) values, it provides times of ts = 0.34,0.48, and 0.59 seconds,
respectively. In the first row, we see a similar behavior in all cases, with an increment in the cross-sectional area and veloc-
ity due to the discharge coming from the left boundary. As the flow moves to the right, the fluid interacts with an artery
that may have different elastic properties. At time t = 0.48 seconds, a shock wave has formed for the less rigid-wall case
(Go,−), the artery with uniform elasticity (Go) is getting close to forming a shock wave, while the more rigid wall (Go,+)
has not formed a shock wave yet. The last row shows the later time t = 0.59 seconds, where the dotted red and solid black
lines show well-formed shock waves. We note that in all cases, the solution to the right of the shock waves is flat due
to the well-balanced property and the zero-Neumann boundary conditions. The amplitude of the radius perturbation is
smaller but propagates faster compared with the other two cases. In the case of artery with less rigid walls toward the cen-
ter (G0,−), a shock wave forms earlier at time t = 0.48 seconds. One can conclude that for the parameters values used here,
the profiles suggest that more elastic vessels are more susceptible to shock formation. In Reference 4, it was observed that
including vessel tapering, consisting of a linearly decreasing unstressed area Ao as a function of x delays the formation of
shock waves.

4.5 Cardiac cycle in tilted vessel

The effects of gravity are relevant in tilted or vertical arteries. Here, we also consider an artery pointing down with angle

𝜃(s) = −𝜋

4
s

5 m
, 0 ≤ s ≤ 5 m.
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F I G U R E 12 . Radius (left) and velocity (right) profiles at time t = 0.6 s. Here, Go = 40 kPa is constant, and the angle of the artery with
respect to the horizontal axis is 𝜃(s) = − 𝜋

4
s

5 m
(dashed red line). For comparison, we include the horizontal case 𝜃 = 0 (solid blue line). The

initial conditions are given by (44), and the same upstream boundary conditions used in the previous numerical test are implemented.

In this scenario, gravity accelerates the flow and the fluid leaves the domain through the right boundary. Figure 12 shows
the radius (left) and velocity (right) as functions of s at time t = 0.6 seconds (red dashed lines). The blue solid lines cor-
respond to the simulation of a horizontal artery with 𝜃 = 0, which we show here for comparison. As expected, the fluid
in the tilted vessel travels faster and reaches the right boundary, leaving the domain and reducing the cross-sectional
area. The maximum velocity in the tilted artery is 1.6 ms−1, which is approximately three times larger than the maximum
velocity in the horizontal artery (0.56 ms−1).

4.6 Tapered aorta

In Reference 21, a comparison of computational hemodynamics in arteries between a 1D and a 3D formulation is pre-
sented. It was concluded that the 1D model gives a reasonable approximation of the global behavior of the spatially
averaged pressure and flow waveforms. Blood flows through the aorta was simulated. The pressure over time was com-
puted at given locations to compare 1D and 3D models. Here, we simulate blood passing through the full aorta, but
we ignore the branches. The arc length domain is [so,s1], where so = 0,s1 = 42.21 cm. As an approximation to the aorta’s
curvature, the angle 𝜃(s) is given by

𝜃(s) = 𝜋

2

[
1 − 2 min

(
s

0.3s1
, 1

)]
. (45)

That is, the vessel is straight up at the upstream boundary (𝜃 = 𝜋∕2) and points down (𝜃 = −𝜋∕2) at position
s= 12.67 cm.

We take this as an approximation to obtain the curvature of the full aorta. The parameter Ro is piecewise lin-
ear according to the radius at diastolic pressure shown in table IV in Reference 21. The values are written in
Table 1. This determines the geometry of the vessel. The parameter Go is given by Equation (3) with rd =Ro, and
hd = rd/10. The pulse wave speed is a piecewise linear function according to the values provided in table IV in Ref-
erence 21. The graph for Go is given in the middle right panel of Figure 13. The graph of Ao is given in the bottom
left panel.

Here, the viscosity parameter is 𝜈 = 2.6 × 10−6 m2 s−1. The initial conditions correspond to a steady state at rest in a
tilted vessel. That is, u= 0 and the cross-sectional area satisfies Equation (7), or equivalently,

A = Ao(s)
(

1 +
po − g𝜌z(s)

Go(s)

)2∕𝛽

,

where po = 20 kPa and 𝛽 = 2. The value of po was chosen so that the initial cross-sectional area is greater than the
parameter Ao. See bottom left panel of Figure 13.

At the left boundary, we impose the velocity given by the profile in Figure 10 and Dirichlet boundary conditions for the
cross-sectional area A=Ao. The discharge at the left boundary breaks the balance and induces a moving state. Neumann
boundary conditions are imposed at the right boundary.



392 HERNANDEZ-DUENAS AND RAMIREZ-SANTIAGO

Segment Length (cm) Left radius (cm) Right radius

I 7.0357 1.52 1.39

II 0.8 1.39 1.37

III 0.9 1.37 1.35

IV 6.4737 1.35 1.23

V 15.2 1.23 0.99

VI 1.8 0.99 0.97

VII 0.7 0.97 0.962

VIII 0.7 0.962 0.955

IX 4.3 0.955 0.907

X 4.3 0.907 0.86

T A B L E 1 Aorta’s geometry and dimensions

F I G U R E 13 Blood flow simulation passing through the full aorta. Top left: 3D view of the axisymmetric tapered vessel. Middle right:
Profile of Go. Bottom left: Profile of Ro (black dashed line), the initial radius (solid blue line), and the radius at time t = 0.8 s (dotted red line).
Top right: Pressure measured at the middle of vessel (s= 21.105 cm) as a function of time. Bottom right: Velocity as a function of arc length at
time t = 0.8 s.

Figure 13 (top left panel) shows a 3D view of the axisymmetric tapered vessel at time t = 0.8 seconds. Here, we use
200 grid points. The radius as a function of arc-length is also shown in the bottom left panel (red dotted line). The vessel’s
radius at the end time is closer to Ro, suggesting that the potential energy in Proposition 6 is dominated by gz. The bottom
right panel shows the velocity as a function of time at t = 0.8 seconds. The discharge at the left boundary and the gravity
generate a positive increasing velocity as a function of arc length. The top right panel shows the pressure measured at the
middle of the vessel (s= 21.105 cm) as a function of time. The pressure reaches its maximum of approximately 14.52 kPa
at approximately t = 0.1 seconds, followed by a decay. Our theoretical and numerical setups are not identical to those in
Reference 21. For instance, we do not include any of the aorta’s branches, and we only use an approximated curvature
where the effects of gravity are taken into consideration. Despite all the differences, the profiles of pressure as a function
of time are qualitatively similar.
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5 CONCLUSIONS

It has been documented in the literature that 1D blood flow models may be a reasonable approximation compared with
their 3D counterparts. The 1D model analyzed here was described by a hyperbolic balance law. A key step for a good
approximation is the accurate numerical computation of the 1D model. To that end, the hyperbolic properties of the system
were described. For instance, a distinguished attribute of this model is that its source terms do not involve derivatives of the
unknown solution. That is, the model does not have nonconservative products. The absence of nonconservative products
avoids both theoretical and numerical complications. On the other hand, the characterization of steady-state flows was
provided, even in the presence of viscosity. As stated in Corollary 1, a novel invariant quantity was found for moving
states at equilibrium (nonvanishing velocity) in horizontal vessels. It was also shown that the model has an associated
entropy function when the flow is inviscid and 𝛼 = 1. This is an important property, which can help in choosing physically
relevant weak solutions.

All of the above features are good properties that can help construct robust, stable, and accurate numerical schemes
to approximate solutions. At a discrete level, the numerical scheme may inherit some of the model’s properties at the
continuous level. For instance, a large class of semidiscrete entropy-satisfying numerical schemes was described. A
well-balanced positivity-preserving central-upwind scheme is constructed, and its properties were proved via different
propositions.

Several numerical tests were conducted to show the merits of the numerical scheme. The first three numerical tests
helped us show that the numerical scheme is robust, stable, and accurate. However, the ultimate goal of this work was the
application of the model to more relevant situations from the medical viewpoint. One such application was conducted to
analyze the effect of heterogeneous elastic properties in the formation of shock waves. For the values of the parameters
considered here, it was found that as the rigidity of the walls increases, the formation of shock waves is delayed. We also
measured the gravity effect in a tilted vessel. We analyzed the velocities and radii both for horizontal and tilted vessels
with negative angles. A smaller radius and higher velocity were revealed due to gravity. Ignoring bifurcations, the last
numerical test considered a fluid passing through the tapered aorta. Once the model parameters and boundary conditions
were specified, the solution was computed at t = 0.8 seconds and provided interesting results. The velocity increases with
respect to arc length. The positive discharge at the left boundary and effect of gravity near the right boundary are consistent
with the increasing velocity. The pressure at s= 21.105 cm was plotted as a function of time. The pressure reaches its
maximum, followed by a decay. The profile is qualitatively similar to those found in other studies.

The 1D approach to simulate blood flows has been shown to be useful in different scenarios, such as in computing the
propagation of pressure waves. However, important limitations may exist. The cross-sectional area is assumed to be a disk.
Bifurcations are not considered in this work. A realistic scenario may also require a much more complex geometry, which
will be considered in future work. Modelers interested in hemodynamics using simplified models may find it helpful to
seek numerical applications in cases that are relevant from a medical viewpoint after testing their numerical schemes to
guarantee stability, robustness, and accuracy.
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