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Perturbations of the Landau Hamiltonian:
Asymptotics of Eigenvalue Clusters

G. Hernandez-Duenas , S. Pérez-Esteva, A. Uribe and
C. Villegas-Blas

Abstract. We consider the asymptotic behavior of the spectrum of the
Landau Hamiltonian plus a short-range continuous potential. The spec-
trum of the operator forms eigenvalue clusters. We obtain a Szegő limit
theorem for the eigenvalues in the clusters as the cluster index and the
field strength B tend to infinity with a fixed ratio E . The answer in-
volves the averages of the potential over circles of radius

√E/2 (classical
orbits). After rescaling, this becomes a semiclassical problem where the
role of Planck’s constant is played by 2/B. We also discuss a related
inverse spectral result.
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1. Introduction

The Landau Hamiltonian, in the symmetric gauge, is the operator on L2(R2)

H̃0(B) =
1
2

(
1
i

∂

∂x1
+

B

2
Q̂2

)2

+
1
2

(
1
i

∂

∂x2
− B

2
Q̂1

)2

. (1.1)

It is the quantum Hamiltonian of a particle on the plane subject to a constant
magnetic field perpendicular to the plane and of intensity B. Here, Q̂j =
multiplication by xj and we are taking the Planck’s parameter � = 1 at this
point. It is well known that the spectrum of the operator H̃0(B) is given by
the set of Landau levels

λq(B) =
B

2
(2q + 1) , q = 0, 1, . . . , (1.2)

where each Landau level has infinite multiplicity.
In [17], A. Pushnitski, G. Raikov and C. Villegas-Blas obtained a limiting

eigenvalue distribution theorem for perturbations of the Landau Hamiltonian
H̃0(B) by a potential V : R

2 → R. More precisely, they studied perturbations
of H̃0 of the form

H̃(B) = H̃0(B) + V, (1.3)

where V ∈ C(R2) and V is short-range, that is, it satisfies

∃ C > 0, σ > 1 such that ∀x ∈ R
2 |V (x)| ≤ C〈x〉−σ, (1.4)

where 〈x〉 =
√

1 + |x|2. The authors show that, outside of a finite interval, the
spectrum of the operator H̃(B) consists of clusters of eigenvalues around the
Landau levels. More precisely, the eigenvalues of H̃(B) can be written in the
form

λq(B) + τq,j(B), q, j ∈ N, (1.5)

where, as it turns out, |τq,j(B)| = O(q−1/2) (see Proposition 1.1 in [17]). In
the limit as q → ∞ with B fixed, the scaled eigenvalue shifts τq,j distribute
according to a measure dμ which we now describe. Consider the function V̆ :
T × R → R, where T is the unit circle, given by

V̆ (ω, b) =
1
2π

∫ ∞

−∞
V (bω + tω⊥) dt, ω = (ω1, ω2) ∈ T,

ω⊥ = (−ω2, ω1), b ∈ R, (1.6)

(T × R parametrizes the manifold of straight lines on R
2, and V̆ (ω, b) is the

integral of V along the corresponding straight line.) Their main result is:
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Theorem 1.1 [Pushnitski, Raikov, Villegas-Blas]. Let dμ be the push-forward
measure

dμ = V̆∗

(
1
2π

dm

)
,

where dm is the Lebesgue measure on T×R. Then, for B > 0, ρ ∈ C∞
0 (R\{0})

and V as above, one has

lim
q→∞ λq(B)−1/2

∑

j

ρ

(
B−1

√
λq(B) τq,j(B)

)
=
∫

R

ρ(λ)dμ(λ). (1.7)

In this paper, we establish a different limiting eigenvalue distribution
theorem for the same class of perturbations of the Landau Hamiltonian, taking
a limit as both q and B tend to infinity along certain values. More precisely,
we will fix the ratio

E :=
4q + 2

B
, (1.8)

which we will refer to as the “classical energy,” for reasons that will be clarified
below, and will compute the asymptotics of

∑
j ρ(τq,j(B)) as q,B → ∞ with

E fixed, for suitable test functions ρ.
To state our main theorem, consider the classical Hamiltonian H0 :

T ∗
R

2 → R of a charged particle moving on the plane {(x1, x2, 0) | x1, x2 ∈ R)}
under the influence of the constant magnetic field (0, 0, 2) corresponding to the
quantum Hamiltonian H0(�):

H0(x,p) =
1
2

(p1 + x2)
2 +

1
2

(p2 − x1)
2
, x = (x1, x2), p = (p1, p2). (1.9)

It can be shown that, for a fixed value E of the energy H0, the classical orbits

of H0 in configuration space are circles with radius
√

E
2 and period π. Any

given point in R
2 can be the center of one of those circles. More explicitly, if

we denote by t the time evolution parameter, we have

x1(t) =
P2√

2
+

√
E
2

sin(2(t + φ))

x2(t) =
X2√

2
+

√
E
2

cos(2(t + φ)) (1.10)

where P2 := (x1 + p2) /
√

2 and X2 := (x2 − p1) /
√

2 are integrals of motion
whose particular values are determined by the initial conditions x(0) , dx

dt (0),
and the equations (p1(0), p2(0)) =

(
dx1
dt (0) − x2(0), dx2

dt (0) + x1(0)
)
. The angle

φ is a solution of the equation exp(2ıφ) = 1√
2E ( p1(0) + x2(0) − ı(p2(0) − x1

(0)) ). We denote by Ṽ (X2, P2; E) the average of V along the circle with center

( P2√
2
, X2√

2
) and radius

√
E
2 , that is

Ṽ (X2, P2; E) =
1
π

∫ π

0

V

(
P2√

2
+

√
E
2

sin(2t) ,
X2√

2
+

√
E
2

cos(2t)

)

dt. (1.11)

Our main result is then the following:
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Theorem 1.2. Let V : R
2 → R be a continuous short-range potential, that is,

satisfying (1.4). Consider a test function ρ : R → R of the form ρ(t) = tβg(t),
where β is the smallest even integer greater than 1/(σ − 1), and g : R → R is
a continuous function of compact support. Fix a positive number E.

Then, ρ
(
Ṽ (X2, P2; E)

)
∈ L1(R2) and

lim
q,B→∞ 4q+2

B =E
B−1

∑

j

ρ(τq,j(B)) =
1
4π

∫

R2
ρ
(
Ṽ (X2, P2; E)

)
dX2 dP2.

(1.12)

In Theorem 1.1, the shifts τq,j need to be rescaled; not so in our regime.
Nonetheless, Theorem 1.1 corresponds to the limit as E → ∞ and, interestingly,
the right-hand side of (1.7) is the E → ∞ limit of normalized integrals of V
along circles with energy E , see Eq. (1.16) in [17].

As we now explain, the regime considered in the previous Theorem is
really the semi-classical limit for a suitable �-differential operator. To see this,
we introduce the small parameter

� =
2
B

, (1.13)

and define the operator

H(�) := �
2H̃(B = 2/�) = H0(�) + �

2V, (1.14)

where

H0(�) := �
2H̃0(B = 2/�) =

1
2

(
P̂1 + Q̂2

)2

+
1
2

(
P̂2 − Q̂1

)2

, P̂j =
�

i

∂

∂xj
.

(1.15)
H(�) is a semi-classical differential operator with principal symbol H0 and,
up to an overall factor of �

2, the large B asymptotics of the operator H̃(B)
is equivalent to the semi-classical asymptotics of the operator H(�), where B
and � are related as above. The eigenvalues of H(�) are

�(2q + 1) + �
2 τq,j q, j = 0, 1, . . . . (1.16)

We will focus on the study of the distribution of the eigenvalues inside
clusters of H(� = E

2n+1 ) around a fixed classical energy E , in the semi-classical
limit � → 0. More precisely, let us take E fixed and consider � taking discrete
values along the sequence

� =
E

2n + 1
, n = 0, 1, . . . . (1.17)

Then, E is an eigenvalue of each member of the family of operators H0(� =
E

2n+1 ), n = 0, 1, . . ., corresponding to the quantum number q = n in (1.16),
and we will study the distribution of eigenvalues that cluster around E when
n → ∞ (or, equivalently, � → 0). We will actually prove the following, which
is equivalent to Theorem 1.2:



Perturbations of the Landau

Theorem 1.3. With V and ρ as in Theorem 1.2,

lim � Tr
(

ρ

(
H(�) − E

�2

))
=

1
2π

∫

R2
ρ
(
Ṽ (X2, P2; E)

)
dX2 dP2, (1.18)

the limit as � → 0 along the values (1.17).

To check that (1.18) is equivalent to (1.12) note that, for each n, the
eigenvalues of H(�)−E

�2 are

�
−2
(
�(2q + 1) + �

2 τq,j − �(2n + 1)
)

= τq,j + 2�
−1(q − n), q, j = 1, 2, . . . .

Therefore,

Tr
(

ρ

(
H(�) − E

�2

))
=
∑

q,j ρ
(
τq,j + 2�

−1(q − n)
)

(1.19)

=
∑

j ρ (τn,j) if � � 1, (1.20)

where the final equality holds because ρ has compact support.
We now place this result in the context of previous works. There are

many results in the literature of the following type: small perturbations of
quantum Hamiltonians with degenerate spectrum (and periodic classical flow)
yield eigenvalue clusters, and, in appropriate asymptotic regimes, the distri-
bution of eigenvalues in the clusters is described by a Szegő-type theorem
involving the average of the symbol of the perturbation over the classical
trajectories of the unperturbed problem. References include: asymptotics of
eigenvalue clusters for the Laplacian plus a potential on spheres and other Zoll
manifolds (see [20] for the seminal work on this type of theorems), bounded
perturbations of the n-dimensional isotropic harmonic oscillator with n ≥ 2,
[9] and [15], and both bounded and unbounded perturbations of the quantum
hydrogen atom Hamiltonian, [2,11,19]. Previous results specific to perturba-
tions of the Landau Hamiltonian can be divided into two classes: (a) Those
where B is held constant and q → ∞, and (b) the opposite scenario where the
quantum number q remains fixed and B → ∞. In the notation of (1.12), these
correspond to E → ∞ and E → 0, respectively (see Fig. 1).

Results in the regime q → ∞ with B constant include:
• [17] (Theorem 1.1 above). As we noted above, V̆ (appearing on the

right-hand side of (1.7)) should be thought of the average of the potential V
over circles of infinite radius, that is, straight lines.

• [16] in the case of long-range potentials that can be approximated in
a neighborhood of infinity by homogeneous functions V ∈ C∞(R2\{0}). The
authors obtain the asymptotics of the left-hand side of (1.7) with a different
rescaling. Interestingly, the limit involves the circular Radon transform of V
on circles of radius one.

Results in the regime B → ∞ with q constant include:
• [18], where it is shown that

∑

j

ρ(τq,j) ∼ B

2π

∫

R2
ρ(V (x)) dx, (1.21)

and
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Figure 1. Diagram showing three different regimes. Case
(a): limit as in [16,17], corresponding to E → ∞. Case (b):
The limit as in [6,18] corresponds to E → 0. Case (c) is the
regime considered in this work, where E is held constant and
both q,B tend to infinity

• [6], where a complete asymptotic expansion of the left-hand side of
(1.21) is obtained, provided V belongs to a certain class.

The regime studied in this work interpolates continuously between (1.7)
(E = ∞) and (1.21) (E = 0), for short-range continuous potentials. Intuitively,
Theorem 1.2 can be thought of as describing the q-th cluster of the spectrum of
H̃ when the magnetic field is intense B and q is also large, with E = (4q+2)/B.

We should also mention the treatises [12,13] that include many other
results on Schrödinger operators with strong magnetic fields.

We now describe the organization of the paper. We begin in the next
section by showing that one can replace the perturbation by an “averaged”
version of it. For this, we re-examine estimates derived in section 4 of [17],
in order to keep track of the dependence on B. Using this result, in Sect. 3
we reduce the problem to studying the spectrum of a one-dimensional semi-
classical pseudo-differential operator. A complication is that the Weyl symbol
of this operator is given by matrix elements of another operator which depends
on parameters. This requires an analysis of the reduced operator which is the
subject of Sect. 4. We complete the proof of Theorem 1.3 in section 5, and
in Sect. 6 we obtain some inverse spectral results, assuming that we know
the spectrum of H̃(B) for all B. In the appendices, we review some technical
results that are needed in the analysis of the reduced operator.

2. The Main Lemma

In this section, we will show that, to leading order, the moments of the spec-
tral measures of the eigenvalue clusters can be computed by “averaging” the
perturbation; see Lemma 2.2 below.
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We follow closely the arguments in [17, Sect. 4]. For q = 0, 1, . . ., let
us denote by P̃q(B) the orthogonal projector with range the eigenspace of
the operator H̃0(B) with eigenvalue λq(B) = B

2 (2q + 1). We begin by the
following result which is actually Lemma 4.1 in [17], but with the dependence
on the intensity B of the magnetic field made explicit:

Lemma 2.1. Assume the potential V satisfies condition (1.4). Given q = 0, 1, 2,
. . ., consider the positively oriented circle Γq with center λq(B) and radius B

2 .
Then, for all z ∈ Γq and any integer � > 1, � > 1/(σ − 1), we have

sup
z∈Γq

‖ |V |1/2R̃0(z;B)|V |1/2 ‖� = B
−�+1

2� O(q
−�+1

2� log q), (2.1)

where R̃0(z;B) denotes the resolvent operator (H̃0(B)− z)−1and ‖ · ‖� denotes
the norm in the Schatten ideal on L2(R2).

Proof. First, we write

R̃0(z;B) =
∞∑

k=0

P̃k(B)
λk(B) − z

. (2.2)

From part (ii) of Theorem 1.6 in [17], we know that for � > 1(σ − 1) and
B0 > 0 there exists C = C(B0, �) such that

sup
q≥0

sup
B≥B0

λq(B)(�−1)/(2�) B−1 ‖P̃q(B)V P̃q(B)‖� ≤ C sup
x∈R2

(
1 + |x|2

)σ/2 |V (x)|.

(2.3)
Thus, for any integer k ≥ 0, we have ‖ |V |1/2P̃k(B)|V |1/2 ‖� =
CBλk(B)−(�−1)/(2�). In the last equation and in the sequel, we denote dif-
ferent constants whose values are not relevant for our purposes by the same
letter C. Defining ν ≡ (� − 1)/(2�), we obtain:

‖ |V |1/2R̃0(z;B)|V |1/2 ‖� ≤ CB
∞∑

k=0

λk(B)−ν

|λk(B) − z|

≤ CB−ν
∞∑

k=0

(k + 1)−ν

| (2k + 1) − [(2q + 1) + exp(ıθ)] |

≤ CB−ν

⎡

⎣
q−1∑

k=0

(k + 1)−ν

a − 2(k + 1)
+ (q + 1)−ν +

∞∑

k=q+1

(k + 1)−ν

2(k + 1) − c

⎤

⎦ , (2.4)

where a = 2q + 1, c = 2q + 3, z = B
2 (2q + 1) + B

2 exp(ıθ), with θ ∈ [0, 2π].

Let f(x) = (x+1)−ν

a−2(x+1) , x ∈ [0, q − 1]. Note that f(x) has a minimum at x0 =
(ν(a − 2) − 2)/(2(ν + 1)). Since 1/4 ≤ ν < 1/2, then we have

q−1∑

k=0

(k + 1)−ν

a − 2(k + 1)
≤ f(0) + f(q − 1) +

∫ q−1

0

f(x)dx

= O(q−1) + O(q−ν) +
∫ q−1

0

f(x)dx = O(q−ν) +
∫ q−1

0

f(x)dx. (2.5)
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The integral in the last equation can be estimated as follows:
∫ q−1

0
f(x)dx ≤ 1

a − 2(x0 + 1)

∫ x0

0
(x + 1)−νdx + (x0 + 1)−ν

∫ q−1

x0

1

a − 2(x + 1)
dx

= O(q−1)O(q−ν+1) + O(q−ν)O(log(q)) = O(q−ν)O(log(q)),

(2.6)

where we have used that x0 = O(q). Thus, the first sum in (2.4) is O(q−ν)O(log(q)).
Now, let g(x) = (x+1)−ν

2(x+1)−c , x ∈ [q+1,∞). Since g is a decreasing function,
∞∑

k=q+1

(k + 1)−ν

2(k + 1) − c
≤ g(q + 1) +

∫ ∞

q+1

g(x)dx = O(q−ν) +
∫ ∞

q+2

y−ν

2y − c
dy

= O(q−ν) +
1
2

( c

2

)−ν
∫ ∞

2q+4
2q+3

w−ν

w − 1
dw

= O(q−ν) +
1
2

( c

2

)−ν
[∫ 2

2q+4
2q+3

w−ν

w − 1
dw +

∫ ∞

2

w−ν

w − 1
dw

]

≤ O(q−ν) +
1
2

( c

2

)−ν
[∫ 2

2q+4
2q+3

1
w − 1

dw + C̃]

]

= O(q−ν) +
1
2

( c

2

)−ν

O(log(q)) = O(q−ν log(q)), (2.7)

where C̃ is the constant
∫∞
2

w−ν

w−1dw. This concludes the proof.

�
Now, we are ready to establish a crucial “averaging lemma,” which will

allow us to compute asymptotically the moments of the eigenvalue clusters of
the operator H(�).

For n = 0, 1, . . ., denote by Pn = Pn(�) the orthogonal projector with
range the eigenspace of the operator H0(�) with eigenvalue E = �(2n+1). We
have the following:

Lemma 2.2. Fix E > 0, and let QE,� denote the projector of H(�) associated
with its cluster of eigenvalues in the interval (E − h , E + �) . Then, for each
� > 1/(σ − 1) we have

Tr
[
(H(�) − EI)�

QE,�

]
= �

2� Tr
[
( Pn(�) V Pn(�) )�

]
+ o(�2�−1), (2.8)

as � → 0 and n → ∞ in such a way that �(2n + 1) = E.

Remark 2.3. As we will see below, (2.15), Tr
[
( Pn(�) V Pn(�) )�

]
= O(�−1),

so the remainder term in (2.8) is indeed smaller than the first term.

Remark 2.4. It is not hard to check that, in the context of the previous lemma,
for all sufficiently large n the left-hand side of (2.8) equals

Tr
[
(H(�) − EI)�

QE,�

]
=
∑

j

τ �
n,j . (2.9)
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Proof. The proof follows the corresponding proof of Lemma 1.5 in reference
[17], but using the estimate provided by Lemma 2.1. Throughout the proof,
we will assume the following identities:

B =
2
�

and � = E/(2n + 1). (2.10)

Let us denote by R(η; �) = (H(�) − ηI)−1 the resolvent operator associ-
ated with the operator H(�) at the point η ∈ C, whenever it is well defined.

If CE denotes the positively oriented circle with center E and radius �, we
can write:

(H(�) − EI)�
QE,� =

−1
2πı

∫

CE
(η − E)�

R(η; �) dη. (2.11)

Keeping in mind (2.10), notice that

R(η; �) = �
−2R̃ (z;B) , R̃(z;B) := (H̃(B) − zI)−1 (2.12)

provided

z = λn (B) +
B

2
exp(ıθ).

Therefore, Eq. (2.11) can be written as

(H(�) − EI)�
QE,� =

−�
2�

2πı

∫

Γn

(z − λn (B))�
R̃ (z,B) dz, (2.13)

where Γn denotes the positively oriented circle with center λn (B) and radius
B/2.

Since R̃ (z,B) = R̃0 (z,B)
[
I + V R̃0 (z,B)

]−1

and ‖V R̃0 (z,B) ‖ ≤ 2 ×
‖V ‖/B < 1 (taking n sufficiently large), then we have the following series
expansion convergent in the operator norm:

(H(�) − EI)�
QE,� = −�

2�
∞∑

j=0

1
2πı

∫

Γn

(z − λn (B))�
R̃0 (z,B)

×
(
V R̃0 (z,B)

)j

dz. (2.14)

For j < �, the integrand is analytic which implies that the series in Eq. (2.14)
actually goes from j = � to infinity. Using Eq. (2.2), we can see that the j = �

term is equal to
(
P̃n(B)V P̃k(B)

)�

= ( Pn(�) V Pn(�) )� where we are using

that P̃n(B) = Pn(�) are actually the same operator, always assuming (2.10).
From Eq. (2.3), we have that ‖Pn(�) V Pn(�)‖� = O(�−1/�) which in turn
implies by using the Hölder inequality with 1

� + 1
� + . . . + 1

� = 1 (� terms)
∥∥∥( Pn(�) V Pn(�) )�

∥∥∥
1

= O(�−1). (2.15)

The series
∑∞

j=�+1
1

2πı

∫
Γn

(z − λn (B))�
R̃0 (z,B)

(
V R̃0 (z,B)

)j

dz has
been studied in section 4.3 of reference [17] where, in particular, it is shown
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that such a series is convergent in the trace norm. Thus, (H(�) − EI)�
QE,� is

a trace class operator and the following expansion holds:

Tr
[
(H(�) − EI)�

1(E−� , E+�)(H(�))
]

= �
2� Tr

[
( Pn(�) V Pn(�) )�

]

+
��2�

2πı

∞∑

j=�+1

(−1)j

j

∫

Γ

(z − λn (B))�−1 Tr
[(

V R̃0 (z,B)
)j
]

dz,

(2.16)

where we have used integration by parts.
As in reference [17], let us write V = |V |1/2sign(V )|V |1/2. Then, we have

for j ≥ � + 1:
∣∣∣∣Tr
[(

V R̃0(z,B)]
)j
]∣∣∣∣ =

∣∣∣∣Tr
[(

sign(V )|V |1/2R̃0(z,B)|V |1/2
)j
]∣∣∣∣

≤
∥
∥∥∥
(
sign(V )|V |1/2R̃0(z,B)|V |1/2

)j
∥
∥∥∥

1

≤
∥
∥∥sign(V )|V |1/2R̃0(z,B)|V |1/2

∥
∥∥

j

j

≤
∥∥
∥|V |1/2R̃0(z,B)|V |1/2

∥∥
∥

j

j
≤
∥∥
∥|V |1/2R̃0(z,B)|V |1/2

∥∥
∥

j

�+1
,

(2.17)

where we have used the Hölder inequality.
Using the last inequality and Lemma 2.1 with B = 2

�
and q = n, we can

show that the series on the right-hand side of Eq. (2.16) can be estimated by

C1�
2�

∞∑

j=�+1

�
1−�
(
C2�

�
�+1 log(�−1)

)j

�
−1

≤ C1�
�
(
C2�

�
�+1 log(�−1)

)�+1 ∞∑

j=0

(
C2�

�
�+1 log(�−1)

)j

≤ C1S�
2�−1

(
C2�

1
(�+1) log(�−1)

)�+1

= o(�2�−1), as � → 0,

(2.18)

where S denotes the infinite sum
∑∞

j=0

(
C2�

�
�+1 log(�−1)

)j

which is uniformly

bounded taking � sufficiently small and �
1

(�+1) log(�−1) = o(1) as � → 0.
Equation (2.8) follows.

�

3. Reduction to a One-Dimensional Pseudo-Differential
Operator

As we will see in this section, the analysis of the asymptotics of the eigenvalue
clusters in the regime that we are interested in amounts to analyzing the
spectrum of an �-pseudo-differential operator on the real line.
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3.1. A Preliminary Rotation

We begin by conjugating the unperturbed operator H0 by a suitable unitary
operator that separates variables and converts H0 into a one-dimensional har-
monic oscillator tensored with the identity operator on L2(R).

Proposition 3.1. Let U : L2(R2) → L2(R2) be a metaplectic operator quan-
tizing the linear canonical transformation T : T ∗

R
2 → T ∗

R
2 such that, if

Xj = xj ◦ T , Pj = pj ◦ T , j = 1, 2 then
{

P1 = 1√
2
(p1 + x2), X1 = 1√

2
(x1 − p2),

P2 = 1√
2
(p2 + x1), X2 = 1√

2
(x2 − p1).

(3.1)

Then

U−1 ◦ H0 ◦ U = −�
2 ∂2

∂x2
1

+ x2
1 =: H1. (3.2)

Proof. It is known that for metaplectic operators the Egorov theorem is exact:
For any symbol a : T ∗

R
2 → C, if OpW (a) denotes Weyl quantization of a,

U−1 ◦ OpW (a) ◦ U = OpW (a ◦ T ). (3.3)

Therefore, the full symbol of U−1 ◦ H0 ◦ U is just P 2
1 + X2

1 .

�
It is now clear that the spectrum of H0, which is to say, the spectrum of

H1, consists of the eigenvalues �(2n+1), n = 0, 1, . . . with infinite multiplicity.
Let us denote by

{en(x1), n = 0, . . .}
an orthonormal eigenbasis of the one-dimensional quantum harmonic oscillator

Z := −�
2 ∂2

∂x2
1

+ x2
1. (3.4)

Then, the n-th eigenspace of H1 is the infinite-dimensional space

Ln = {en(x1)f(x2) ; f ∈ L2(R)}. (3.5)

Let us now take V : R
2 → R to be Schwartz. We will denote by

K := U−1 ◦ OpW (V ) ◦ U = OpW (V ◦ T ) (3.6)

the conjugate by U of the operator of multiplication by V . On the right-hand
side, we are abusing the notation and denoting again by V the pull-back of V
to T ∗

R
2. Partially inverting (3.1), one has

x1 =
1√
2
(X1 + P2), x2 =

1√
2
(X2 + P1), (3.7)

and therefore, the function W := V ◦ T is

W (X,P ) := (V ◦ T ) (X,P ) = V

(
1√
2
(X1 + P2),

1√
2
(X2 + P1)

)
. (3.8)
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The Schwartz kernel of the operator K is

K(X, Y ) =
1

(2π�)2

∫∫
ei�−1(X−Y )·P V

(
1

2
√
2
(X1 + Y1 + 2P2, X2 + Y2 + 2P1)

)
dP1 dP2,

(3.9)
and

U−1 ◦
(
H0 + �

2V
)

◦ U = H1 + �
2K. (3.10)

This is the operator we will analyze.

3.2. Averaging

For ease of notation, we will re-name the (X,P ) variables back to (x, p).
Let us consider the unitary 2π-periodic one-parameter group of operators

V(t) := e−itH1/�. (3.11)

For each t, this is a metaplectic operator associated with the graph of the
linear canonical transformation

φt : T ∗
R

2 → T ∗
R

2 φt(x1, p1 ; x2, p2) = (ht(x1, p1) ; x2, p2), (3.12)

where ht : T ∗
R → T ∗

R is the one-dimensional harmonic oscillator of period π
(the Hamilton flow of x2

1 + p2
1).

Let us define

Kave :=
1
π

∫ π

0

V(−t)K V(t) dt. (3.13)

For each n = 1, 2, . . . denote by Ln the eigenspace of H1 of eigenvalue En =
�(2n + 1), and let

Πn : L2(R2) → Ln

be the orthogonal projector. Then, it is not hard to verify that [Kave,Πn] = 0
and that

Πn Kave Πn = Πn K Πn. (3.14)

Therefore,
∀� = 1, 2, . . . (ΠnKΠn)� = Πn [Kave]� Πn. (3.15)

Lemma 3.2. Kave is a pseudo-differential operator of order zero. In fact

Kave = OpW (W ave) (3.16)

where W ave is the function

W ave(x, p) =
1
π

∫ π

0

W (φt(x, p)) dt. (3.17)

Proof. This is once again due to the fact that V(t) is a metaplectic operator
for each t, and for such operators Egorov’s theorem is exact. �

For future reference, we compute W ave in terms of V when x1 = 0. This
determines W ave, by φt invariance. A trajectory of the flow φt is

x1(t) = sin(2t)p1(0), p1(t) = cos(2t)p1(0).
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The energy of the trajectory is E = p1(0)2. Then,

W ave(x1 = 0, x2, p1(0), p2) =
1
π

∫ π

0

V (u(t), v(t)) dt,

where

u(t) =
1√
2

(sin(2t)p1(0) + p2) , v(t) =
1√
2

(x2 + cos(2t)p1(0))

is a parametrization of the circle

Cx2,p2,E :=

{

(u, v) ;
(

u − p2√
2

)2

+
(

v − x2√
2

)2

=
1
2
E

}

. (3.18)

We see that it is then natural to regard W ave as a circular Radon trans-
form of V . More precisely, let us define

∀ξ ∈ R
2, E > 0 Ṽ (ξ;E) :=

1
2π

∫

S1
V
(
ξ̌ +

√
E/2 ω

)
ds(ω), (3.19)

where s is arc length and ξ̌ = 1√
2
(p2, x2) if ξ = (x2, p2). Then,

W ave(x, p) = Ṽ (x2, p2;x2
1 + p2

1). (3.20)

We now fix E > 0, and let � tend to zero along the sequence such that

En = � (2n + 1) = E , n = 1, 2, . . . . (3.21)

By Lemma 2.2, the moments of the shifted eigenvalue clusters around E of
H1 + �

2K are, to leading order, the same as the moments of the eigenvalues
of the operator

Πn Kave|Ln
: Ln → Ln.

Lemma 3.3. For each n = 1, 2, . . . there is an operator Tn : L2(R) → L2(R)
such that

∀f ∈ L2(R) Πn Kave(en ⊗ f) = en ⊗ Tn(f). (3.22)

It is clear that

Tn(f)(x2) =
∫

en(x1)Kave(en ⊗ f)(x1, x2) dx1. (3.23)

Note that we also have that Πn K(en ⊗ f) = en ⊗ Tn(f), by (3.14).

Definition 3.4. We call the sequence of operators (Tn) the reduction in K at
level E .

We emphasize that the interest of the operator Tn is that, by the previous
considerations and by Lemma 2.2,

Tr
[
(H(�) − EI)�

QE,�

]
= �

2� Tr(T �
n) + o(�2�−1), � > 1/(σ − 1), (3.24)

as � → 0 along the values (3.21), where we have used that

Tr (PnV Pn)� = Tr(Tn)� (3.25)

for � ≥ 1.
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4. Analysis of the Reduced Operator

Our goal in this section is to show that, for our purposes, Tn can be replaced
by a semi-classical pseudo-differential operator whose symbol is Ṽ (x2, p2; E).

From now on, the parameters � and n are assumed to be related by the
condition (3.21). Throughout this section, we will also assume that V is a
Schwartz function.

4.1. The Weyl Symbol of Tn

Since Kave is the Weyl quantization of the function (3.20), namely

W ave(x, p) = Ṽ (x2, p2;x2
1 + p2

1),

one has

Kave(en ⊗ f)(x1, x2)

=
1

(2π�)2

∫
ei�−1(x−y)p Ṽ

(
x2 + y2

2
, p2;

(
x1 + y1

2

)2

+ p2
1

)

× en(y1) f(y2) dy dp.

Therefore, after changing the order of integration, we can rewrite (3.23) as

Tn(f)(x2) =
1

(2π�)

∫
ei�−1(x2−y2)p2 Φ

(
x2 + y2

2
, p2, n

)
f(y2) dy2 dp2, (4.1)

where

Φ(x2, p2, n) =
1

(2π�)

∫
ei�−1(x1−y1)p1 Ṽ

(

x2, p2;
(

x1 + y1

2

)2

+p2
1

)

en(x1) en(y1) dy1 dp1 dx1. (4.2)

From this, we immediately obtain:

Lemma 4.1. Let, for each ξ := (x2, p2), Bξ be the operator which is the Weyl
quantization of the (�-independent) function

bξ(x1, p1) := Ṽ
(
ξ;x2

1 + p2
1

)
. (4.3)

Then, the Weyl symbol of Tn is

Φ(ξ, n) = 〈Bξ(en), en〉. (4.4)

Remark 4.2. The function bξ(x1, p1) is Schwartz as a function of the variables
(x1, p1), with estimates uniform as ξ ranges on compact sets.

As a function of (x1, p1), the function bξ(x1, p1) is radial, that is, it is
a function of x2

1 + p2
1. We will make use of the following result on the Weyl

quantization of a radial function on the plane. This result is in the literature,
but for completeness we include a proof in Appendix A (see also Theorem 24.5
in [21]).
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Proposition 4.3 ([3, Proposition 4.1]). Let a ∈ C∞(R2) be a (Schwartz) radial
function, that is

a(x, p) = ρ(r), r =
√

x2 + p2,

and let A := aW (x, �D) be its Weyl quantization. Then, ∀n en is an eigen-
function of A with eigenvalue

λn =
(−1)n

�

∫ ∞

0

ρ(
√

u)e−u/� Ln(2u/�) du, (4.5)

where Ln is the normalized n-th Laguerre polynomial.

From this, we get the following explicit expression for the Weyl symbol
of Tn:

Φ(ξ, n) =
(−1)n

�

∫ ∞

0

Ṽ (ξ, u)e−u/�Ln(2u/�)du. (4.6)

Proposition 4.4. For each � (and therefore n), the function Φ is Schwartz if
V is.

Proof. In view of (4.6), since n and � are fixed, it suffices to prove that the
function

f(ξ) =
∫ ∞

0

Ṽ (ξ, u)e−u/�umdu

is Schwartz for any positive power m. Split the integral defining f in the form
f(ξ) =

∫ |ξ|/2

0
Ṽ (ξ, u)e−u/�umdu +

∫∞
|ξ|/2

Ṽ (ξ, u)e−u/�umdu.

Since V is Schwartz, then |V (y)| � 〈y〉−M for any M . Therefore, by the
definition of the Radon transform (3.19),

∣∣∣∣∣

∫ |ξ|/2

0

Ṽ (ξ, u)e−u/�umdu

∣∣∣∣∣
� 〈ξ〉−M .

On the other hand∣∣
∣∣∣

∫ ∞

|ξ|/2

Ṽ (ξ, u)e−u/�umdu

∣∣
∣∣∣
du ≤ ‖V ‖∞

∫ ∞

|ξ|/2

e−u/�umdu = O(〈ξ〉−∞).

Since ∂ξṼ (ξ, u) = ∂̃ξV (ξ, u), we can repeat the argument on all derivatives of
Ṽ and conclude that Φ(·, n) ∈ S.

�

4.2. Localization

In this section, we cut Φ (and therefore T ) into two pieces, and show that one
can neglect one of the pieces. Let M > E and χ ∈ C∞

0 (R) such that χ ≡ 1 on
[0,M ] and χ(t) ≡ 0 for t > 2M , and for each ξ ∈ R

2 let

fξ(t) := Ṽ (ξ; t)χ(t). (4.7)

Let us now define
Φ1(ξ, n) = 〈Fξ(en), en〉, (4.8)
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where Fξ is the Weyl quantization of the function

(x1, p1) �→ fξ(x2
1 + p2

1), (4.9)

and let
Φ2(ξ, n) = Φ(ξ, n) − Φ1(ξ, n). (4.10)

We denote by T
(i)
n the Weyl quantization of Φi(·, n), i = 1, 2. These functions

are Schwartz for each n (by the same proof that Φ is Schwartz), and Tn =
T

(1)
n + T

(2)
n .

Next, we show that T
(2)
n is negligible.

Theorem 4.5. Let V ∈ S. Then, there exists M > E such that if the support
of the cut-off χ above satisfies supp(χ) ⊂ [0, 2M ], then ‖T

(2)
n ‖L1 = O(�∞)

provided �(2n + 1) = E.

Proof. Using (4.6),

Φ2(ξ, n) =
(−1)n

�

∫ ∞

0

Ṽ (ξ, u)(1 − χ(u))e−u/�Ln(2u/�)du.

We want to apply the known trace-norm estimate

‖OpW (Φ2)‖L1 ≤ C

�
max
|β|≤3

∫

R2
|∂β

ξ Φ2(ξ)|dξ

(see [4] chapter 2, Theorem 5 ).
First notice that, from the definition of the Radon transform (3.19),

∂β
ξ Ṽ (ξ, u) = 2−|β|/2 ˜(∂βT V )(ξ, u),

where βT = (β2, β1) if β = (β1, β2). Therefore,
∫

R2

∣∣∣∂β
ξ Ṽ (ξ, u)

∣∣∣ dξ = 2−|β|/2 ‖∂βT

V ‖L1

for all u > 0. Since supp(χ) ⊂ [0,M ], it follows that
∫

R2
|∂β

ξ Φ2(ξ)|dξ ≤ 1
2|β|/2�

‖∂βT

V ‖L1

∫ ∞

M

e−u/�|Ln(2u/�)|du. (4.11)

Next, we will use the representation of the Laguerre polynomials as a
residue, namely

Ln(t) =
1

2πi

∮

|z|=r

e−t z
1−z

(1 − z)zn
dz,

which holds for 0 < r < 1. Since � z
1−z = r cos(θ)−r2

|1−z|2 where z = reiθ,
∫ ∞

M

e−u/�|Ln(2u/�)|du ≤ r

2π(1 − r)rn

∫ ∞

M

e−u/�

∫ 2π

0

e
− 2u

�

r cos(θ)−r2

(1−r)2 dθ du

≤ r

(1 − r)rn

∫ ∞

M

e−u/2�du,

if r is small enough.
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Now, since �(2n + 1) = E

e−u/2�/rn = r1/2e−u/2�+log(1/r) E
2� � e−u/4�

provided u ≥ M = −2 log(r)E > E . Thus, for this choice of M ,
∫ ∞

M

e−u/�|Ln(2u/�)|du = O(�∞)

and the proof is complete.

�

4.3. Estimates on Φ1

This section is devoted to the proof of the following

Theorem 4.6. As � → 0 along the sequence (3.21),

Φ1(ξ, n) = Ṽ (ξ, E) + �
2R(ξ, �), (4.12)

where R is a Schwartz function of ξ which is OS(1), meaning that

∀α, β, ∃C, �0 > 0 such that ∀� ∈ (0, �0) sup
ξ∈R2

∣∣∣ξα∂β
ξ R(ξ, �)

∣∣∣ ≤ C.

(4.13)

Proof. Recall that Φ1(ξ, n) is defined by (4.8), where the operator Fξ is the
Weyl quantization of the radial function fξ(x2

1 + p2
1). Consider the first-order

Taylor expansion of fξ(t) at t = E

fξ(t) = Ṽ (ξ, E) + (t − E)f ′
ξ(E) + (t − E)2Rξ(t)

where Rξ is Schwartz, as follows from the explicit formula (see Appendix 6)

Rξ(t) =
∫ 1

0

∫ 1

0

uf ′′
ξ (uv(t − E) + E) du dv. (4.14)

Denote the Weyl quantization of a function a as aW , and let

I = x2
1 + p2

1.

Since 〈(I − E)W (en), en〉 = 0, (4.12) holds with

R(ξ, �) =
1
�2

〈
[
(I − E)2Rξ(I)

]W
(en), en〉. (4.15)

Consider now the triple Moyal product with remainder

(I − E)#(I − E)#Rξ(I) = (I − E)2Rξ(I) + �
2Sξ(I, �).

Since 〈[(I − E)#(I − E)#Rξ(I)]W (en), en〉 = 0, we obtain that (4.15) equals

R(ξ, �) = −〈Sξ(I, �)W (en), en〉.
Claim: Every partial derivative ∂α

(x1,p1)
of Sξ(I, �) is O(〈ξ〉−N ) for any

N , uniformly in ξ and � ≤ �0.
To see this, we use the following fact (see in [14] Theorem 2.7.4 and its

proof): If a ∈ S(m) and b ∈ S(m′), then the Moyal product a#b is in S(m+m′)
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and its asymptotic expansion is uniform in S(m + m′) (here f ∈ S(m) if and
only if ‖〈ξ〉−m∂α(ξ)‖ ≤ Cα for every α). More precisely, if

a#b ∼
∑

j

�
jcj ,

then for every j.

〈x〉−(m+m′) |∂αcj(x)| ≤ Cj,α.

Cj,α depends only on

sup
x∈Rn,|β|≤M

〈x〉−m ∣∣∂βa(x)
∣∣ and sup

x∈Rn,|β|≤M

〈x〉−m′ ∣∣∂βb(x)
∣∣ ,

where M = M(α, j). As a consequence of the stationary phase method, the
same is true for each remainder of the asymptotic expansion of a#b. The claim
follows by applying this argument to combinations of I − E and Rξ(I) and
using that for every α

|∂α
(x1,p1)

Rξ(I)| ≤ Cα,N

〈ξ〉N
.

Next, we use the estimate ([4, Ch. 2, Th. 4])

‖aW ‖ � sup
|α|≤5

‖∂αa‖∞ (4.16)

to conclude that

|R(ξ, �)| ≤ CN 〈ξ〉−N .

Finally, to estimate the derivatives ∂αR(ξ, �) we simply notice that ∂αR(ξ, �)
replaces R(ξ, �) when we study the Landau problem with the potential ∂αV .
With the same calculations, we conclude that

|∂αR(ξ, �)| ≤ CN,α〈ξ〉−N ,

that is, R(·, �) = O(1) in S(R2) for � ≤ �0.

�

Remark 4.7. Using again that (see [4, Ch. 2, Th.5])

‖aW ‖L1 � 1
�

∑

|γ|≤5

‖∂γa‖L1(R2),

we have by Theorem 4.6 and (4.16) that

‖R(·, �)W ‖L1 ≤ C

�
and ‖R(·, �)W ‖ ≤ C (4.17)

for � ≤ �0, and also

‖T (1)
n ‖L1 ≤ C

�
and ‖T (1)

n ‖ ≤ C. (4.18)

It follows that
‖Tn‖L1 ≤ C

�
, ‖Tn‖ ≤ C. (4.19)
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The previous Theorem and the symbol calculus imply:

Corollary 4.8. For any � = 1, 2, . . ., as n → ∞ and with �(2n + 1) = E,

Tr
(
T (1)

n

)�

=
1

2π�

∫

R2
Ṽ (ξ, E)� dξ + O(1). (4.20)

Proof.
(
T

(1)
n

)�

=
(
Ṽ (·, E)W + �

2R(·, �)W
)�

, hence

Tr
(
T (1)

n

)�

= Tr
[(

Ṽ (·, E)W
)�
]

+ �
2 Tr G�, (4.21)

where G� is a finite sum of terms each consisting of the product of a non-
negative power of � and an operator of the form S1S2 · · · Sm, with Si ∈
{Ṽ (. . . , E)W ,R(·, �)W }. Using that

‖AB‖L1 ≤ ‖A‖‖B‖L1 , (4.22)

we conclude using (4.17) that

‖�
2 Tr G�‖L1 = O(�). (4.23)

Therefore, by the symbol calculus

Tr
(
T (1)

n

)�

= Tr
[(

Ṽ (·, E)W
)�
]

+ O(�) =
1

2π�

∫

R2
Ṽ (ξ, E)� dξ + O(1).

�

5. Proof of Theorem 1.2

We first establish a Szegő-type theorem which is interesting on its own and
where we consider the class of potentials V in the Banach space Xσ, σ > 1,
defined by

Xσ =
{
V : R

2 → R |V is continuous and ∃C > 0 s.t. |V (x)| 〈x〉σ ≤ C, x ∈ R
2
}

.

Following [17], we endow Xσ with the norm ‖V ‖Xσ
= sup {|V (x)| 〈x〉σ

,
x ∈ R

2
}
. Then, using such a Szegő-type theorem, we prove Theorem 1.2 using

the Weierstrass approximation theorem.

Theorem 5.1. Let σ > 1 and V ∈ Xσ. Then, for any integer � > 1/(σ − 1),
we have

lim
n→∞ 2π� Tr (PnV Pn)� =

∫

R2

(
Ṽ (x, p; E)

)�

dxdp, (5.1)

where � = E/(2n + 1), n = 0, 1, . . ..

Proof. We divide our proof into two parts.

Part A. We first prove the theorem for V a Schwartz function. In this case,
σ can be taken as any number greater than one, so we establish Eq. (5.1) for
any � ≥ 1. Then, by (3.25) we reduce our analysis to the study of Tr(Tn)�.

When � = 1, the result follows from Theorem 4.5 and (4.20). If � ≥ 2, we
have that (Tn)� = (T (1)

n )� +S where the operator S is a finite sum of operators
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of the form S1S2 · · · S�, with Si ∈ {T (1)
n , T

(2)
n } and where at least one factor

Si0 is equal to T
(2)
n . Hence, from Theorem 4.5,

|Tr(S1S2 · · · S�)| =

∣∣∣∣∣
∣
Tr

⎛

⎝
∏

i0≤i≤m

Si

∏

1≤j<i0

Sj

⎞

⎠

∣∣∣∣∣
∣

≤ C‖T (2)
n ‖/�

m = O(�∞)

for some power m > 0, where we have used several times (4.22).
We conclude that

� Tr (Tn)� = � Tr (T (1)
n )� + O(�∞), (5.2)

and from (4.20),

2π� Tr (Tn)� =
∫

R2

(
Ṽ (x, p;E)

)�

dxdp + O(�),

which implies Eq. (5.1) when V is a Schwartz function.

Part B. Our proof for the general case V ∈ Xσ, σ > 1, follows very closely the
strategy indicated in the corresponding proof in [17]. Namely, for � > 1/(σ−1)
fixed, we can always take 1 < σ′ < σ such that � > 1/(σ′ − 1). Then, by using
a continuity argument, we prove Eq. (5.1) for V actually in the closure X0

σ′ of
the subspace of Schwartz functions in Xσ′ (with respect to the norm ‖ · ‖Xσ′ ).
Finally, using that Xσ ⊂ X0

σ′ , we conclude our proof.
For � > 1/(σ − 1), consider the functions γ�, Δ�, δ�: Xσ′ → R defined as

follows:

γ�(V ) =
∫

R2

(
Ṽ (x, p; E)

)�

dxdp, V ∈ Xσ′ , (5.3)

Δ�(V ) = lim sup
n→∞

2π� Tr (PnV Pn)�
, V ∈ Xσ′ , (5.4)

δ�(V ) = lim inf
n→∞ 2π� Tr (PnV Pn)�

, V ∈ Xσ′ . (5.5)

The fact that the functions γ�, Δ�, δ� are well-defined is a consequence
of the following two estimates:

(a) For V ∈ Xσ′ , we have:
∣
∣∣Ṽ (x, p; E)

∣
∣∣ ≤ C(E)‖V ‖Xσ′

1
〈
(p, x)/

√
2
〉σ′ , (5.6)

where C(E) is a constant independent of V . Estimate (5.6) can be shown by
using Peetre′s inequality: for all x̃, ỹ ∈ R

n, we have 〈x̃〉 / 〈ỹ〉 ≤
√

2 〈x̃ − ỹ〉.
One can check that for any integer � satisfying � > 1/(σ′ − 1) the function

1/
〈
(p, x)/

√
2
〉�σ′

is in L1(R2), and therefore, γ� is well defined.
(b) Using inequality (2.3) with q = n, n = 1, 2, . . ., P̃n(B) = Pn, B = 2/�,

we have for V ∈ Xσ′ , � > 1/(σ′ − 1) that PnV Pn is in the Schatten class and

�
1/�‖PnV Pn‖� ≤ C(�)‖V ‖Xσ′ . (5.7)
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Thus, we have using Hölder’s inequality that
∣
∣∣� Tr (PnV Pn)�

∣
∣∣ ≤ C(�)‖V ‖�

Xσ′ , (5.8)

which implies that both Δ� and δ� are well-defined on Xσ′ .
Next, we want to study the continuity of γ� on Xσ′ . We use the following

identity, which is valid for both cases when Aj ∈ R and Aj is a bounded
operator with j = 1, 2:

A�
1 − A�

2 =
�−1∑

j=0

A�−j−1
1 (A1 − A2) Aj

2. (5.9)

Then, using (5.9) we have that for V1, V2 ∈ Xσ′ and � > 1/(σ − 1) :

|γ�(V2) − γ�(V1)|

≤
�−1∑

j=0

∫

(x,p)∈R2

∣∣∣Ṽ2(x, p; E)
∣∣∣
�−j−1 ∣∣∣Ṽ2(x, p; E) − Ṽ1(x, p; E)

∣∣∣
∣∣∣Ṽ1(x, p; E)

∣∣∣
j

dxdp

≤ C(E , �)max
{

‖V2‖�−1
Xσ′ , ‖V1‖�−1

Xσ′

}
‖V2 − V1‖Xσ′ , (5.10)

where we have used (5.6) and the fact 1/
〈
(p, x)/

√
2
〉�σ′

is in L1(R2). From
Eq. (5.10), we conclude the continuity of the function γ� on Xσ′ .

Using again (5.9), we have for V1, V2 ∈ Xσ′ and � > 1/(σ − 1) :
∣∣∣�
[
Tr (PnV2Pn)� − Tr (PnV1Pn)�

]∣∣∣

≤
�−1∑

j=0

�

∣∣∣Tr
[
(PnV2Pn)�−j−1

Pn(V2 − V1)Pn (PnV1Pn)j
]∣∣∣

≤
�−1∑

j=0

� ‖PnV2Pn ‖�−j−1
� ‖Pn(V2 − V1)Pn‖� ‖PnV1Pn ‖j

�

≤ C(�)max
{

‖V2‖�−1
Xσ′ , ‖V1‖�−1

Xσ′

}
‖V2 − V1‖Xσ′ , (5.11)

where we have used Hölder’s inequality in the third row and Eq. (5.7) in the
fourth one.

Now, take V in X0
σ′ . Thus, for ε > 0 given, there exists Vε a Schwartz

function such that ‖V − Vε‖Xσ′ < ε. Then,

|Δ�(V ) − Δ�(Vε)| =
∣∣∣∣lim sup

n→∞
� Tr (PnV Pn)� − lim

n→∞ � Tr (PnVεPn)�

∣∣∣∣

=
∣∣
∣∣lim sup

n→∞
�

[
Tr (PnV Pn)� − Tr (PnVεPn)�

]∣∣
∣∣

≤ C(�)max
{

‖V ‖�−1
Xσ′ , ‖Vε‖�−1

Xσ′

}
‖V

−Vε‖Xσ′ ≤ C(V, �)ε , (5.12)

where we have used lim supn→∞ � Tr (PnVεPn)� = limn→∞ � Tr (PnVεPn)�, and
Eq. (5.11). Equation (5.12) implies the continuity of Δ� on X0

σ′ .
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Similarly, we can show the continuity of δ� on X0
σ′ through the following

inequality:
|δ�(V ) − δ�(Vε)| ≤ C(V, �)ε. (5.13)

Since Δ�(Vε) = δ�(Vε) (a consequence of part (a) of this proof), then
using Eqs. (5.12) and (5.13), we conclude that limn→∞ � Tr (PnV Pn)� exists
and is equal to Δ�(V ) = δ�(V ).

Finally, using the continuity of Δ� on X0
σ′ and that for all Schwartz

functions Vε the equality Δ�(Vε) = δ�(Vε) = γ�(V ε) holds (use part (a) of our
proof), we conclude Eq. (5.1) for V ∈ X0

σ′ . Using Xσ ⊂ X0
σ′ , we conclude the

proof of Theorem 5.1 for V ∈ Xσ.

�
Combining this Theorem with (3.24), we can conclude that Theorem 1.2

is valid for polynomials:

Corollary 5.2. For any polynomial q : R → R, if p(t) = tβq(t), then

lim
q,B→∞
4q+2

B =E
B−1

∑

j

p(τq,j(B)) =
1
4π

∫

R2
p
(
Ṽ (x, p; E)

)
dxdp. (5.14)

Proof of Theorem 1.2: For n a given positive integer, we are taking � = E/(2n+
1). The spectrum of the corresponding operator H(�) = H0(�) + �

2V is the
set of eigenvalues λq,j := �(2q + 1) + �

2 τq,j q, j = 0, 1, . . .. Using basic
perturbation theory, one can show that the spectral shifts τq,j are uniformly
bounded: |τq,j | ≤ ‖V ‖∞ q, j = 0, 1, . . .. Since the support of the test function
ρ is bounded, we have that for all � sufficiently small (i.e. n large enough) the
eigenvalues (λq,j − E)/�

2 with q �= n lie outside of the support of ρ. Thus, for

� sufficiently small ρ
(

H(�)−E
�2

)
is trace-class if and only if ρ

(
H(�)−E

�2 QE,�

)
is

trace class, in which case Tr
(
ρ
(

H(�)−E
�2

))
= Tr

(
ρ
(

H(�)−E
�2 QE,�

))
.

Let K be the set K := supp(ρ)∪ [−‖V ‖∞, ‖V ‖∞] where supp(ρ) denotes
the support of the test function ρ.

Let ε > 0. Recall that the test function ρ is of the form ρ(t) = tβg(t) with
g continuous and β even. As a consequence of the Weierstrass approximation
theorem, there exist polynomials q± such that

∀t ∈ K q−(t) ≤ g(t) ≤ q+(t) and q+(t) − q−(t) ≤ ε. (5.15)

Then, since β is even,

4πB−1
∑

j

τβ
n,j q−(τn,j) ≤ 4πB−1

∑

j

ρ(τn,j) ≤ 4πB−1
∑

j

τβ
n,j q+(τn,j),

(5.16)
where we have omitted the B-dependence of the τn,j for convenience. In what
follows, we let B, q → ∞ in the desired manner. By Corollary 5.2,

lim 4πB−1
∑

j

τβ
n,j q±(τn,j) =

∫

R2
Ṽ βq±

(
Ṽ
)

dxdp,
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(omitting the variables in Ṽ for simplicity), and using (5.16) we obtain
∫

R2
Ṽ βq−

(
Ṽ
)

dxdp ≤ lim inf 4πB−1
∑

j

ρ(τn,j) (5.17)

≤ lim sup 4πB−1
∑

j

ρ(τn,j) ≤
∫

R2
Ṽ βq+

(
Ṽ
)

dxdp.

On the other hand,
∫

R2
Ṽ βq−

(
Ṽ
)

dxdp ≤
∫

R2
ρ
(
Ṽ
)

dxdp ≤
∫

R2
Ṽ βq+

(
Ṽ
)

dxdp

and ∫

R2
Ṽ βq+

(
Ṽ
)

dxdp −
∫

R2
Ṽ βq−

(
Ṽ
)

dxdp ≤ ε‖Ṽ β‖L1(R2).

Since ε > 0 was arbitrary, the theorem is proved. �

6. An Inverse Spectral Result

Let us assume, we know the spectrum of H̃0(B) + V with V ∈ S(R2), for all
B in a neighborhood of infinity. What can we say about V ? In this section, we
prove:

Theorem 6.1. If V and V ′ are two isospectral potentials (in the sense above)
in the Schwartz class, then ∀s ∈ R their Sobolev s-norms are equal:

‖V ‖s = ‖V ′‖s.

We will proceed as in [10] and use that, by Theorem 1.2, the spectral
data above determine the function

I(r) = (2π)2
∫

R2
Rr(V )2(y) dy (6.1)

for all r > 0, where Rr(V )(y) is the Radon transform of V , namely the integral
transform that averages V over the circle of radius r and center y (hence, in
the notation of Sect. 3, Ṽ (y, E) = R√

E/2
(V )(y̌), y̌ = 1√

2
(p, x) if y = (x, p)).

Lemma 6.2. Let J0 denote the zeroth Bessel function. Then,

Rr(V )(y) =
1

(2π)2

∫
eiy·ξ J0(r|ξ|) V̂ (ξ) dξ (6.2)

where V̂ is the Fourier transform of V .

Proof. By the Fourier inversion formula, it suffices to compute

Rr(e−ix·ξ)(y) =
1
2π

∫ 2π

0

exp (−i[ξ1(y1 + r cos(θ)) + ξ2(y2 + r sin(θ))]) dθ

=
e−iy·ξ

2π

∫ 2π

0

exp (−ir[ξ1 cos(θ) + ξ2 sin(θ)]) dθ.
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Let us now introduce polar coordinates for ξ,

ξ = |ξ|u, u = 〈sin(φ) , cos(φ)〉.
Then,

ξ1 cos(θ) + ξ2 sin(θ) = |ξ| sin(θ + φ),

and therefore,

Rr(e−ix·ξ)(y) =
e−iy·ξ

2π

∫ 2π

0

e−ir|ξ| sin(θ+φ) dθ =
e−iy·ξ

2π

∫ 2π

0

e−ir|ξ| sin(θ) dθ.

(6.3)
However, it is known that

J0(s) =
1
2π

∫ 2π

0

e−is sin(θ) dθ,

so we obtain
Rr(e−ix·ξ)(y) = e−iy·ξ J0(r|ξ|). (6.4)

�
Using Parseval’s theorem, we immediately obtain:

Corollary 6.3.

I(r) =
∫

R2
J0(r|ξ|)2

∣∣∣V̂ (ξ)
∣∣∣
2

dξ. (6.5)

Let us now introduce polar coordinates (ρ, φ) on the ξ plane, and let us
define

W (ρ) := ρ2

∫ 2π

0

∣∣∣V̂ (ρ−1 cos(φ), ρ−1 sin(φ))
∣∣∣
2

dφ (6.6)

and

K(s) = J0(s)2.

Then, (6.5) reads

I(r) =
∫ ∞

0

K(rρ)W (ρ−1)
dρ

ρ
. (6.7)

In other words, I(r) is the convolution of K and W in the multiplicative group
(R+,×).

Corollary 6.4. For each ρ > 0, the integral
∫ 2π

0

∣∣∣V̂ (ρ cos(φ), ρ sin(φ))
∣∣∣
2

dφ (6.8)

of |V̂ |2 over the circle centered at the origin and of radius ρ is a spectral
invariant of V .

Proof. By (6.7), the Mellin transform of I is the product of the Mellin trans-
forms of K and W . Since K and its Mellin transform are analytic, and the
Mellin transform of W is continuous, this determines the Mellin transform of
W , and hence determines W .
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�
Theorem 6.1 follows from this, as

‖V ‖2
s =

∫

R2
(1 + |ξ|2)s/2|V̂ (ξ)|2dξ.
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A. The Weyl Quantization of Radial Functions

For the benefit of the reader, we include here some results on the Weyl quanti-
zation of radial functions that shed light on the material in Sect. 4. The result
in Eq. (A.13) has been originally shown in [3] [Proposition 4.1]; we include a
derivation here for completeness. See also [21], §4.

If a(x, p) is a symbol in R
2n, its Weyl quantization is the operator aW (x,

�D) with kernel

Ka(x, y) =
1

(2π�)n

∫
ei�−1(x−y)·pa

(
x + y

2
, p

)
dp.

The corresponding bilinear form Qa(f, g) = 〈aW (x, �D)(f), g〉 is

∀f, g ∈ S(Rn) Qa(f, g) =
1

(2π�)n

∫∫∫
ei�−1(x−y)·pa

(
x + y

2
, p

)

×f(y) g(x)dp dx dy. (A.1)

It is not hard to see that

Qa(f, g) =
∫∫

a(u, p)G(f, g)(u, p) du dp, (A.2)

where
G(f, g)(u, p) =

1
(π�)n

∫
e2i�−1v·pf(u − v) g(u + v) dv. (A.3)

Let a ∈ S(R2) be a radial function, that is

a(x, p) = ρ(r), r =
√

x2 + p2.

To simplify notation let A := aW (x, �D). By the equivariance of Weyl quan-
tization with respect to the action of the symplectic (metaplectic) group, A
commutes with the quantum harmonic oscillator Z = −�

2d2/dx2 +x2 and, by
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simplicity of the eigenvalues of the latter, the eigenfunctions en of Z are also
eigenfunctions of A. Our goal is to compute the corresponding eigenvalues. We
follow the argument in [5].

One can show (starting with section 13.1 of [1], for example) that if one
defines the functions gn(x) by the generating function

π−1/4 e−x2/2+xt−t2/4 =
∞∑

n=0

tn√
2nn!

gn(x) (A.4)

then the gn are orthonormal in L2(R) and satisfy

−g′′
n(x) + x2gn(x) = (2n + 1) gn(x).

For our problem, we need the eigenfunctions of Z, so we need to re-scale the
variable x. Define

en(x) := �
−1/4 gn(x/

√
�). (A.5)

Then, for each �, en is L2-normalized and

�
1/4
[
−�

2 d2

dx2 en(x) + x2en(x)
]

= −� g′′
n(x/

√
�) + �

(
x
�

)2
gn(x/

√
�)

= �(2n + 1)gn(x/
√

�).
(A.6)

In other words, the normalized eigenfunctions en are given by the generating
function

Gt(x) := (π�)−1/4 e−x2/2�+xt/
√

�−t2/4 =
∞∑

n=0

tn√
2nn!

en(x, �), (A.7)

where the notation emphasizes that en also depends on �.
We now use this generating function to compute the eigenvalues of A.

Note that

Qa(Gt, Gt) = 〈A(Gt), Gt〉 =
∞∑

n=0

t2n

2nn!
λn,

where λn = 〈A(en), en〉 is the eigenvalue of A corresponding to en. Computing
using (A.2) and (A.3):

G(Gt, Gt)(x, p) =
e−t2/2

(π�)3/2

∫
e2�

−1ivp e−x2/� e−v2/� e2xt/
√

� dv

=
e−t2/2−x2/�+2xt/

√
�

(π�)3/2

∫
e2�

−1ivp e−v2/� dv

=
1
π�

e−t2/2−(x2+p2)/�+2xt/
√

�,

and therefore,
∞∑

n=0

t2n

2nn!
λn =

e−t2/2

π�

∫

R2
a(x, p) e−(x2+p2)/�+2xt/

√
� dxdp. (A.8)
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Next, we use that a is radial and integrate in polar coordinates. The key
integral is

∫ 2π

0

e2tr cos(θ)/
√

� dθ = 2πI0(2tr/
√

�), (A.9)

where I0 is the modified Bessel function of order zero. At this point, we can
conclude that

∞∑

n=0

t2n

2nn!
λn =

2e−t2/2

�

∫ ∞

0

ρ(r)e−r2/� I0(2tr/
√

�) rdr. (A.10)

Now, it is known that, for any u ∈ R,

I0(s) = eu
∞∑

k=0

(−u)k

k!
Lk(s2/4u), (A.11)

where the Lk are the Laguerre polynomials (in particular the right-hand side
is independent of u). If we take u = t2/2, (A.11) gives us that

I0(s) = et2/2
∞∑

k=0

(−t2/2)k

k!
Lk(s2/2t2).

Substituting back into (A.10), we obtain
∞∑

n=0

t2n

2nn!
λn =

2
�

∑

k≥0

∫ ∞

0

ρ(r)e−r2/�
(−t2)k

2kk!
Lk(2r2/�) rdr. (A.12)

Equating coefficients of like powers of t we conclude that ∀n

λn =
(−1)k2

�

∫ ∞

0

ρ(r)e−r2/� Ln(2r2/�) rdr.

If we now let u = r2, we finally get

λn =
(−1)n

�

∫ ∞

0

ρ(
√

u)e−u/� Ln(2u/�) du. (A.13)

Although we do not need it for the proof of our main theorem, we note
the following:

Theorem A.1. Let (as in the main body of the paper)

� =
E

2n + 1
, E fixed, n = 1, 2, . . . ,

Then, maintaining the previous notation, as n → ∞
λn = ρ(

√
E) + O(�).

Proof. By the functional calculus the operator ρ(Z1/2) is an � pseudo-differential
operator with principal symbol ρ(r), that is, with the same principal symbol
as aW . Therefore,

λn = 〈aW (en), en〉 = 〈ρ(Z1/2)(en), en〉 + O(�) = ρ(
√

E) + O(�).
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�
In view of (A.13), we immediately obtain:

Corollary A.2. Let

ψn(u) :=
(−1)n

�
e−u/�Ln

(
2u

�

)

so that λn =
∫∞
0

ρ(
√

u)ψn(u) du. Then, if � and n are related as above, the
sequence (ψn) tends weakly to the delta function at E.

It is instructive to consider directly the behavior of the functions ψn. As
we will see, there is an oscillatory and a decaying region of ψn (similar to the
Airy function). For a fixed n, ψn has n zeros. As n increases, where do the
zeros concentrate? According to [8], the zeros of Ln are real and simple.

Let us denote by λn,k the zeros of Ln. According to [7] (restricting to the
case α = 0), the zeros λn,k are in the oscillatory region

0 < x < ν := 4n + 2

and satisfy the following inequalities and asymptotic approximation:

Theorem A.3 ([7]). The first zero λn,1 satisfies

0 < λn,1 ≤ 3
2n + 1

, n = 1, 2, . . . .

Theorem A.4 ([7]). For a fixed m, the zeros of Ln satisfy

λn,n−m+1 = ν + 21/3amν1/3 +
1
5
24/3a2

mν−1/3 + O(n−1), as n → ∞,

where am is the m-th negative zero of the Airy function, in decreasing order.

Let us now denote by μn,k the zeros of ψn(u), so that μn,k = �

2λn,k.
Substituting � = E/(2n + 1), Theorem A.3 implies that the first zero satisfies

μn,1 ≤ 3
2E �

2.

On the other hand, the last zero satisfies

μn,n = E + (E/2)1/3a1�
2/3 +

(E)−1/3a2
1

5
�

4/3 + O(�2), as � → 0.

This implies that the first zero is close to 0 while the last one is close to
E as � → 0. In fact, if we define

Nn(x) =
∣∣ {k ∈ {1, 2, . . . , n}|λn,k ≤ x}

∣∣, x ∈ R,

it can be shown ([8]) that

lim
n→∞

1
n

Nn(4nx) =
2
π

∫ x

0

t−1/2(1 − t)1/2dt, for 0 ≤ x ≤ 1.

We note that λn,k ≤ 4nx if and only if μn,k ≤ Ex
(
1 − 1

2n+1

)
. This

implies that

lim
n→∞

1
n

∣∣
∣∣

{
k : μn,k ≤ z

(
1 − 1

2n + 1

)}∣∣
∣∣

=
2
π

∫ z/E

0

t−1/2(1 − t)1/2dt, 0 ≤ z ≤ E .
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Figure 2. Graph of ψn in the interval [0, 5]. Here, n = 100,
E = 3

We note that the integral on the right-hand side is equal to one for z = E . In
particular, this shows that the zeros of ψn “cover” the entire oscillatory region
[0, E ], asymptotically for n large.

Choosing n = 100 and E = 3, the corresponding graph of ψn in the
interval [0, 5] is shown in Fig. 2. We can corroborate numerically that the
zeros of ψn are located in the oscillatory region [0, E ]. We can easily see that Ln

is always locally decreasing near the origin and locally increasing/decreasing
around the last zero for n even/odd. As a result, the last critical point of ψn

is always a local maximum.

B. The Remainder in Taylor’s Theorem

For completeness, we include here the elementary derivation of the expression
for the remainder in Taylor’s theorem that we used in the proof of Theorem
4.6. Let us start with a smooth one-variable function f and write

f(t) = f(E) +
∫ 1

0

d

du
f(ut + (1 − u)E) du

= f(E) + (t − E)
∫ 1

0

f ′(ut + (1 − u)E) du.

So if we let
g(t) :=

∫ 1

0

f ′(ut + (1 − u)E) du, (B.1)

then g is smooth and f(t) = f(E) + (t − E)g(t). Repeating the argument with
f replaced by g, we obtain that

g(t) = g(E) + (t − E)R(t),
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where
R(t) =

∫ 1

0

g′(vt + (1 − v)E) dv.

Since g(E) = f ′(E), substituting we obtain f(t) = f(E) + (t − E)f ′(E) + (t −
E)2R(t), as desired. Finally, we compute the remainder R(t). Using (B.1),

g′(x) =
∫ 1

0

uf ′′(ux + (1 − u)E) du,

and therefore

R(t) =
∫ 1

0

∫ 1

0

uf ′′[u(vt + (1 − v)E) + (1 − u)E ]du dv.
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