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A NEW TWO-DIMENSIONAL BLOOD FLOW MODEL WITH ARBITRARY
CROSS SECTIONS

Cesar Alberto Rosales-Alcantar* and Gerardo Hernández-Dueñas

Abstract. A new two-dimensional model for blood flows in arteries with arbitrary cross sections is
derived. The domain consists of a narrow, large vessel that extends along an axial direction, with cross
sections described by radial and angular coordinates. The model consists of a system of balance laws
for conservation of mass and balance of momentum in the axial and angular directions. The equations
are derived by applying asymptotic analysis to the incompressible Navier-Stokes equations in a moving
domain with an elastic membrane, and integrating in the radial direction in each cross section. The
resulting model is a system of hyperbolic balance laws with source terms. The main properties of the
system are discussed and a positivity-preserving well-balanced central-upwind scheme is presented.
The merits of the scheme will be tested in a variety of scenarios. In particular, simulations using an
idealized aorta model are shown. We analyze the time evolution of the blood flow under different initial
conditions such as perturbations to steady states, which parametrizes a bulging in a vessel’s wall. We
consider different situations given by distinct variations in the vessel’s elasticity.
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1. Introduction

The impact of cardiovascular diseases in our lives has motivated the development of different models for
blood flows. In [11], a review of recent contributions towards the modeling of vascular flows is provided. A
review of contributions regarding the mathematical modeling of the cardiovascular system is presented in [34].
In particular, the challenges in the mathematical modeling both for the arterial circulation and the hearth
function are discussed. See also the notes in [32] for more on mathematical modeling and numerical simulation
of the cardiovascular system. In [2], an open-source software framework for cardiovascular integrated modeling
and simulation (CRIMSON) is described, which is a tool to perform three-dimensional and reduced-order
computational haemodynamics studies for real world problems.

Three-dimensional (3D) models provide very detailed information of the fluid’s evolution. In [22], fluid veloci-
ties were measured by laser Doppler velocimetry under conditions of pulsatile flow and such measurements were
compared to those given by steady flow conditions. In [37], anatomic and physiologic models are obtained with
the aid of 3D imaging techniques for patient-specific modeling. For instance, 3D hemodynamics in compliant
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arterial models have been studied in [40]. However, 3D simulations are computationally expensive and are often
not a practical tool for a timely evaluation before a surgical treatment. This has motivated the development
of 1D models which reasonably well describe the propagation of pressure waves in arteries [12]. A 1D hyper-
bolic model for compliant axi-symmetric idealized vessels is derived in [6] and the properties of the model are
discussed. The analysis of the blood flow after an endovascular repair is studied in [5], in which case the PDE
based model has discontinuous coefficients. Furthermore, effects of viscous dissipation, viscosity of the fluid and
other two-dimensional effects were incorporated in a “one-and-a-half dimensional” model in [7], where it is not
necessary to prescribe an axial velocity profile a priori. In [8], a coupled model that describes the interaction
between a shell and a mesh-like structure is derived. The structure consists of 3D mesh-like elastic objects and
the model embodies a 2D shell model and a 1D network model. Well-balanced high-order numerical schemes for
one-dimensional (1D) blood flow models are constructed in [30] using the Generalized Hydrostatic Reconstruc-
tion technique. Path-conservative finite volume schemes based on the DOT Riemann solver in the context of
computational hemodynamics has been developed in [29] and a generalization to flexible visco-elastic tubes with
compressible flows in [27]. Arbitrary Accuracy Derivative (ADER) finite volume methods for hyperbolic balance
laws with stiff terms are extended to solve 1D blood flows for viscoelastic vessels in [28], and such technique
is applied to analyze the treatment of viscoelastic effects at junctions in [31]. The effects of variations of the
mechanical properties of arteries due to diseases such as stenosis or aneurysms have also being studied using
1D models [21, 38, 39]. It has also been noted in [18] that 1D models are able to describe the fluid’s evolution
after arteriovenous fistula (AVF) surgeries in 6 out of 10 patients and selected the same AVF location as an
experienced surgeon in 9 out of 10 patients. See also [19] for a comparison with experimental data using 1D
models. Although 1D models have shown to be a reasonably good approximation in many situations, there exist
limitations due in part to simplifications such as axial symmetry. The cross section is assumed to be a circle,
which could impact the accuracy of the model’s prediction.

The contributions listed above consider the two extreme cases where the models are either 3D or 1D, and
some interactions between them. Two-dimensional (2D) models are a good balance that provides more realistic
results compared to its 1D counterparts with the advantage of a low computational cost when compared to
the 3D models. There has been some efforts in that direction. For instance, a blood flow model that takes into
account axial and radial displacements is derived in [9]. The model in [9] considers a radial velocity that adjusts
to the axial velocity by the continuity equation. Although it provides detailed information about the velocity
that extends in the radial direction (2D), it is still restricted by the axi-symmetric assumptions. The model
presented in [10] can be considered intermediate between 3D and 1D for general cross-sections in the sense that
the equations are written in terms of the area 𝐴 without specifying whether the cross section is axi-symmetric
(circular), ellipsoidal or something else.

In this work, we derive an intermediate 2D model where any shape of the cross section can be considered
while maintaining a still much lower computational cost compared to 3D simulations. The derivation and
implementation of a model in two dimensions is one of our main contributions. The model is derived using
asymptotic analysis that follows certain physical considerations. The velocity and vessel’s radius here depend
on the cross section’s angle and axial position, while the 1D counterpart considers a uniform radius that varies
only in the axial direction. Our model can handle perturbations and variations in the wall’s elasticity affecting
any specific area of the vessel while 1D simulations can only consider perturbations affecting entire cross sections.
This is relevant in simulations of diseases such as aneurysms and stenosis that involve vessels with walls that
have damaged areas, not necessarily entire cross sections. Furthermore, we present the properties of the model,
construct a well-balanced central-upwind scheme and include numerical tests that show its merits. It is well
known that 1D models can accurately capture pulse pressure waves [38]. The 2D model that we present here
can also capture the wall deformation due to those waves propagating throughout the vessel and its variations
in the angular direction as a response to the wall’s elasticity properties. There exist other scenarios where 2D
models can offer useful information. For instance, stress-strain responses in a vessel are of particular interest in
distinct studies [1]. Such relation could also vary in the angular momentum in a vessel with asymmetric elasticity
properties and this 2D model can capture such imbalances more accurately. Even velocity field patterns have
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been of interest in multiphase hemodynamics [20]. In our setting, vortex-like structures have been observed
in simulations of vessels with asymmetric elasticity properties, which would not be possible to identify in 1D
models. In contrast with the model in [9], our cross sections can evolve freely into any shape as a response to
the fluids discharge, transmural pressure, and the wall’s elasticity properties. Such dynamics are dictated by the
leading order contributions resulting from the asymptotic analysis and the average process. On the other hand,
the review article [33] discusses multiscale approaches for the numerical simulation of blood flow problems.
It couples different scales going from centimeters (singular vascular district) to meters (entire network), using
models with different complexities from lumped parameters (0D) to 1D, 2D and 3D systems. The 2D model
implemented in the multiscale approach considers only radial displacements. On the contrary, the model in our
work takes radial averages and allows for variations in the angular direction. We believe our model can serve as a
complement to provide useful information in scenarios where variations in the angular directions are important.
A systematic comparison between 3D and 1D models models can also be found in [40], showing good agreement.
The 2D model in this work can provide additional details as described above.

Our work is organized as follows. Section 2 provides the derivation of the system of partial differential
equations that describes our model, leaving the details of the asymptotic expansion to Appendix A. The model
is derived by applying asymptotic analysis to a system of equations that takes into account Fluid-Structure
interactions through the Navier-Stokes equations in a moving domain and an elastic membrane. See more about
Fluid-Structure interactions in, e.g., [14,16]. The equations are written in cylindrical coordinates and we proceed
by integrating in the radial direction in each cross section. Section 3 describes the quasilinear properties of the
model, where we show that the system is conditionally hyperbolic. A closed form of the transmural pressure
term is presented. Section 4 focuses on the description of the positivity-preserving well-balanced second-order
central-upwind scheme. Finally, in Section 5 we test our model by considering a variety of numerical experiments.

2. Derivation of the model

2.1. The geometry of the vessel

The model presented here is derived by computing the radial average in each axial position and angle in
the vessel’s cross section. Although it can be easily generalized, let us assume for simplicity that the vessel
is aligned in the 𝑥 − 𝑧 plane and that it extends along a curve that passes through each cross section. The
parametrization of such curve is assumed to be known and its location is then represented by its arclength’s
position 𝑠 and coordinates (𝑥𝑜(𝑠), 𝑦𝑜 = 0, 𝑧𝑜(𝑠)). Each cross section is identified with the arclength position 𝑠
of the curve intersecting it. Any position in each cross section is located with the angle 𝜃 formed between the
displacement from the intersection and a reference vector. The variables and parameters are functions of the
axial position 𝑠 and angle 𝜃. As a result, the model allows for arbitrary cross sections and variations in each
angle 𝜃, resulting in a 2D model.

The above parametrization is done such that 𝑠 = 0 corresponds to the left end of the vessel while 𝑠 = 𝑠𝐿 is
related to the right end. For each 𝑠, the cross-section denoted by 𝐶(𝑠) is contained in a plane passing through
(𝑥𝑜(𝑠), 𝑦𝑜 = 0, 𝑧𝑜(𝑠)) and perpendicular to the unit tangent vector T(𝑠) = (cos(𝛼(𝑠)), 0, sin(𝛼(𝑠))). Here 𝛼(𝑠)
is the angle of the curve with respect to the horizontal axis 𝑥. Furthermore, for a point (𝑥, 𝑦, 𝑧) in the cross-
section 𝐶(𝑠), let 𝜃 be the angle between the normal vector (− sin(𝛼(𝑠)), 0, cos(𝛼(𝑠))) and the displacement
(𝑥, 𝑦, 𝑧)− (𝑥𝑜(𝑠), 0, 𝑧𝑜(𝑠)). This gives the following change of variables:

𝑥(𝑟, 𝑠, 𝜃) = 𝑥𝑜(𝑠)− 𝑟 sin(𝛼(𝑠)) sin(𝜃),
𝑦(𝑟, 𝑠, 𝜃) = 𝑟 cos(𝜃),
𝑧(𝑟, 𝑠, 𝜃) = 𝑥𝑜(𝑠) + 𝑟 cos(𝛼(𝑠)) sin(𝜃),

(1)

where 𝑟 is the norm of the displacement. The corresponding Jacobian is given by

|𝐽 | = 𝑟(1− 𝑟 sin(𝜃)𝛼′(𝑠)).
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Figure 1. Symbolic representation of model for blood flows passing through a compliant vessel.
Each cross section is described by a radius 𝑅(𝜃, 𝑠, 𝑡) that varies in the angular direction 𝜃 but it
can also depend on 𝑠 and 𝑡. The axial and angular velocities are represented by 𝑢 and 𝜔. Here,
𝛼(𝑠) is the angle between the axial vessel’s direction at arclength position 𝑠 with the horizontal
axis.

A sufficient condition for the change of variables to be valid is that the radius 𝑟 for any point in the cross section
does not exceed the radius of curvature of the parametrization. That is,

𝑟 ≤ R(𝑠) =
1

𝜅(𝑠)
,

where 𝜅(𝑠) = |𝛼′(𝑠)| is the vessel’s curvature and R is the radius of curvature. This is a very reasonable
assumption, even in the case of an stenosis, specially if it happens in an area with zero curvature.

Figure 1 shows the symbolic representation of the model to be derived below. The vessel’s radius may vary as
a function of angle, axial position and time, 𝑅 = 𝑅(𝑡; 𝜃, 𝑠). As a result, the vessel may have any cross-sectional
shape. On the contrary, one-dimensional models assume a uniform radius, independent of 𝜃, restricting the cross
section to be axi-symmetric.

2.2. The averaged leading order equations

The derivation of the model requires rewriting the equations in cylindrical coordinates and carry out an
asymptotic analysis to determine the leading order contribution under the following assumptions. In this section,
we denote the density by 𝜌 and 𝑉𝑐 = (𝑉𝑠, 𝑉𝑟, 𝑉𝜃) is the vector of axial, radial and angular velocities in cylin-
drical coordinates. Let 𝑉𝑠,𝑜, 𝑉𝑟,𝑜, and 𝑉𝜃,𝑜 be the corresponding characteristic scales. Let also 𝜆 and 𝑅𝑜 be the
characteristic axial and radial lengthscales. The small parameter in this expansion is the ratio between radial
and axial lengthscales

𝜖 :=
𝑅𝑜
𝜆

=
𝑉𝑟,𝑜
𝑉𝑠,𝑜

· (2)

Typical values in the aorta between the renal and the iliac arteries gives 𝜖 ≈ 10−2 [6]. Furthermore, we assume
that the gravity 𝑔, the scales of pressure ([𝑃 ]), radius (𝑅𝑜), time (T), axial and linear angular velocities (𝑉𝑠,𝑜, 𝑉𝜃,𝑜)
satisfy

[𝑃 ]
𝜌𝑜𝑉 2

𝑠,𝑜

= 𝑂(1),
𝑉𝑠,𝑜
𝑅𝑜𝑉𝜃,𝑜

= 𝑂(1),
𝑔𝑇

𝑉𝑠,𝑜
= 𝑂(1). (3)
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Under these assumptions, the acceleration of gravity is comparable to the characteristic acceleration of the
system in the axial direction. This is reasonable for typical velocities of order 𝑂(1 ms−1) and a timescale of
𝑇 = 0.1 s. On the other hand, the change of variables is valid provided that 𝑟|𝛼′(𝑠)| < 1. As a stronger
assumption, we assume that 𝑟𝛼′(𝑠) is small, which implies that the artery’s radius of curvature is large compared
to its cross-sectional radius. On the other hand, an approximate value for blood viscosity in arteries can be
taken as a constant 𝜈 = 4 cP = 4× 10−2 g (s cm)−1 [21]. Using 𝜌𝑜 = 1050 kg m−3, and 𝑅𝑜 = 0.82 cm, it gives
us 𝜈𝑇

𝜌𝑜𝑅2
𝑜

= 0.56× 10−2. Based on this estimation, we assume

𝑅𝑜|𝛼′(𝑠)| = 𝑂(𝜖), and
𝜈𝑇

𝜌𝑜𝑅2
𝑜

= 𝑂(𝜖). (4)

After removing terms of order 𝑂(𝜖2) in the non-dimensionalized equations, we obtain

|𝐽 | 𝐷𝐷𝑡 (𝜌) = 0,

|𝐽 | 𝐷𝐷𝑡

(︂
𝜌
[︁
|𝐽|
𝑟

]︁2
𝑉𝑠

)︂
= 𝑟
[︁
|𝐽|
𝑟

]︁2
𝜕𝑠

(︁
|𝐽|
𝑟

)︁
𝜌𝑉 2

𝑠 − |𝐽 |𝜕𝑠(𝑝)− |𝐽 | sin(𝛼(𝑠))𝜌𝑔

+𝜈𝜕𝑟

(︂
|𝐽 |𝜕𝑟

(︂[︁
|𝐽|
𝑟

]︁2
𝑉𝑠

)︂)︂
,

|𝐽 | 𝐷𝐷𝑡
(︀
𝜌𝑟2𝑉𝜃

)︀
= 𝑟
[︁
|𝐽|
𝑟

]︁2
𝜕𝜃

(︁
|𝐽|
𝑟

)︁
𝜌𝑉 2

𝑠 − |𝐽 |𝜕𝜃(𝑝)
+𝜈𝜕𝑟

(︀
|𝐽 |
[︀
𝜕𝑟
(︀
𝑟2𝑉𝜃

)︀
− 2𝑟𝑉𝜃

]︀)︀
,

∇𝑐 · (|𝐽 |V𝑐) = 0.

(5)

The radial averaging is applied to the limiting equations. The details of the reduction of the system are left to
Appendix A.

2.3. The main system

Let 𝑅(𝑠, 𝜃, 𝑡) denote the vessel’s cross-sectional radius at each position 𝑠, angle 𝜃 and time 𝑡. Let us define

𝐴(𝑅, 𝑠, 𝜃, 𝑡) =
∫︁ 𝑅

0

|𝐽 |d𝑟, 𝑢(𝑠, 𝜃, 𝑡) =
1
𝐴

∫︁ 𝑅

0

𝑉𝑠|𝐽 |d𝑟, (6)

𝜔(𝑠, 𝜃, 𝑡) =
1
𝐴

∫︁ 𝑅

𝑜

𝑉𝜃|𝐽 |d𝑟, and 𝐿(𝑅, 𝑠, 𝜃, 𝑡) =
1
𝐴

∫︁ 𝑅

𝑜

𝑟2𝑉𝜃|𝐽 |d𝑟, (7)

where

𝐴 = 𝐴(𝑅, 𝑠, 𝜃) =
𝑅2

2
− 𝑅3

3
sin(𝜃)𝛼′(𝑠)

is the radially integrated Jacobian. On the other hand, 𝑢, 𝜔 and 𝐿 are the radially-averaged axial velocity,
angular velocity and angular momentum, respectively.

The model is derived after an integration in the radial direction, assuming a streamline condition

[𝑉𝑟]𝑟=𝑅 = 𝜕𝑡(𝑅) + [𝑉𝑠]𝑟=𝑅𝜕𝑠(𝑅) + [𝑉𝜃]𝑟=𝑅𝜕𝜃(𝑅)
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at the artery’s wall and a slowly varying density, which is approximated by a constant value. The main system
is

𝜕𝑡(𝐴) + 𝜕𝑠(𝐴 𝑢) + 𝜕𝜃(𝐴 𝜔) = 0,

𝜕𝑡(𝜓𝑠,𝑜𝐴𝑢) + 𝜕𝑠
(︀
𝜓𝑠,1𝐴𝑢

2
)︀

+ 𝜕𝜃(𝜓𝑠,2𝐴𝑢𝜔) = −𝐴𝜕𝑠
(︁
𝑝
𝜌

)︁
− 𝑔𝐴 sin(𝛼(𝑠))

+
∫︀ 𝑅
𝑜
𝑟
[︁
|𝐽|
𝑟

]︁2
𝜕𝑠

(︁
|𝐽|
𝑟

)︁
𝑉 2
𝑠 d𝑟

+𝜈
𝜌

(︂
|𝐽 |𝜕𝑟

(︂[︁
|𝐽|
𝑟

]︁2
𝑉𝑠

)︂)︂⃒⃒
𝑅
𝑜 ,

𝜕𝑡(𝐴𝐿) + 𝜕𝑠(𝜓𝜃,1𝐴𝐿𝑢) + 𝜕𝜃(𝜓𝜃,2𝐴𝐿𝜔) = −𝐴𝜕𝜃
(︁
𝑝
𝜌

)︁
+
∫︀ 𝑅
𝑜
𝑟
[︁
|𝐽|
𝑟

]︁2
𝜕𝜃

(︁
|𝐽|
𝑟

)︁
𝑉 2
𝑠 d𝑟

+𝜈
𝜌

(︀
|𝐽 |
[︀
𝜕𝑟(𝑟2𝑉𝜃)− 2𝑟𝑉𝜃

]︀)︀⃒⃒
𝑅
𝑜 ,

(8)

where 𝜓𝑠,𝑜, 𝜓𝑠,1, 𝜓𝑠,2, 𝜓𝜃,1 and 𝜓𝜃,2 are Coriolis terms satisfying

𝜓𝑠,𝑜𝐴𝑢 =
∫︁ 𝑅

𝑜

|𝐽 |
[︂
|𝐽 |
𝑟

]︂2
𝑉𝑠d𝑟,

𝜓𝑠,1𝐴𝑢
2 =

∫︁ 𝑅

𝑜

|𝐽 |
[︂
|𝐽 |
𝑟

]︂2
𝑉 2
𝑠 d𝑟, 𝜓𝑠,2𝐴𝑢𝜔 =

∫︁ 𝑅

𝑜

|𝐽 |
[︂
|𝐽 |
𝑟

]︂2
𝑉𝑠𝑉𝜃d𝑟,

𝜓𝜃,1𝐴𝐿𝑢 =
∫︁ 𝑅

𝑜

|𝐽 |𝑟2𝑉𝜃𝑉𝑠d𝑟, 𝜓𝜃,2𝐴𝐿𝜔 =
∫︁ 𝑅

𝑜

|𝐽 |𝑟2𝑉 2
𝜃 d𝑟.

(9)

The angular velocity and angular momentum are related by

𝐿 = 𝐴𝜃𝜔, 𝐴𝜃 =

∫︀ 𝑅
𝑜
𝑟2𝑉𝜃|𝐽 |d𝑟∫︀ 𝑅

𝑜
𝑉𝜃|𝐽 |d𝑟

·

The integral of the Jacobian in the radial direction 𝐴 is one of our conserved variables. This variable 𝐴 satisfies
that

∫︀ 𝑠1
𝑠0

∫︀ 2𝜋

0
𝐴d𝜃d𝑠 is the volume in the corresponding artery’s region. In the case of a circular cross section, the

integral with respect to 𝜃 gives us the cross-sectional area. The balance of axial and angular momenta determine
the other two conserved quantities, given by

𝑄1 = 𝜓𝑠,𝑜𝐴𝑢, 𝑄2 = 𝐴𝐿,

where 𝜓𝑠,𝑜 takes into account the effect of curvature in the artery, and 𝜓𝑠,𝑜 = 1 for horizontal vessels. One still
needs to determine a profile for the axial and angular velocities 𝑉𝑠 and 𝑉𝜃 as functions of 𝑟 to close the system.
For a given profile, the non-dimensional Coriolis terms 𝜓𝑠,𝑜, 𝜓𝑠,1, 𝜓𝑠,2, 𝜓𝜃,1 and 𝜓𝜃,2 are all explicit functions
of 𝐴, 𝑠 and 𝜃. In fact, those parameters are explicit functions of 𝑅 sin(𝜃)𝛼′(𝑠) for the profiles considered in this
paper, and are therefore constant parameters for vessels with zero curvature. See Section 3.2 for more details.
The transmural pressure, which is the pressure difference between the two sides of the artery’s wall is denoted
by 𝑝. The elasticity properties of the vessel are determined by a relationship between 𝑝, the area 𝐴 and possibly
the variables 𝑠 and 𝜃 due to non-uniform properties in the artery (explicit dependance on parameters). That is,
we assume that the transmural pressure is an explicit function

𝑝 = 𝑝(𝐴, 𝑠, 𝜃). (10)

This way, the interaction of the fluid with the 2D membrane is parametrized with the use of a suitable vessel law
that relates the transmural pressure 𝑝 with the area 𝐴. Furthermore, we assume that the transmural pressure
vanishes at a given state at rest 𝐴𝑜 = 𝐴𝑜(𝑠, 𝜃) = 𝑅2

𝑜

2 − 𝑅3
𝑜

3 sin(𝜃)𝛼′(𝑠) with 𝑅𝑜 = 𝑅𝑜(𝑠, 𝜃) such that

𝑝(𝐴𝑜(𝑠, 𝜃), 𝑠, 𝜃) = 0.
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Some properties such as the hyperbolicity of the system are shown independently of the profiles, and we take
equation (8) as the most general form of the system. This closes the system since everything is given in terms
of the conserved quantities 𝐴, 𝑄1 and 𝑄2, and 𝑠, 𝜃 due to the presence of varying parameters.

Conservation form

The model can be written in conservation form. For that end, we need to introduce the following notation.
The transmural pressure and other parameters such as the Coriolis terms are explicit functions 𝑞 = 𝑞(𝐴, 𝑠, 𝜃)
of 𝐴, 𝑠 and 𝜃. On the other hand, model parameters such as 𝑅𝑜 and 𝐴𝑜 depend explicitly on (𝑠, 𝜃). We will
denote by 𝜕1, 𝜕2, 𝜕3 the derivatives with respect to 𝐴, 𝑠 and 𝜃, keeping the other terms fixed. Thus

𝜕𝑠(𝑝(𝐴(𝑠, 𝜃, 𝑡), 𝑠, 𝜃)) = 𝜕1𝑝 𝜕𝑠𝐴+ 𝜕2𝑝, 𝜕𝜃(𝑝(𝐴(𝑠, 𝜃, 𝑡), 𝑠, 𝜃)) = 𝜕1𝑝 𝜕𝜃𝐴+ 𝜕3𝑝. (11)

We distinguish them from 𝜕𝑠 and 𝜕𝜃, which take into account the variations of the conserved variables with
respect to 𝑠 and 𝜃 over time.

In order to get the conservation form, we define the splitting of the transmural pressure as

𝑝 = ̂︀𝑝+ 𝑝, (12)

where ̂︀𝑝(𝐴, 𝑠, 𝜃) =
1
𝐴

∫︁ 𝐴

𝐴𝑜

𝒜𝜕1(𝑝(𝒜, 𝑠, 𝜃))d𝒜, (13)

which satisfy

𝐴𝜕𝑠(𝑝) = 𝜕𝑠(𝐴̂︀𝑝) +𝐴𝜕2𝑝 and
𝐴𝜕𝜃(𝑝) = 𝜕𝜃(𝐴̂︀𝑝) +𝐴𝜕3𝑝.

(14)

In the decomposition (13), 𝒜 is used to denote an integration variable.
The 2D model for blood flows in arteries with arbitrary cross sections is written as a hyperbolic system of

balance as
𝜕𝑡U + 𝜕𝑠 F(U) + 𝜕𝜃 G(U) = 𝑆(U), (15)

where

U =

⎛⎝ 𝐴
𝜓𝑠,𝑜𝐴𝑢
𝐴𝐿

⎞⎠, F(U) =

⎛⎝ 𝐴𝑢
𝜓𝑠,1𝐴𝑢

2 + 1
𝜌𝐴̂︀𝑝

𝜓𝜃,1𝐴𝑢𝐿

⎞⎠, G(U) =

⎛⎝ 𝐴𝜔
𝜓𝑠,2𝐴𝑢𝜔

𝜓𝜃,2𝐴𝐿𝜔 + 1
𝜌𝐴̂︀𝑝

⎞⎠ (16)

are the vectors of conserved variables and the fluxes in the axial and angular directions, respectively. The vector
of source terms is

S(U) =

⎛⎜⎜⎜⎝
0

−𝐴
𝜌 𝜕2𝑝−𝐴 sin(𝛼(𝑠))𝑔 +

∫︀ 𝑅
𝑜
|𝐽|
𝑟 𝜕𝑠

(︁
|𝐽|
𝑟

)︁
𝑉 2
𝑠 |𝐽 |d𝑟 + 𝜈

𝜌

[︂
|𝐽 |𝜕𝑟

(︂[︁
|𝐽|
𝑟

]︁2
𝑉𝑠

)︂]︂
𝑟=𝑅

−𝐴
𝜌 𝜕3𝑝+

∫︀ 𝑅
𝑜
|𝐽|
𝑟 𝜕𝜃

(︁
|𝐽|
𝑟

)︁
𝑉 2
𝑠 |𝐽 |d𝑟 + 𝜈

𝜌

[︁
|𝐽 |𝜕𝑟

(︀
𝑟2𝑉𝜃

)︀
− 2𝑟|𝐽 |𝑉𝜃

]︁
𝑟=𝑅

⎞⎟⎟⎟⎠. (17)

We note that none of the source terms are non-conservative products. The source terms only involve derivatives
of the model parameters with respect to the explicit dependance on (𝑠, 𝜃) and no derivates of the solution
itself are present. This prevents both theoretical and numerical complications when shockwaves arise. Below we
show explicit expressions of the source and Coriolis terms for a particular choice of profiles for the transmural
pressure, axial and angular velocities. As we will see, the expressions are very simple in the case of horizontal
arteries (𝛼′(𝑠) = 0).

System (16) is valid for a general vessel law where 𝑝 is a function of 𝐴 but it could also depend explicitly
on the independent variables 𝑠 and 𝜃 when the vessel law involves variable coefficients. As we will see below,
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the pressure must be increasing with respect to 𝐴 in order to guarantee hyperbolicity. Besides that and the
restriction that the transmural pressure vanishes at a state of rest, the aforementioned vessel law is very general.
The pressure decomposition in equation (13) is used to write the system as a balance law where the source terms
do not involve non-conservative products (important for weak solutions), and it is valid for the general vessel
law.

3. Properties of the model

3.1. Hiperbolicity of the model

The conservation form in equation (15) is crucial because it allows us to formulate the Rankine–Hugoniot
conditions for weak solutions in the presence of shockwaves. We can apply the theory of weak solutions pro-
vided the model is hyperbolic. The hyperbolic properties of system (15) can be studied through its quasilinear
formulation, which is given by

𝜕𝑡U +𝑀𝑠(U)𝜕𝑠U +𝑀𝜃(U)𝜕𝜃U = S̃(U), (18)

where the coefficient matrices are

𝑀𝑠(U) =

⎛⎜⎜⎝
− 𝐴
𝜓𝑠,𝑜

𝜕1(𝜓𝑠,𝑜)𝑢 1
𝜓𝑠,𝑜

0
1
𝜌𝜕1(𝐴̂︀𝑝)− (︁𝜓𝑠,1

𝜓𝑠,𝑜

)︁2

𝜕1

(︁
𝜓2

𝑠,𝑜𝐴

𝜓𝑠,1

)︁
𝑢2 2𝜓𝑠,1

𝜓𝑠,𝑜
𝑢 0

−𝜓2
𝜃,1
𝜓𝑠,𝑜

𝜕1

(︁
𝜓𝑠,𝑜𝐴
𝜓𝜃,1

)︁
𝑢𝐿

𝜓𝜃,1
𝜓𝑠,𝑜

𝐿 𝜓𝜃,1𝑢

⎞⎟⎟⎠ (19)

and

𝑀𝜃(U) =

⎛⎜⎜⎝
− 𝐴
𝐴𝜃
𝜕1(𝐴𝜃)𝜔 0 1

𝐴𝜃

− 𝜓2
𝑠,2

𝜓𝑠,𝑜𝐴𝜃
𝜕1

(︁
𝜓𝑠,𝑜𝐴𝐴𝜃

𝜓𝑠,2

)︁
𝑢𝜔

𝜓𝑠,2
𝜓𝑠,𝑜

𝜔
𝜓𝑠,2
𝐴𝜃

𝑢

1
𝜌𝜕1(𝐴̂︀𝑝)− 𝜓2

𝜃,2𝜕1

(︁
𝐴𝐴𝜃

𝜓𝜃,2

)︁
𝜔2 0 2𝜓𝜃,2𝜔

⎞⎟⎟⎠. (20)

The vector of source terms of the quasi-linear formulation is

𝑆(U) = 𝑆(U) +

⎛⎜⎜⎝
𝐴
𝜓𝑠,𝑜

𝜕2(𝜓𝑠,𝑜)𝑢+ 𝐴
𝐴𝜃
𝜕3(𝐴𝜃)𝜔

− 1
𝜌𝜕2(𝐴̂︀𝑝) +

(︁
𝜓𝑠,1
𝜓𝑠,𝑜

)︁2

𝜕2

(︁
𝜓2

𝑠,𝑜𝐴

𝜓𝑠,1

)︁
𝑢2 + 𝜓2

𝑠,2
𝜓𝑠,𝑜𝐴𝜃

𝜕3

(︁
𝜓𝑠,𝑜𝐴𝐴𝜃

𝜓𝑠,2

)︁
𝑢𝜔

− 1
𝜌𝜕3(𝐴̂︀𝑝) + 𝜓2

𝜃,1
𝜓𝑠,𝑜

𝜕2

(︁
𝜓𝑠,𝑜𝐴
𝜓𝜃,1

)︁
𝑢𝐿+ 𝜓2

𝜃,2𝜕3

(︁
𝐴𝐴𝜃

𝜓𝜃,2

)︁
𝜔2

⎞⎟⎟⎠. (21)

The matrices 𝑀𝑠 and 𝑀𝜃 have two null entries in one column and their eigenvalues have explicit expressions
given by

𝜆𝑠𝑜 = 𝜓𝜃,1𝑢, 𝜆𝑠± =
2𝜓𝑠,1 −𝐴𝜕1(𝜓𝑠,𝑜)

2𝜓𝑠,𝑜
𝑢 ±

√︃
1
𝜌𝜕1(𝐴̂︀𝑝)
𝜓𝑠,𝑜

+ 𝛶1𝑢2 (22)

for 𝑀𝑠, and

𝜆𝜃𝑜 =
𝜓𝑠,2
𝜓𝑠,𝑜

𝜔, 𝜆𝜃± =
2𝜓𝜃,2𝐴𝜃 −𝐴𝜕1(𝐴𝜃)

2𝐴𝜃
𝜔 ±

√︃
1
𝜌𝜕1(𝐴̂︀𝑝)
𝐴𝜃

+ 𝛶2𝜔2 (23)

for 𝑀𝜃, respectively. Here,

Υ1 =
1
𝜓2
𝑠,𝑜

[︂
𝜓𝑠,1 −

1
2
𝐴𝜕1(𝜓𝑠,𝑜)

]︂2
+

1
𝜓𝑠,𝑜

[𝐴𝜕1(𝜓𝑠,1)− 𝜓𝑠,1], and

Υ2 =
1
𝐴2
𝜃

[︂
𝜓𝜃,2𝐴𝜃 −

1
2
𝐴𝜕1(𝐴𝜃)

]︂2
+

1
𝐴𝜃

[𝐴𝜕1(𝜓𝜃,2𝐴𝜃)− 𝜓𝜃,2𝐴𝜃]

(24)
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are all non-dimensional quantities.
Below we specify the profiles for the axial and angular velocities. For those specific profiles, we show that

Υ1 = Υ1(Γ) and Υ2 = Υ2(Γ) are explicit rational functions of Γ, where

Γ = 𝑅 sin(𝜃)𝛼′(𝑠). (25)

Such functions satisfy Υ1(Γ = 0) = 𝜓𝑠,1(𝜓𝑠,1 − 1) and Υ2(Γ = 0) =
(︀
𝜓𝜃,2 − 1

2

)︀2. The special case Γ = 0
corresponds to a horizontal vessel.

Proposition 1. Let us assume that 𝑝 is strictly increasing with respect 𝐴, with positive partial derivative, except
possibly at 𝐴 = 0 where the vessel collapses. The coefficient matrices 𝑀𝑠 and 𝑀𝜃 given by (19) and (20) have
real eigenvalues and a complete set of eigenvectors, subject to the conditions 0 < 𝑅 < 1

|𝛼′(𝑠)| , and Υ1,Υ2 ≥ 0.

The condition 0 < 𝑅 < 1
|𝛼′(𝑠)| indicates that the artery’s radius must not exceed the artery’s radius of

curvature and it is required for the change of variables to cylindrical coordinates to be valid. This implies that
the non-dimensional parameter Γ satisfies |Γ| ≤ 1. For specific profiles used in this paper for the axial and
angular velocities, Υ1 and Υ2 are in fact non negative for Γ ∈ [−1, 1].

Proof. Under the above hypothesis, and the fact that

𝜕1(𝐴𝑝) = 𝐴𝜕1𝑝 ≥ 0

the expressions inside the square roots in equations (22) and (23) are non negative. As a result, all the eigenvalues
are real. The expressions inside the square roots could only vanish if 𝐴 = 0 (or equivalently 𝑅 = 0). It would
also require that 𝑢 = 0 or 𝜔 = 0 if Υ1 = 0 or Υ2 = 0 respectively. This could happen for certain parameter
choices, specially in horizontal vessels. In any case, the condition 𝑅 > 0 is sufficient to guarantee that 𝜆𝑠+ ̸= 𝜆𝑠−
and 𝜆𝜃+ ̸= 𝜆𝜃−. However, the eigenvalue 𝜆𝑠𝑜 may still have multiplicity 2 if it coincides with 𝜆𝑠+ or 𝜆𝑠−. And the
same applies for the matrix 𝑀𝜃.

In the case when the eigenvalues for 𝑀𝑠 are different and writing 𝑀𝑠 = (𝑎𝑖𝑗), the eigenvectors form a basis
and are given by

v𝑠𝑜 =

⎛⎝0
0
1

⎞⎠, v𝑠± =

⎛⎜⎝ 𝑎12

𝜆𝑠± − 𝑎11

(𝑎11−𝜆𝑠
±)𝑎32−𝑎12𝑎31

𝑎33−𝜆𝑠
±

⎞⎟⎠.
If 𝜆𝑠𝑜 = 𝜆𝑠−, the eigenvectors are given by

v𝑠𝑜 =

⎛⎝ 0
0
1

⎞⎠, v𝑠− =

⎛⎝ 𝑎12

𝜆𝑠− − 𝑎11

0

⎞⎠, v𝑠+ =

⎛⎜⎝ 𝑎12

𝜆𝑠+ − 𝑎11

(𝑎11−𝜆𝑠
+)𝑎32−𝑎12𝑎31

𝑎33−𝜆𝑠
+

⎞⎟⎠.
Since 𝜆𝑠+ ̸= 𝜆𝑠−, one can easily check that the eigenvectors form a complete basis because 𝑎12 = 1

𝜓𝑠,𝑜
> 0.

The case 𝜆𝑠𝑜 = 𝜆𝑠+ and the analysis for 𝑀𝜃 are analogous, which concludes the proof. �

The hyperbolicity of the model requires that 𝑛𝑠𝑀𝑠 + 𝑛𝜃𝑅𝑜𝑀𝜃 has real eigenvalues and a complete set of
eigenvectors for all 𝑛𝑠, 𝑛𝜃 ∈ R such that 𝑛2

𝑠 + 𝑛2
𝜃 = 1. Here 𝑅𝑜 is a constant in units of length that appears due

to the fact that 𝑠 and 𝜃 have different units. For the general case, the matrix 𝑛𝑠𝑀𝑠 + 𝑛𝜃𝑅𝑜𝑀𝜃 has not a simple
form. However, one can easily analyze the special case of a horizontal vessel (𝛼′(𝑠) = 0) and 𝜔 = 0. In such
case, 𝜓𝑠,𝑜, 𝜓𝑠,1, 𝜓𝑠,2, 𝜓𝜃,1 are all constant, and the characteristic polynomial is

𝑃 (𝜆) = −𝜆3 + 𝑐2𝜆
2 + 𝑐1𝜆+ 𝑐𝑜,
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where

𝑐2 = (2𝜓𝑠,1 + 𝜓𝜃,1)𝑢𝑛𝑠,

𝑐1 =
1
𝜌
𝜕1(𝐴𝑝)

(︂
𝑛2
𝑠 +

𝑅2
𝑜

𝐴𝜃
𝑛2
𝜃

)︂
+ (−𝜓𝑠,1 − 2𝜓𝑠,1𝜓𝜃,1) 𝑢2 𝑛2

𝑠,

𝑐𝑜 =
[︂
−1
𝜌
𝜕1(𝐴𝑝) + 𝜓𝑠,1𝑢

2

]︂
𝜓𝜃,1 𝑛

3
𝑠 𝑢

+
1
𝜌
𝜕1(𝐴𝑝)

𝑅2
𝑜

𝐴𝜃
(−2𝜓𝑠,1 + 𝜓𝑠,2) 𝑛2

𝜃 𝑢 𝑛𝑠.

Using Cardano’s approach, we know the characteristic polynomial has three distinct real eigenvalues if

0 < −27𝑐2𝑜 − 18𝑐2𝑐1𝑐𝑜 + 4𝑐31 − 4𝑐32𝑐𝑜 + 𝑐22𝑐
2
1

= 4
(︂

1
𝜌
𝜕1(𝐴𝑝) + 𝜓𝑠,1(𝜓𝑠,1 − 1)𝑢2

)︂[︂
1
𝜌
𝜕1(𝐴𝑝) + (2𝜓𝑠,1𝜓𝜃,1 − 𝜓𝑠,1 − 𝜓2

𝜃,1)𝑢2

]︂2
𝑛6
𝑠

+ 12

(︁
1
𝜌𝜕1(𝐴𝑝)

)︁3

𝑅2
𝑜

𝐴𝜃
𝑛4
𝑠𝑛

2
𝜃

+ 4

(︁
1
𝜌𝜕1(𝐴𝑝)

)︁2

𝑅2
𝑜𝑢

2

𝐴𝜃

(︀
20𝜓2

𝑠,1 + 𝜓𝜃,1(9𝜓𝑠,2 + 5𝜓𝜃,1)− 𝜓𝑠,1(6 + 9𝜓𝑠,2 + 19𝜓𝜃,1)
)︀
𝑛4
𝑠𝑛

2
𝜃

+ 4
1
𝜌𝜕1(𝐴𝑝)𝑅2

𝑜𝑢
4

𝐴𝜃

[︀
16𝜓4

𝑠,1 − 𝜓𝑠,2𝜓
3
𝜃,1 − 4𝜓3

𝑠,1(5 + 2𝜓𝑠,2 + 4𝜓𝜃,1)

+𝜓𝑠,1𝜓𝜃,1[3𝜓𝑠,2(−3 + 𝜓𝜃,1) + (−5 + 𝜓𝜃,1)𝜓𝜃,1]

+𝜓2
𝑠,1(3 + 𝜓𝜃,1(19 + 2𝜓𝜃,1) + 𝜓𝑠,2(9 + 6𝜓𝜃,1))

]︁
𝑛4
𝑠𝑛

2
𝜃

+ 12

(︁
1
𝜌𝜕1(𝐴𝑝)

)︁3

𝑅4
𝑜

𝐴2
𝜃

𝑛2
𝑠𝑛

4
𝜃

+

(︁
1
𝜌𝜕1(𝐴𝑝)

)︁2

𝑅4
𝑜

𝐴2
𝜃

𝑢2
[︀
−32𝜓2

𝑠,1 − 27𝜓2
𝑠,2 − 18𝜓𝑠,2𝜓𝜃,1 + 𝜓2

𝜃,1

+4𝜓𝑠,1(−3 + 18𝜓𝑠,2 + 4𝜓𝜃,1)
]︁
𝑛2
𝑠𝑛

4
𝜃

+ 4

(︁
1
𝜌𝜕1(𝐴𝑝)

)︁3

𝑅6
𝑜

𝐴3
𝜃

𝑛6
𝜃.

A sufficient condition for hyperbolicity is then

𝜓𝑠,1 > 1,
20𝜓2

𝑠,1 + 𝜓𝜃,1(9𝜓𝑠,2 + 5𝜓𝜃,1)− 𝜓𝑠,1(6 + 9𝜓𝑠,2 + 19𝜓𝜃,1) > 0,
16𝜓4

𝑠,1 − 𝜓𝑠,2𝜓
3
𝜃,1 − 4𝜓3

𝑠,1(5 + 2𝜓𝑠,2 + 4𝜓𝜃,1)
+𝜓𝑠,1𝜓𝜃,1[3𝜓𝑠,2(−3 + 𝜓𝜃,1) + (−5 + 𝜓𝜃,1)𝜓𝜃,1]
+𝜓2

𝑠,1(3 + 𝜓𝜃,1(19 + 2𝜓𝜃,1) + 𝜓𝑠,2(9 + 6𝜓𝜃,1)) > 0,
−32𝜓2

𝑠,1 − 27𝜓2
𝑠,2 − 18𝜓𝑠,2𝜓𝜃,1 + 𝜓2

𝜃,1 + 4𝜓𝑠,1(−3 + 18𝜓𝑠,2 + 4𝜓𝜃,1) > 0.

We have verified that such condition is met when we use the specific profiles and parameter values in Section 3.2.
Although the hyperbolicity has been proved for the special case of horizontal vessels with vanishing angular
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velocity, we believe this property is satisfied in a much more general context because Proposition 1 shows that
each coefficient matrix can be diagonalized.

3.2. Specific profiles of pressure, axial and angular velocities

Following [6], a generalized Hagen–Poiseuille profile is assumed for the axial velocity:

𝑉𝑠 = 𝑒𝑠𝑉
⋆
𝑠 𝑢, 𝑉 ⋆𝑠 =

𝑟

|𝐽 |

[︁
1−

(︁ 𝑟
𝑅

)︁𝛾𝑠
]︁
, (26)

where
𝑒𝑠(𝐴, 𝑠, 𝜃) =

𝐴∫︀ 𝑅
𝑜
𝑉 ⋆𝑠 (𝑟,𝑅)|𝐽 |d𝑟

·

This profile vanishes at the artery’s wall and it is strongest at the center. The exponent 𝛾𝑠 controls the transition
from the center to the walls. Taking 𝛾𝑠 = 9, we get the effect of a Newtonian fluid [35]. On the other hand, we
use a similar profile for the angular velocity,

𝑉𝜃 = 𝑒𝜃𝑉
⋆
𝜃 𝜔, 𝑉 ⋆𝜃 =

[︂
1− 𝛾𝜃

𝛾𝜃 + 1
𝑟

𝑅

]︂(︁ 𝑟
𝑅

)︁𝛾𝜃−1

, where 𝑒𝜃(𝐴, 𝑠, 𝜃) =
𝐴∫︀ 𝑅

𝑜
𝑉 ⋆𝜃 (𝑟,𝑅)|𝐽 |d𝑟

· (27)

In the numerical simulations we take 𝛾𝜃 = 2. It satisfies that the linear velocity 𝑟𝑉𝜃 vanishes at the center
and 𝜕𝑟(𝑟𝑉𝜃) = 0 at 𝑟 = 𝑅. These gives:

𝜓𝑠,𝑜 = 1− 4(𝛾𝑠 + 2)
3(𝛾𝑠 + 3)

Γ +
𝛾𝑠 + 2

2(𝛾𝑠 + 4)
Γ2,

𝜓𝑠,1 =
𝛾𝑠 + 2
𝛾𝑠 + 1

[︂
1− 2

3
Γ
]︂[︂

1− 2(2𝛾𝑠 + 2)(𝛾𝑠 + 2)
3(2𝛾𝑠 + 3)(𝛾𝑠 + 3)

Γ
]︂
,

𝜓𝑠,2 =
𝛾𝑠 + 2
𝛾𝑠

[︂
1− (𝛾𝜃 + 2)(2𝛾𝜃 + 𝛾𝑠 + 2)

2(𝛾𝜃 + 𝛾𝑠 + 1)(𝛾𝜃 + 𝛾𝑠 + 2)

]︂
1− 2

3Γ
1− 2𝛾𝜃+3

2(𝛾𝜃+3)Γ
×[︃

1−
2(𝛾𝜃 + 𝛾𝑠 + 1)

(︀
3𝛾2
𝜃 + 2𝛾𝜃𝛾𝑠 + 11𝛾𝜃 + 3𝛾𝑠 + 9

)︀
(𝛾𝜃 + 3)(𝛾𝜃 + 𝛾𝑠 + 3)(3𝛾𝜃 + 2𝛾𝑠 + 4)

Γ

+
(𝛾𝜃 + 2)(𝛾𝜃 + 𝛾𝑠 + 1)(𝛾𝜃 + 𝛾𝑠 + 2)

(︀
3𝛾2
𝜃 + 2𝛾𝑠𝛾𝜃 + 15𝛾𝜃 + 4𝛾𝑠 + 16

)︀
(𝛾𝜃 + 3)(𝛾𝜃 + 4)(𝛾𝜃 + 𝛾𝑠 + 3)(𝛾𝜃 + 𝛾𝑠 + 4)(3𝛾𝜃 + 2𝛾𝑠 + 4)

Γ2

]︃
,

𝜓𝜃,1 =
𝛾𝑠 + 2
𝛾𝑠

[︂
1− (𝛾𝜃 + 3)(𝛾𝜃 + 4)(2𝛾𝜃 + 𝛾𝑠 + 4)

2(𝛾𝜃 + 2)(𝛾𝜃 + 𝛾𝑠 + 3)(𝛾𝜃 + 𝛾𝑠 + 4)

]︂
1− 2

3Γ

1− (𝛾𝜃+3)(2𝛾𝜃+5)
2(𝛾𝜃+2)(𝛾𝜃+5)Γ

,

𝜓𝜃,2 =
(𝛾𝜃 + 3)(𝛾𝜃 + 4)(5𝛾𝜃 + 6)

16(𝛾𝜃 + 2)(2𝛾𝜃 + 3)

[︀
1− 2

3Γ
]︀[︂

1− 2(5𝛾2
𝜃+14𝛾𝜃+10)

(2𝛾𝜃+5)(5𝛾𝜃+6) Γ
]︂

[︁
1− 2𝛾𝜃+3

2(𝛾𝜃+3)Γ
]︁[︁

1− (𝛾𝜃+3)(2𝛾𝜃+5)
2(𝛾𝜃+2)(𝛾𝜃+5)Γ

]︁ , and

𝐴𝜃 =
(𝛾𝜃 + 2)2

(𝛾𝜃 + 3)(𝛾𝜃 + 4)

⎡⎣1− (𝛾𝜃+3)(2𝛾𝜃+5)
2(𝛾𝜃+2)(𝛾𝜃+5)Γ

1− 2𝛾𝜃+3
2(𝛾𝜃+3)Γ

⎤⎦𝑅2.

The elasticity properties of the vessel can be described by the dependance of the transmural pressure on the
radius 𝐴, and it must be an increasing function of 𝐴 in order to maintain hyperbolicity. As discussed in [3], the
elasticity properties of the vessel’s wall may be impacted by the contraction of surrounding muscles or pathologies
such as aneurysms, among others. Although deriving an explicit dependance 𝑝 = 𝑝(𝑅, 𝑠) is complicated, valid
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expressions can be found in [3, 30, 32]. Following [6], the numerical tests use the following expression of the
transmural pressure,

𝑝(𝐴, 𝑠, 𝜃) = 𝐺𝑜(𝑠, 𝜃)

(︃(︂
𝐴

𝐴𝑜(𝑠, 𝜃)

)︂𝛽/2
− 1

)︃
, (28)

where 𝐴𝑜 = 𝑅2
𝑜

2 − 𝑅3
𝑜

3 sin(𝜃)𝛼′(𝑠) as defined above. This includes the effect of the wall’s thickness and the
stress-strain response. Here, 𝐺𝑜 is the elasticity coefficient. Shear stress is ignored, and it is assumed that the
transmural pressure of the fluid is the only force exerted on the vessel’s wall. The parameter 𝛽 > 1 corresponds
to a non-linear stress-strain response. The value 𝛽 = 2 provides a good approximation for experimental data [6].
The dependance of 𝐺𝑜 and 𝑅𝑜 on 𝑠 and 𝜃 allows us to explore the change in elasticity properties of the vessel’s
wall, or to explore the influence of vessel tapering on shock formation [5,12]. Here we adopt the parametrization
of the elasticity parameter in terms of the Young’s modulus and wall’s thickness given by [40]

𝐺𝑜(𝑠, 𝜃) =
4
3
ℎ𝑑
𝑟𝑑
𝐸𝑌 , (29)

where 𝐸𝑌 is the Young’s modulus, 𝑟𝑑(𝑠, 𝜃) is the radius at diastolic pressure and ℎ𝑑(𝑠, 𝜃) is the wall’s thickness.
In particular, the elasticity parameter 𝐺𝑜(𝑠, 𝜃) and the unstressed radius 𝑅𝑜(𝑠, 𝜃) can play the role of varying
coefficients in the model. Such coefficients can be asymmetric across the axis in vessels that have non-uniform
elasticity properties in damaged areas.

Taking (28), the corresponding explicit expressions of the transmural pressure decomposition in (12) are given
by ̂︀𝑝(𝐴, 𝑠, 𝜃) =

𝛽

𝛽 + 2
𝑝− 𝛽

𝛽 + 2
𝐺𝑜

𝐴𝑜 −𝐴

𝐴
, 𝑝(𝐴, 𝑠, 𝜃) =

2
𝛽 + 2

𝑝+
𝛽

𝛽 + 2
𝐺𝑜

𝐴𝑜 −𝐴

𝐴
·

The source terms associated to the pressure are given by

𝜕2𝑝 =
𝑝

𝐺𝑜
𝜕2𝐺𝑜 −

̂︀𝑝
𝐴𝑜

𝜕2𝐴𝑜, 𝜕3𝑝 =
𝑝

𝐺𝑜
𝜕3𝐺𝑜 −

̂︀𝑝
𝐴𝑜

𝜕3𝐴𝑜. (30)

Furthermore, the needed expressions to compute the source terms are given by∫︁ 𝑅

𝑜

𝑟𝜕𝑠

(︂
|𝐽 |
𝑟

)︂[︂
|𝐽 |
𝑟
𝑉𝑠

]︂2
d𝑟 = − 8(𝛾𝑠 + 2)2

(𝛾𝑠 + 3)(2𝛾𝑠 + 3)

(︂
𝐴

𝑅

)︂2

𝑅 sin(𝜃)𝛼′′(𝑠)𝑢2,∫︁ 𝑅

𝑜

𝑟𝜕𝜃

(︂
|𝐽 |
𝑟

)︂[︂
|𝐽 |
𝑟
𝑉𝑠

]︂2
d𝑟 = − 8(𝛾𝑠 + 2)2

(𝛾𝑠 + 3)(2𝛾𝑠 + 3)

(︂
𝐴

𝑅

)︂2

𝑅 cos(𝜃)𝛼′(𝑠)𝑢2,[︃
|𝐽 |𝜕𝑟

(︃[︂
|𝐽 |
𝑟

]︂2
𝑉𝑠

)︃]︃
𝑟=𝑅

= −(𝛾𝑠 + 2)[1− Γ]2
2𝐴
𝑅2

𝑢,

[︁
|𝐽 |𝜕𝑟

(︀
𝑟2𝑉𝜃

)︀
− 2|𝐽 |𝑟𝑉𝜃

]︁
𝑟=𝑅

= − (𝛾𝜃 + 1)(𝛾𝜃 + 3)(𝛾𝜃 + 4)
4(𝛾𝜃 + 2)

⎡⎣ 1− Γ

1− (𝛾𝜃+3)(2𝛾𝜃+5)
2(𝛾𝜃+2)(𝛾𝜃+5)Γ

⎤⎦2𝐴
𝑅2

𝐿.

It is important to note that the specific vessel law above is used for the numerical tests. However, equivalent
expressions can be easily obtained for other scenarios. For instance, other expressions could be used to better
approximate blood flows in collapsible tubes as it was done in [4, 28].

3.3. Steady-States

Although transient flows provide a more complete description of pulsatile blood flows, it has been shown
that under certain circumstances, steady states (i.e., those independent of time) provide enough information for
clinical assessment. In [13], a 5% difference was found in the time-averaged wall shear stress between transient
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and steady states. There are, however, other clinical situations where transient flows are necessary for an accurate
description of the pulsatile blood flow. In any case, our numerical scheme is constructed to accurately compute
transient flows, including those near steady states.

The 2D model (15) admits a large class of steady states that arise when a delicate balance between flux
gradients and source terms occurs. Here we characterize those steady states for vessels with zero curvature
(𝛼′(𝑠) = 0, or 𝛼 = 𝛼𝑜 constant), and zero viscosity (𝜈 = 0) for fluids moving in the axial direction (𝜔 = 0). In
those cases, equation (8) becomes

𝜕𝑠(𝐴 𝑢) = 0,

𝜕𝑠
(︀
𝜓𝑠,1𝐴𝑢

2
)︀

= −𝐴𝜕𝑠
(︁
𝑝
𝜌

)︁
− 𝑔𝐴 sin(𝛼𝑜),

0 = −𝐴𝜕𝜃
(︁
𝑝
𝜌

)︁
,

which implies 𝐴𝑢 = 𝑄1(𝜃) is independent of 𝑠. The parameter 𝜓𝑠,1 is constant in vessels with zero curvature
with the profiles in Section 3.2. The second equation for the balance of momentum can be re-written as

𝐴𝜕𝑠

(︂
𝜓𝑠,1

𝑢2

2
+
𝑝

𝜌
+ 𝑔𝑧𝑜(𝑠)

)︂
= 0,

where

𝑧𝑜(𝑠) = sin(𝛼𝑜) 𝑠

is the artery’s elevation above a reference height. As a result, smooth steady states for vessels with zero curvature,
zero viscosity and vanishing angular velocity satisfy that the discharge 𝑄1 = 𝐴𝑢 and the energy 𝐸 = 𝜓𝑠,1

𝑢2

2 +
𝑝
𝜌 + 𝑔𝑧𝑜(𝑠) are independent of 𝑠, whereas the transmural pressure 𝑝 is independent of 𝜃. In particular, one could
have constant discharge and energy. The steady states at rest correspond to the special case

𝑢 = 0, 𝜔 = 0, 𝑅 = 𝑅𝑜(𝑠, 𝜃), 𝛼(𝑠) = 0. (31)

Below we construct a numerical scheme that respects those steady states at rest for arteries with arbitrary cross
sections.

4. Central-upwind numerical scheme

In this work, we use a central-upwind scheme, whose semi-discrete formulation is obtained after integrating
equation (15) over each cell 𝒞𝑗,𝑘 :=

[︁
𝑠𝑗− 1

2
, 𝑠𝑗+ 1

2

]︁
×
[︁
𝜃𝑘− 1

2
, 𝜃𝑘+ 1

2

]︁
, with center at (𝑠𝑗 , 𝜃𝑘), 𝑠𝑗± 1

2
= 𝑠𝑗 ±∆𝑠/2 and

𝜃𝑘± 1
2

= 𝜃𝑘 ±∆𝜃/2. The cell averages U𝑗,𝑘(𝑡)

U𝑗,𝑘(𝑡) =
1

∆𝑠∆𝜃

∫︁
𝒞𝑗,𝑘

∫︁
U(𝑠, 𝜃, 𝑡)d𝑠d𝜃

are approximated by solving the semi-discrete formulation

d
d𝑡

U𝑗,𝑘(𝑡) = −
H𝐹
𝑗+ 1

2 ,𝑘
(𝑡)−H𝐹

𝑗− 1
2 ,𝑘

(𝑡)

∆𝑠
−

H𝐺
𝑗,𝑘+ 1

2
(𝑡)−H𝐺

𝑗,𝑘− 1
2
(𝑡)

∆𝜃
+ S𝑗,𝑘(𝑡), (32)
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with numerical fluxes H𝐹 and H𝐺 given by [25],

H𝐹
𝑗+ 1

2 ,𝑘
(𝑡) =

𝑎+
𝑗+ 1

2 ,𝑘
𝐹
(︁
U−
𝑗+ 1

2 ,𝑘

)︁
− 𝑎−

𝑗+ 1
2 ,𝑘
𝐹
(︁
U+
𝑗+ 1

2 ,𝑘

)︁
𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

+
𝑎+
𝑗+ 1

2 ,𝑘
𝑎−
𝑗+ 1

2 ,𝑘

𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

[︁
U+
𝑗+ 1

2 ,𝑘
−U−

𝑗+ 1
2 ,𝑘

]︁
,

H𝐺
𝑗,𝑘+ 1

2
(𝑡) =

𝑏+
𝑗,𝑘+ 1

2
𝐺
(︁
U−
𝑗,𝑘+ 1

2

)︁
− 𝑏−

𝑗,𝑘+ 1
2
𝐺
(︁
U+
𝑗,𝑘+ 1

2

)︁
𝑏+
𝑗,𝑘+ 1

2
− 𝑏−

𝑗,𝑘+ 1
2

+
𝑏+
𝑗,𝑘+ 1

2
𝑏−
𝑗,𝑘+ 1

2

𝑏+
𝑗,𝑘+ 1

2
− 𝑏−

𝑗,𝑘+ 1
2

[︁
U+
𝑗,𝑘+ 1

2
−U−

𝑗,𝑘+ 1
2

]︁
.

(33)

For any quantity of interest 𝑞 = 𝑞(U), the corresponding interface values are obtained via the following piece-wise
linear reconstruction

𝑞−
𝑗+ 1

2 ,𝑘
= 𝑞𝑗,𝑘 +

∆𝑠
2

(𝑞𝑠)𝑗,𝑘,

𝑞+
𝑗− 1

2 ,𝑘
= 𝑞𝑗,𝑘 −

∆𝑠
2

(𝑞𝑠)𝑗,𝑘,

𝑞−
𝑗,𝑘+ 1

2
= 𝑞𝑗,𝑘 +

∆𝜃
2

(𝑞𝜃)𝑗,𝑘,

𝑞+
𝑗,𝑘− 1

2
= 𝑞𝑗,𝑘 −

∆𝜃
2

(𝑞𝜃)𝑗,𝑘,

(34)

where the slopes (𝑞𝑠)𝑗,𝑘 and (𝑞𝜃)𝑗,𝑘 are calculated using the generalized minmod limiter

(𝑞𝑠)𝑗,𝑘 = minmod
(︂
𝜑
𝑞𝑗,𝑘 − 𝑞𝑗−1,𝑘

∆𝑠
,
𝑞𝑗+1,𝑘 − 𝑞𝑗−1,𝑘

2∆𝑠
, 𝜑
𝑞𝑗+1,𝑘 − 𝑞𝑗,𝑘

∆𝑠

)︂
, (35)

(𝑞𝜃)𝑗,𝑘 = minmod
(︂
𝜑
𝑞𝑗,𝑘 − 𝑞𝑗,𝑘−1

∆𝜃
,
𝑞𝑗,𝑘+1 − 𝑞𝑗,𝑘−1

2∆𝜃
, 𝜑
𝑞𝑗,𝑘+1 − 𝑞𝑗,𝑘

∆𝜃

)︂
, (36)

where

minmod(𝑧1, 𝑧2, . . .) =

⎧⎨⎩min𝑗{𝑧𝑗} if 𝑧𝑗 > 0 ∀𝑗,
max𝑗{𝑧𝑗} if 𝑧𝑗 < 0 ∀𝑗,

0 otherwise.

Here, the parameter 𝜑 is used to control the amount of numerical viscosity present in the resulting scheme.
The discretization of the averaged source terms

S𝑗,𝑘(𝑡) =
1

∆𝑠∆𝜃

∫︁
𝒞𝑗,𝑘

∫︁
𝑆(U)(𝑠, 𝜃, 𝑡)d𝑠d𝜃

is carried out so as to satisfy the well-balanced property. This is explained in more detail in Section 4.1.
The one-sided local speeds in the 𝑠- and 𝜃-directions, 𝑎±

𝑗+ 1
2 ,𝑘

and 𝑏±
𝑗,𝑘+ 1

2
, are obtained from the largest and

the smallest eigenvalues of the Jacobians 𝜕𝐹 (U)
𝜕U and 𝜕𝐺(U)

𝜕U , respectively. Using (22) and (23), it follows that:

𝑎+
𝑗+ 1

2 ,𝑘
= max

{︁
(𝜆𝑠𝑜)

−
𝑗+ 1

2 ,𝑘
,
(︀
𝜆𝑠+
)︀−
𝑗+ 1

2 ,𝑘
, 𝑢−
𝑗+ 1

2 ,𝑘
, (𝜆𝑠𝑜)

+
𝑗+ 1

2 ,𝑘
,
(︀
𝜆𝑠+
)︀+
𝑗+ 1

2 ,𝑘
, 𝑢+
𝑗+ 1

2 ,𝑘
, 0
}︁
, (37a)
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𝑎−
𝑗+ 1

2 ,𝑘
= min

{︁
(𝜆𝑠𝑜)

−
𝑗+ 1

2 ,𝑘
,
(︀
𝜆𝑠−
)︀−
𝑗+ 1

2 ,𝑘
, 𝑢−
𝑗+ 1

2 ,𝑘
, (𝜆𝑠𝑜)

+
𝑗+ 1

2 ,𝑘
,
(︀
𝜆𝑠−
)︀+
𝑗+ 1

2 ,𝑘
, 𝑢+
𝑗+ 1

2 ,𝑘
, 0
}︁
, (37b)

𝑏+
𝑗,𝑘+ 1

2
= max

{︁(︀
𝜆𝜃𝑜
)︀−
𝑗,𝑘+ 1

2
,
(︀
𝜆𝜃+
)︀−
𝑗,𝑘+ 1

2
, 𝜔−

𝑗,𝑘+ 1
2
,
(︀
𝜆𝜃𝑜
)︀+
𝑗,𝑘+ 1

2
,
(︀
𝜆𝜃+
)︀+
𝑗,𝑘+ 1

2
, 𝜔+

𝑗,𝑘+ 1
2
, 0
}︁
, (37c)

𝑏−
𝑗,𝑘+ 1

2
= min

{︁(︀
𝜆𝜃𝑜
)︀−
𝑗,𝑘+ 1

2
,
(︀
𝜆𝜃−
)︀−
𝑗,𝑘+ 1

2
, 𝜔−

𝑗,𝑘+ 1
2
,
(︀
𝜆𝜃𝑜
)︀+
𝑗,𝑘+ 1

2
,
(︀
𝜆𝜃−
)︀+
𝑗,𝑘+ 1

2
, 𝜔+

𝑗,𝑘+ 1
2
, 0
}︁
. (37d)

The time integration of the ODE system (32) is done using the second-order strong stability preserving Runge–
Kutta scheme [15]

U(1) = U(𝑡) + ∆𝑡C[U(𝑡)], (38a)

U(2) =
1
2
U +

1
2

(︁
U(1) + ∆𝑡C

[︁
U(1)

]︁)︁
, (38b)

U(𝑡+ ∆𝑡) := U(2), (38c)

with

C[U(𝑡)]𝑗,𝑘 = −
H𝐹
𝑗+ 1

2 ,𝑘
(𝑡)−H𝐹

𝑗− 1
2 ,𝑘

(𝑡)

∆𝑠
−

H𝐺
𝑗,𝑘+ 1

2
(𝑡)−H𝐺

𝑗,𝑘− 1
2
(𝑡)

∆𝜃
+ S𝑗,𝑘(𝑡).

The Courant–Friedrichs–Lewy (CFL) condition that determines the time step ∆𝑡 is

∆𝑡 ≤ 1
4

min
{︂

∆𝑠
𝑎
,

∆𝜃
𝑏

}︂
, (39)

where
𝑎 = max

𝑗,𝑘

{︁
max

(︁
𝑎+
𝑗+ 1

2 ,𝑘
,−𝑎−

𝑗+ 1
2 ,𝑘

)︁}︁
, and 𝑏 = max

𝑗,𝑘

{︁
max

(︁
𝑏+
𝑗,𝑘+ 1

2
,−𝑏−

𝑗,𝑘+ 1
2

)︁}︁
.

We note that a factor of 1
4 is used in the CFL condition in order to guarantee the positivity-preserving property

instead of the usual factor of 1
2 that could be used when positivity is not an issue. A similar restriction is found

in [24]. We also note that by construction, the numerical scheme is second-order in space and time in smooth
regions.

4.1. Steady states at rest and positivity of the cross-sectional radius

The quantities of interest to compute the numerical flux in equation (33) are reconstructed at the interfaces
via equation (34) using the minmod limiter given by equation (35). However, the reconstructed values need to
be implemented carefully in order to guarantee the well-balance property. For that end, we assume that the
radius at rest 𝑅𝑜(𝑠, 𝜃) is defined at the interfaces

(︁
𝑠𝑗 , 𝜃𝑘± 1

2

)︁
and at

(︁
𝑠𝑗± 1

2
, 𝜃𝑘

)︁
, and we define it at the center

of each cell as

𝑅𝑜,𝑗,𝑘 :=
1
4

[︁
𝑅𝑜

(︁
𝑠𝑗− 1

2
, 𝜃𝑘

)︁
+𝑅𝑜

(︁
𝑠𝑗+ 1

2
, 𝜃𝑘

)︁
+𝑅𝑜

(︁
𝑠𝑗 , 𝜃𝑘− 1

2

)︁
+𝑅𝑜

(︁
𝑠𝑗 , 𝜃𝑘+ 1

2

)︁]︁
. (40)

On the other hand, the angle 𝛼(𝑠) is defined at each interface point 𝑠𝑗+ 1
2
. The derivatives both at the center of

each cell and at the interfaces are approximated via centered differences as

𝛼(𝑠𝑗) ≈
𝛼
(︁
𝑠𝑗+ 1

2

)︁
+ 𝛼

(︁
𝑠𝑗− 1

2

)︁
2

, 𝛼′(𝑠𝑗) ≈
𝛼
(︁
𝑠𝑗+ 1

2

)︁
− 𝛼

(︁
𝑠𝑗− 1

2

)︁
∆𝑠

, 𝛼′
(︁
𝑠𝑗+ 1

2

)︁
≈ 𝛼(𝑠𝑗+1)− 𝛼(𝑠𝑗)

∆𝑠
(41)

which gives

𝐴𝑜,𝑗+ 1
2 ,𝑘

=
𝑅2
𝑜,𝑗+ 1

2 ,𝑘

2
−
𝑅3
𝑜,𝑗+ 1

2 ,𝑘

3
sin(𝜃𝑘)𝛼′

(︁
𝑠𝑗+ 1

2

)︁
,
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𝐴𝑜,𝑗,𝑘+ 1
2

=
𝑅2
𝑜,𝑗,𝑘+ 1

2

2
−
𝑅3
𝑜,𝑗,𝑘+ 1

2

3
sin
(︁
𝜃𝑘+ 1

2

)︁
𝛼′(𝑠𝑗).

In order to reconstruct 𝐴 at the interfaces, we define 𝒜 = 𝐴/𝐴𝑜 and reconstruct the values 𝒜±
𝑗+ 1

2 ,𝑘
and

𝒜±
𝑗,𝑘+ 1

2
at the cell interfaces using equation (34). The cross-sectional area at the cell interfaces are then given

by
𝐴±
𝑗+ 1

2 ,𝑘
= 𝒜±

𝑗+ 1
2 ,𝑘
𝐴𝑜,𝑗+ 1

2 ,𝑘
, 𝐴±

𝑗,𝑘+ 1
2

= 𝒜±
𝑗,𝑘+ 1

2
𝐴𝑜,𝑗,𝑘+ 1

2
. (42)

This way, if 𝑅 = 𝑅𝑜 or equivalently 𝐴 = 𝐴𝑜 at the center of each cell (as it occurs for steady states at rest), the
same equality holds at the cell interfaces. Once the variable 𝐴 is reconstructed, this gives the reconstruction for
𝑅 by inverting it in terms of 𝐴. One also obtains the reconstruction for the parameter Γ via the relation

Γ±
𝑗+ 1

2 ,𝑘
= 𝑅±

𝑗+ 1
2 ,𝑘

sin(𝜃𝑘)±𝛼′
(︁
𝑠𝑗+ 1

2

)︁
, Γ±

𝑗,𝑘+ 1
2

= 𝑅±
𝑗,𝑘+ 1

2
sin
(︁
𝜃𝑘+ 1

2

)︁
𝛼′(𝑠𝑗). (43)

This immediately defines all the parameter functions 𝜓𝑠,𝑜, 𝜓𝑠,1, 𝜓𝑠,2, 𝜓𝜃,1, 𝜓𝜃,2 and 𝐴𝜃 at the interfaces. The
conserved variables 𝑄1 = 𝜓𝑠,𝑜𝐴𝑢 and 𝑄2 = 𝐴𝐿 are reconstructed directly via equation (34), from which we can
recover the reconstructed values for 𝑢 = 𝑄1

𝜓𝑠,𝑜𝐴
, 𝐿 = 𝑄2

𝐴 , and 𝜔 = 𝐿
𝐴𝜃
·

The source terms in equation (17) do not involve derivatives of the solution itself and one can use the cell
averages to discretize them. The partial derivatives 𝜕2𝑝 and 𝜕3𝑝 are with respect to the explicit dependance of
the fixed parameters involved in the definition of the transmural pressure. For instance, the transmural pressure
𝑝 given by equation (28) involves the radius at rest 𝑅𝑜(𝑠, 𝜃) and the parameter 𝐺𝑜(𝑠, 𝜃). The parameter 𝐺𝑜(𝑠, 𝜃)
is defined at the interfaces

(︁
𝑠𝑗 , 𝜃𝑘± 1

2

)︁
and

(︁
𝑠𝑗± 1

2
, 𝜃𝑘

)︁
, and we define it at the center of each cell as

𝐺𝑜,𝑗,𝑘 :=
1
4

[︁
𝐺𝑜

(︁
𝑠𝑗− 1

2
, 𝜃𝑘

)︁
+𝐺𝑜

(︁
𝑠𝑗+ 1

2
, 𝜃𝑘

)︁
+𝐺𝑜

(︁
𝑠𝑗 , 𝜃𝑘− 1

2

)︁
+𝐺𝑜

(︁
𝑠𝑗 , 𝜃𝑘+ 1

2

)︁]︁
. (44)

The terms 𝜕2𝑝 and 𝜕3𝑝 are given explicitly by equation (30). In that case, one only needs partial derivatives of
𝐺𝑜 and 𝐴𝑜 which are approximated as

𝜕2𝐺𝑜(𝑠𝑗 , 𝜃𝑘) ≈
𝐺𝑜

(︁
𝑠𝑗+ 1

2 ,𝑘

)︁
−𝐺𝑜

(︁
𝑠𝑗− 1

2 ,𝑘

)︁
∆𝑠

,

𝜕3𝐺𝑜(𝑠𝑗 , 𝜃𝑘) ≈
𝐺𝑜

(︁
𝑠𝑗,𝑘+ 1

2

)︁
−𝐺𝑜

(︁
𝑠𝑗,𝑘− 1

2

)︁
∆𝜃

,

(45)

𝜕2𝐴𝑜(𝑠𝑗 , 𝜃𝑘) ≈
𝐴𝑜

(︁
𝑠𝑗+ 1

2 ,𝑘

)︁
−𝐴𝑜

(︁
𝑠𝑗− 1

2 ,𝑘

)︁
∆𝑠

,

𝜕3𝐴𝑜(𝑠𝑗 , 𝜃𝑘) ≈
𝐴𝑜

(︁
𝑠𝑗,𝑘+ 1

2

)︁
−𝐴𝑜

(︁
𝑠𝑗,𝑘− 1

2

)︁
∆𝜃

·

(46)

In a steady state at rest given by equation (31), the reconstructed values of 𝑢 and 𝜔 are zero, and the equality
𝑅 = 𝑅𝑜 holds at the interfaces. As a result, all the numerical fluxes H𝐹

𝑗+ 1
2 ,𝑘
,H𝐺

𝑗,𝑘+ 1
2

and the source terms S𝑗,𝑘
vanish. We have proved the following proposition.

Proposition 2. Consider system (15)–(17) with transmural pressure given by (28). Then, the numerical scheme
(33)–(39) with the discretizations given by (40)–(46) is well-balanced, i.e., U(𝑡 + ∆𝑡) = U(𝑡) for steady states
at rest.
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The following proposition shows that the CFL condition (39) guarantees the positivity of 𝐴 when the solution
is computed with the Runge–Kutta method (38) and a slight modification is applied to the reconstruction at
the interfaces. This is particularly important in situations where the cross section is small. This is not a relevant
case from the medical point of view. However, we present it here for the sake of completeness and it would be
useful for applications involving collapsed tubes.

Since we have reconstructed 𝒜 = 𝐴/𝐴𝑜 at the interfaces,

𝐴𝑗,𝑘 =
1
4

[︁
𝐴+
𝑗− 1

2 ,𝑘
+𝐴−

𝑗+ 1
2 ,𝑘

+𝐴−
𝑗,𝑘+ 1

2
+𝐴+

𝑗,𝑘− 1
2

]︁
(47)

does not necessarily hold unless 𝐴𝑜 is constant. In the cases where one decides to implement the positivity-
preserving property, a modification in the reconstruction must be implemented. Namely,

𝒜−
𝑗+ 1

2 ,𝑘
= 𝒜𝑗,𝑘 +

∆𝑠
2

(𝒜𝑠)𝑗,𝑘 (48a)

𝐴−
𝑗+ 1

2 ,𝑘
= min

(︁
max

{︁
𝒜−
𝑗+ 1

2 ,𝑘
𝐴𝑜,𝑗+ 1

2 ,𝑘
, 𝐴𝑡ℎ

}︁
, 2𝐴𝑗,𝑘

)︁
(48b)

𝐴+
𝑗− 1

2 ,𝑘
= 2𝐴𝑗,𝑘 −𝐴−

𝑗+ 1
2 ,𝑘

(48c)

with the analogous procedure for 𝐴±
𝑗,𝑘± 1

2
. Here 𝐴𝑡ℎ is a threshold value needed to maintain positivity in the

reconstruction of the interface values. The threshold value can be chosen empirically. This has been done in
different contexts and it has shown to be useful in achieving the positivity-preserving property. See for instance
[23], where a scheme with this property was derived for the shallow water equations. The threshold will be used
only when the corresponding variable (cross sectional area in our case) is small and there is a risk of getting
negative unphysical values. Despite the fact that the threshold is obtained empirically, it does not affect the
performance of the numerical scheme and the alternative of not using it could result in unphysical situations.
In this work, we did not include numerical tests where a threshold is needed but it could be used in a future
work.

Equation (48b) guarantees that 0 ≤ 𝐴−
𝑗+ 1

2 ,𝑘
≤ 2𝐴𝑗,𝑘, and the discretization is consistent with the equations.

Equation (48c) guarantees 𝐴+
𝑗− 1

2 ,𝑘
≥ 0. As a result, the above corrections ensure the positivity of the recon-

structed values as well as the relation in equation (47) needed in the proof below. It is also important to mention
that the above corrections does not affect the well-balance property.

Proposition 3. Consider the scheme with the reconstruction algorithm described in Section 4.1. If the cell
averages 𝐴𝑗,𝑘(𝑡) are such that

𝐴𝑗,𝑘(𝑡) ≥ 0 ∀ 𝑗, 𝑘
then the cell averages 𝐴𝑗,𝑘(𝑡+ ∆𝑡) computed with the Runge–Kutta method (38) for all 𝑗, 𝑘, under the CFL
limitation (39), will yield

𝐴𝑗,𝑘(𝑡+ ∆𝑡) ≥ 0 ∀ 𝑗, 𝑘.

Proof. Since our Runge–Kutta numerical scheme can be written as a convex combination of Euler steps, one
only needs to prove it for just one forward Euler step. The first component in equation (32) can be written as

𝐴𝑗,𝑘(𝑡+ ∆𝑡) = 𝐴𝑗,𝑘(𝑡)− ∆𝑡
∆𝑠

[︂(︁
H𝐹
𝑗+ 1

2 ,𝑘

)︁(1)

−
(︁
H𝐹
𝑗− 1

2 ,𝑘

)︁(1)
]︂

− ∆𝑡
∆𝜃

[︂(︁
H𝐺
𝑗,𝑘+ 1

2

)︁(1)

−
(︁
H𝐺
𝑗,𝑘− 1

2

)︁(1)
]︂
.

Using (33), we can rewrite it as

𝐴𝑗,𝑘(𝑡+ ∆𝑡) =

[︃
1
4
− ∆𝑡

∆𝑠
𝑎+
𝑗+ 1

2 ,𝑘

𝑢−
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

]︃
𝐴−
𝑗+ 1

2 ,𝑘
+

[︃
1
4

+
∆𝑡
∆𝑠

𝑎−
𝑗− 1

2 ,𝑘

𝑎+
𝑗− 1

2 ,𝑘
− 𝑢+

𝑗− 1
2 ,𝑘

𝑎+
𝑗− 1

2 ,𝑘
− 𝑎−

𝑗− 1
2 ,𝑘

]︃
𝐴+
𝑗− 1

2 ,𝑘
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+

[︃
1
4
− ∆𝑡

∆𝜃
𝑏+
𝑗,𝑘+ 1

2

𝜔−
𝑗,𝑘+ 1

2
− 𝑏−

𝑗,𝑘+ 1
2

𝑏+
𝑗,𝑘+ 1

2
− 𝑏−

𝑗,𝑘+ 1
2

]︃
𝐴−
𝑗,𝑘+ 1

2
+

[︃
1
4

+
∆𝑡
∆𝜃

𝑏−
𝑗,𝑘− 1

2

𝑏+
𝑗,𝑘− 1

2
− 𝜔+

𝑗,𝑘− 1
2

𝑏+
𝑗,𝑘− 1

2
− 𝑏−

𝑗,𝑘− 1
2

]︃
𝐴+
𝑗,𝑘− 1

2

− ∆𝑡
∆𝑠

𝑎−
𝑗+ 1

2 ,𝑘

𝑎+
𝑗+ 1

2 ,𝑘
− 𝑢+

𝑗+ 1
2 ,𝑘

𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

𝐴+
𝑗+ 1

2 ,𝑘
+

∆𝑡
∆𝑠

𝑎+
𝑗− 1

2 ,𝑘

𝑢−
𝑗− 1

2 ,𝑘
− 𝑎−

𝑗− 1
2 ,𝑘

𝑎+
𝑗− 1

2 ,𝑘
− 𝑎−

𝑗− 1
2 ,𝑘

𝐴−
𝑗− 1

2 ,𝑘

− ∆𝑡
∆𝜃

𝑏−
𝑗,𝑘+ 1

2

𝑏+
𝑗,𝑘+ 1

2
− 𝜔+

𝑗,𝑘+ 1
2

𝑏+
𝑗,𝑘+ 1

2
− 𝑏−

𝑗,𝑘+ 1
2

𝐴+
𝑗,𝑘+ 1

2
+

∆𝑡
∆𝜃

𝑏+
𝑗,𝑘− 1

2

𝜔−
𝑗,𝑘− 1

2
− 𝑏−

𝑗,𝑘− 1
2

𝑏+
𝑗,𝑘− 1

2
− 𝑏−

𝑗,𝑘− 1
2

𝐴−
𝑗,𝑘− 1

2

+𝐴𝑗,𝑘 −
1
4

[︁
𝐴+
𝑗− 1

2 ,𝑘
+𝐴−

𝑗+ 1
2 ,𝑘

+𝐴−
𝑗,𝑘+ 1

2
+𝐴+

𝑗,𝑘− 1
2

]︁
.

The first four terms in the above equation will be non negative under the CFL restriction (39). Also, since
𝑎−
𝑗+ 1

2 ,𝑘
≤ 0, 𝑏−

𝑗,𝑘+ 1
2
≤ 0, 𝑎+

𝑗− 1
2 ,𝑘

≥ 0 and 𝑏+
𝑗,𝑘− 1

2
≥ 0, the following four terms in the above equation are also non

negative, which concludes the proof. �

5. Numerical experiments

Different numerical experiments are presented to show the merits of the numerical scheme and the dynamics
of the flow given by the model derived in this paper. One can analyze situations where vessels exhibit non-
uniform elasticity properties and the effect on the dynamics of the flow. In the following tests, we focus on the
variations of velocity, pressure and wall’s deformation in the angular directions, which is indeed easily captured
by the proposed 2D model. It can occur for instance, in vessels with damaged regions leading to asymmetric
elasticity properties. The axial velocity at damaged regions is analyzed is numerical examples 5.3 and 5.4. In
example 5.3, this velocity is compared between a non-damaged vessel and a damaged vessel (similar to an
idealized aneurysma) with a localized damaged area.

The velocity field in 3D views of the artery is computed as follows. First, we need to compute the curvature
radius, which is given by

𝑅𝑐 =

(︀
𝑅2 +𝑅2

𝜃

)︀ 3
2

𝑅2 + 2𝑅2
𝜃 −𝑅𝑅𝜃𝜃

=
𝑅
(︁

1 +
(︀
𝑅𝜃

𝑅

)︀2)︁ 3
2

1 + 2
(︀
𝑅𝜃

𝑅

)︀2 − 𝑅𝜃𝜃

𝑅

,

where
𝑅𝜃 = 𝜕𝜃𝑅, 𝑅𝜃𝜃 = 𝜕2

𝜃𝜃𝑅.

The total velocity at each point

(𝑥(𝑠, 𝜃), 𝑦(𝑠, 𝜃), 𝑧(𝑠, 𝜃)) = (−𝑅 sin(𝛼(𝑠)) sin(𝜃) + 𝑥𝑜(𝑠), 𝑅 cos(𝜃), 𝑅 cos(𝛼(𝑠)) sin(𝜃) + 𝑧𝑜(𝑠))

is given by

V(𝑠, 𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
cos(𝛼(𝑠))

0

sin(𝛼(𝑠))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑢+

𝑅𝑐

𝑅(︁
1 +

(︀
𝑅𝜃

𝑅

)︀2)︁ 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin(𝛼(𝑠))
(︁

cos(𝜃) + 𝑅𝜃

𝑅 sin(𝜃)
)︁

− sin(𝜃) + 𝑅𝜃

𝑅 cos(𝜃)

cos(𝛼(𝑠))
(︁

cos(𝜃) + 𝑅𝜃

𝑅 sin(𝜃)
)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑈𝑇𝑎𝑛𝑔, (49)

where

𝑈𝑇𝑎𝑛𝑔 =
1
𝐴

∫︁ 𝑅

𝑜

𝑟𝑉𝜃|𝐽 |d𝑟. (50)
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For convenience and ease of notation, we define ℛ = 𝑅/𝑅𝑜 at the center of each cell.
In all cases, we apply periodic boundary conditions in 𝜃. The boundary conditions in the axial directions are

specified in each numerical test. Also, the parameters used for these numerical experiments are as follows. The
blood density is 𝜌 = 1050 kg m−3, blood viscosity coefficient 𝜈 = 4 cP, 𝛽 = 2, 𝛾𝑠 = 9, 𝛾𝜃 = 2, Young’s modulus
𝐸𝑌 = 400 kPa and ℎ𝑑 = 0.5 mm. Finally, we take 𝑟𝑑 = 𝑅𝑜.

5.1. Horizontal vessel with tapering: evolution of perturbation

In this first numerical test, we consider the simple case of a horizontal vessel (𝛼(𝑠) = 0) with tapering. That
is, 𝐴𝑜 is given by

𝐴𝑜(𝑠, 𝜃) = 𝐴⋆𝑜(1− 𝑠𝑇𝑝), 𝑅𝑜(𝑠, 𝜃) =
√︀

2𝐴𝑜(𝑠, 𝜃),

where 𝑇𝑝 = 0.005 cm−1 is the tapering factor and 𝐴⋆𝑜 = (0.82 cm)2. The initial vessel’s radius consists of
a perturbation from a steady state. The perturbation is located in the middle of the artery. Specifically, the
center is at 𝑠⋆ = 25 cm and 𝜃⋆ = 𝜋

4 rad. The initial radius is then given by

𝑅(0, 𝑠, 𝜃) = ℛ(0, 𝑠, 𝜃)𝑅𝑜(𝑠, 𝜃), where

ℛ(0, 𝑠, 𝜃) =

{︃
1 if 𝑑(𝑠,𝜃)

𝑅𝑜(𝑠⋆,𝜃⋆) > 1,

1 + 1
5 sin

(︁[︁
1− 𝑑(𝑠,𝜃)

𝑅𝑜(𝑠⋆,𝜃⋆)

]︁
𝜋
2

)︁
if 𝑑(𝑠,𝜃)

𝑅𝑜(𝑠⋆,𝜃⋆) ≤ 1

and

𝑑(𝑠, 𝜃) =

√︂
1
4

[𝑥(𝑠⋆, 𝜃⋆)− 𝑥(𝑠, 𝜃)]2 + [𝑦(𝑠⋆, 𝜃⋆)− 𝑦(𝑠, 𝜃)]2 + [𝑧(𝑠⋆, 𝜃⋆)− 𝑧(𝑠, 𝜃)]2.

Neumann boundary conditions are imposed at both ends (𝑠 = 0, 𝑠𝐿) with 𝑠𝐿 = 50 cm.
In this first numerical test, the initial conditions consist of a radius perturbation from a steady state. That

is, the transmural pressure is zero everywhere in the artery, except in an area near (𝑠⋆, 𝜃⋆) where the radius
is above the steady state one and the transmural pressure becomes positive. Figure 2 shows a 3D view of the
artery with the above initial conditions in panel (a). This generates a displacement that consists of a radial
expansion at early times, and it can be observed in panels (b) and (c). The color bar indicates the ratio of the
vessel radius at time 𝑡 and its initial value (𝑅(𝑡; 𝑠, 𝜃)/𝑅𝑜(𝑠, 𝜃)), which can help us identify the evolution of the
perturbation. The initial perturbation covers only a partial side of the artery’s wall and the displacement goes
in both the axial and angular directions. At later times in panels (d) and (e), the displacement has already
reached the opposite side of the wall and it has come back to the initial location by periodicity in the angular
direction. The last panel (f) shows the solution at time 𝑡 = 0.1 s where the displacement has already propagated
in the axial direction outside the visualized region. As a result, the artery has recovered its initial unperturbed
steady state.

5.2. Aorta vessel with discharge

The previous case showed that the model and the numerical scheme produces good results for perturbations
to steady states in horizontal vessels. For the rest of the numerical tests, we will consider geometries similar to
an idealized aorta without branches.

Let 𝑅⋆𝑜(𝑠) be the piecewise linear function of 𝑠 obtained according to the radius at diastolic pressure shown
in [40, Table IV], which we present in Table 1 for the convenience of the reader. The initial conditions for the
artery’s geometry is described by cross sections given by

𝑅𝑜(𝑠, 𝜃) = 𝑅⋆𝑜(𝑠)ℎ(𝜃),

where ℎ(𝜃) is a function that determines the type of cross section that we may have. We note that we obtain
circular cross sections when ℎ(𝜃) is constant. As it is reported in [26], however, we may observe cross sections
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Figure 2. A 3D view of the vessel. The arrows near the wall indicate the velocity field given by
equation (49). The color bar indicates the ratio of the vessel radius at time 𝑡 and the unstressed
value (𝑅(𝑡; 𝑠, 𝜃)/𝑅𝑜(𝑠, 𝜃)). The initial conditions, which consists of a radius perturbation near
𝑠⋆ = 25 cm and 𝜃⋆ = 𝜋/4 rad is shown in (a), where the entire artery is visualized. The rest
of the panels show a section 15 cm ≤ 𝑠 ≤ 35 cm where the perturbation evolves at times
𝑡 = 0.0005 s (b), 𝑡 = 0.001 s (c), 𝑡 = 0.0045 s (d), 𝑡 = 0.005 s (e) and 𝑡 = 0.1 s (f). The arrows
indicate the 3D velocity field given by equation (49).

Table 1. Description of aorta’s geometry and dimensions. The segments, their lengths,
left and right radii are shown in the first four columns. Such values were obtained from
[40, Table IV].

Segment Length (cm) Left radius (cm ) Right radius (cm)

I 7.0357 1.52 1.39
II 0.8 1.39 1.37
III 0.9 1.37 1.35
IV 6.4737 1.35 1.23
V 15.2 1.23 0.99
VI 1.8 0.99 0.97
VII 0.7 0.97 0.962
VIII 0.7 0.962 0.955
IX 4.3 0.955 0.907
X 4.3 0.907 0.86
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Figure 3. Blood flow simulation passing through the full aorta. Left panel: 3D view of the
aorta. Top right: Velocity at the left boundary in a cardiac cycle as a function of time. Middle
right: Profile of 𝑅𝑜 as a function of arc-length 𝑠 for different angles. Bottom right: Profile of
𝐺𝑜 as function of arc-length 𝑠.

that have an elliptical-like shape in the aorta. We then choose

ℎ(𝜃) =

√︃
1− 𝜉2 sin(𝜃)2

1− 𝜉2
,

where 𝜉 is the eccentricity and 𝜉 ∈ [0, 1). Graphs of 𝑅𝑜 as a function of axial position 𝑠 for different values of 𝜃
are displayed in the middle right panel of Figure 3 .

The parameter 𝐺⋆𝑜(𝑠) is given by equation (29). A graph of 𝐺𝑜 is displayed in the bottom right panel of
Figure 3. As an approximation to the aorta’s curvature, the angle 𝛼(𝑠) is given by

𝛼(𝑠) =

{︃[︀
1− 𝑠

12.63 cm

]︀
𝜋
2 if 0 ≤ 𝑠 ≤ 12.63 cm,

−𝜋
2 if 𝑠 > 12.63 cm.

That is, the vessel is straight up at the upstream boundary 𝛼(0 cm) = 𝜋/2 and points down at 𝑠 = 12.63 cm, where
𝛼(12.63 cm) = −𝜋/2. Figure 3 (left panel) shows a 3D view of the tapered vessel at time 𝑡 = 0 s (seconds not to
be confused with arclength’s position). Here, we use 200 grid points in the axial direction and 180 grid points in
the angular direction. The initial condition is given by 𝐴 = 𝐴𝑜, 𝑢 = 0 and 𝐿 = 0 in a tilted vessel with elliptical
geometric shape (𝜉 = 0.4), which would have corresponded to a steady state if the vessel was horizontal.

At the left boundary (𝑠 = 0), we impose a velocity that corresponds to a cardiac cycle (to be specified below)
and Dirichlet boundary conditions for the radius 𝑅 = 𝑅𝑜 and 𝜔 = 0. The discharge at the left boundary breaks
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Figure 4. Profiles as a function of time at 𝑠 = 21.10 cm. Top left: Radius 𝑅 at different
angles. Top right: Axial velocity 𝑢. Bottom left: Pressure 𝑝. Bottom right: Tangential velocity
𝑈𝑇𝑎𝑛𝑔.

the balance and induces a moving state. Neumann boundary conditions are imposed at the right boundary. The
time series for the velocity at the left boundary was obtained from [5], and it was approximated using the first
15 elements of its Fourier decomposition. Initially, the velocity at the left boundary increases up to speeds above
1 ms−1. A graph of the inlet velocity as a function of time can be found in the top right panel of Figure 3 .

In Figure 4, we show the evolution of four variables, radius 𝑅, axial velocity 𝑢, pressure 𝑝 and tangential
velocity 𝑈𝑇𝑎𝑛𝑔, over 2 seconds at 𝑠 = 21.10 cm. Here, the vessel’s radius 𝑅 is increased due to the influence
of the inlet velocity given by the cardiac cycle. On the hand, the transmural pressure reaches its maximum of
approximately 7.1 kPa near 𝑡 = 0.2 seconds, followed by a decay. Here, the transmural pressure profile are similar
for each 𝜃. In the top right panel we observe the evolution of the axial velocity. Since the initial condition is
𝑢 = 0, the profile starts with an increment to 0.61 ms−1, followed by a decay to −0.1 ms−1, and by an increment
to 0.44 ms−1 reached at 0.52 s. After this time, the profiles given by different 𝜃 values diverge from each other.
At 𝜃 = 𝜋/2 rad the velocity reached a maximum of approximately 0.69 ms−1 at 𝑡 = 0.70 s, while the other
profiles show a decay to 0.31 ms−1 at the same time. After that, the profiles evolve in a quasi-periodic way.

Finally, the tangential velocity profiles are shown in the bottom right panel of Figure 4. Here, we observe
that the value is much lower than the axial velocity. One can observe that the tangential velocities are much
weaker at angles 𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2 rad, while the other two (𝜃 = 0 and 𝜃 = 𝜋 rad) are approximately
opposite in sign.

5.3. Idealized aorta vessel with a bulge

Non-uniform elasticity properties in a vessel may be caused by diseases such as stenosis and aneurysms. In
this numerical test, we analyze possible changes in the flow dynamics when the parameters 𝐺𝑜 and 𝑅𝑜 are
non-uniform in a localized regions in the artery’s wall. In particular, 𝐺𝑜 is reduced at (𝑠 = 𝑠⋆ = 21 cm, 𝜃 =
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Figure 5. Parameters for an artery with a bulge in a localized region where the wall is less
rigid. In black solid line, profiles of 𝐺𝑜 (panel (a)) and 𝑅𝑜 (panel (b)) at 𝜃 = 3𝜋/2 rad are
shown, while the red dotted lines correspond to the base case with no bulging. The profiles are
given by equations (51) and (52). Panel (c): 3D visualization of an idealized aorta where the
color bar denotes 𝐺𝑜 values. Panel (d): same a in middle panel with 𝑅𝑜 values in the color bar.

𝜃⋆ = 3𝜋/2) and 𝑅𝑜 is increased near that point, when compared to the previous case. Such changes in the
parameters are aimed at simulating an artery with a bulge in a localized region where the artery is also less
rigid.

The parameters 𝐺𝑜 and 𝑅𝑜 are given by

𝐺𝑜(𝑠, 𝜃) =

⎧⎨⎩𝐺⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) > ℎ(𝜃)𝑅⋆𝑜(𝑠),[︁
1− 1

2 sin
(︁[︁

1− 𝑑(𝑠,𝜃)
ℎ(𝜃)𝑅⋆

𝑜(𝑠)

]︁
𝜋
2

)︁]︁
𝐺⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) ≤ ℎ(𝜃)𝑅⋆𝑜(𝑠),

(51)

and

𝑅𝑜(𝑠, 𝜃) =

⎧⎨⎩ℎ(𝜃)𝑅⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) > ℎ(𝜃)𝑅⋆𝑜(𝑠),[︁
1 + 1

5 sin
(︁[︁

1− 𝑑(𝑠,𝜃)
ℎ(𝜃)𝑅⋆

𝑜(𝑠)

]︁
𝜋
2

)︁]︁
ℎ(𝜃)𝑅⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) ≤ ℎ(𝜃)𝑅⋆𝑜(𝑠),

(52)

where

𝑑(𝑠, 𝜃) =

√︂
1
4

[𝑥(𝑠⋆, 𝜃⋆)− 𝑥(𝑠, 𝜃)]2 + [𝑦(𝑠⋆, 𝜃⋆)− 𝑦(𝑠, 𝜃)]2 + [𝑧(𝑠⋆, 𝜃⋆)− 𝑧(𝑠, 𝜃)]2.

A graph of the parameters at 𝜃 = 3𝜋/2 rad as a function of 𝑠 is shown in panels (a) and (b) in Figure 5. A 3D
visualization of the aorta using 𝑅𝑜 (c) and 𝐺𝑜 (d) in the color bar are displayed to localize the region where the
elasticity properties of the artery vary.

As initial conditions, we set

𝑅(0, 𝑠, 𝜃) = 𝑅𝑜(𝑠, 𝜃), 𝑢(0, 𝑠, 𝜃) = 0 and 𝐿(0, 𝑠, 𝜃) = 0.
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Figure 6. Panels (a) and (b): 3D view of the artery with color bar computed based on
ℛ = 𝑅/𝑅𝑜 at times 𝑡 = 0.2 s and 𝑡 = 0.3 s respectively. Panels (c) and (d): Same as in (a) and
(b) with a color bar computed based on 𝑢.

Figure 7. Axial velocity profiles as a function of time at 𝑠 = 21 cm. Panel (a): Profiles at
𝜃 = 𝜋/2 rad. Panel (b): Profiles at 𝜃 = 3𝜋/2 rad. Panel (c): Profile differences for 𝜃 = 𝜋/2 rad
(ocher dashed line) and 𝜃 = 3𝜋/2 rad (purple dotted line).

Figure 6 shows the effect of the bulge with non-uniform elasticity parameters in the flow dynamics. For
instance, panels (a) and (b) show a 3D view of the artery near the bulge where the color bar indicates the ratio
𝑅/𝑅𝑜 at times 𝑡 = 0.2 s and 𝑡 = 0.3 s respectively. Such ratio indicates how much the artery’s radius has been
deformed from the initial conditions. One can observe a stronger deviation from the initial conditions (about
10%) near the bulge at 𝑡 = 0.2 s, when compared to the rest of the artery. Such deviation is reduced at 𝑡 = 0.3 s.
On the other hand, a color bar computed based on the axial velocity is displayed in panels (c) and (d). We
observe a negative displacement in the upper side of the bulge and a positive displacement in the lower side of
the bulge at 𝑡 = 0.3 s. However, the axial velocity becomes positive everywhere at later times (not shown) due
to gravity and the fluid discharge in the upstream boundary.

Figure 7 exhibits a quantification of the observations discussed in Figure 6. Specifically, the axial velocity as
a function of time at 𝑠 = 𝑠⋆, 𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2 rad are displayed in panels (a) and (b) respectively. For
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Figure 8. Parameters 𝑅𝑜 and 𝐺𝑜 given by equations (53) and (54) as a function of 𝑠 at
𝜃 = 𝜋 rad are shown in panels (a) and (b) respectively (red dotted lines). The black solid lines
correspond to the base case in Section 5.2. Panel (c): 3D view with color bar denoting 𝑅𝑜. Panel
(d): same as in (c) with 𝐺𝑜 values in the color bar.

comparison, we include a graph corresponding to the base case in Section 5.2. The bulge is at 𝜃 = 3𝜋/2 rad
(panel (b)), where the velocity is decreasing near it. The differences could be up to about 1 ms−1, as we see it
in panel (c). Panel (a) shows the axial velocities experienced by the fluid on the opposite side of the wall, where
the impact of the bulge does not seem to be significant in the time window considered here.

5.4. Vortex-like structure in aorta vessel with a bulge

In this numerical example, we consider a situation where the 𝐺𝑜 parameter has a negative perturbation in a
localized lateral section of the artery near the upstream boundary and 𝑅𝑜 is also increased in the same sector, as
specified below (see Fig. 8). This situation is associated with an idealized thoracic aortic aneurysm [17], where
the artery’s wall is less rigid in a localized zone. The two parameters 𝐺𝑜 and 𝑅𝑜 are given by

𝐺𝑜(𝑠, 𝜃) =

⎧⎨⎩𝐺⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) > ℎ(𝜃)𝑅⋆𝑜(𝑠),[︁
1− 1

2 sin
(︁[︁

1− 𝑑(𝑠,𝜃)
ℎ(𝜃)𝑅⋆

𝑜(𝑠)

]︁
𝜋
2

)︁]︁
𝐺⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) ≤ ℎ(𝜃)𝑅⋆𝑜(𝑠),

(53)

and

𝑅𝑜(𝑠, 𝜃) =

⎧⎨⎩ℎ(𝜃)𝑅⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) > ℎ(𝜃)𝑅⋆𝑜(𝑠),[︁
1 + 3

4 sin
(︁[︁

1− 𝑑(𝑠,𝜃)
ℎ(𝜃)𝑅⋆

𝑜(𝑠)

]︁
𝜋
2

)︁]︁
ℎ(𝜃)𝑅⋆𝑜(𝑠) if 𝑑(𝑠, 𝜃) ≤ ℎ(𝜃)𝑅⋆𝑜(𝑠),

(54)

where

𝑑(𝑠, 𝜃) =
√︁

[𝑥(𝑠⋆, 𝜃⋆)− 𝑥(𝑠, 𝜃)]2 + [𝑦(𝑠⋆, 𝜃⋆)− 𝑦(𝑠, 𝜃)]2 + [𝑧(𝑠⋆, 𝜃⋆)− 𝑧(𝑠, 𝜃)]2,

𝑠⋆ = 5 cm, 𝜃⋆ = 𝜋 rad.

A 3D view of the artery at time 𝑡 = 0.4 s can be found in panels (a) and (b) of Figure 9, respectively. In
each panel, the velocity field is shown to analyze the change in the dynamic. The color bar shows the axial
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Figure 9. Circulation pattern in an idealized aorta vessel with a bulge. Three-dimensional
views of the artery with the velocity field at 𝑡 = 0.4 s are shown where the parameters 𝐺𝑜 and
𝑅𝑜 are given by equations (53) and (54). Panels (a) and (b) show two different views of the
vessel. The arrows indicate the 3D velocity field given by equation (49).

velocity contours. Panel (a) shows a section of the artery near the perturbation. The bulge induces a vortex-like
structure at time 𝑡 = 0.4 s in the lower region of the bulge but the flow moves in the downstream direction after
it passes that region where the artery is less rigid, that is shown at panel (b). The circulation pattern has been
extended to a larger region, where the axial velocity is negative in the right side of the artery (𝜋/2 ≤ 𝜃 ≤ 3𝜋/2)
near the bulge and positive on the opposite side. Circulation patterns can be found on other simulations. See
for instance [36].

5.5. A discussion about parameter regimes and the numerical results

The numerical tests presented above focused on evaluating different aspects of the model and the scheme.
Regarding the model, the main purpose is to show the higher level of details that it can provide when angular
variations are allowed in a non-uniform general cross section. One-dimensional models with axi-symmetry have
shown to be in good agreement with 3D models and with experimental data, as explained for instance in [18].
The 2D model derived in this work reduces to the 1D counterpart when the vessel’s cross sections are axi-
symmetric. Even in that case, they can be in good agreement with experimental data. The interested reader
can see more details about such comparisons in [18]. Despite the fact that in our setting we are only focusing in
idealized aorta simulations, the profiles for the pressure as a function of time is similar to the profiles obtained
in this work. The additional attributes in this model that accounts for variations in the angular directions were
obtained by assuming very reasonable assumptions. It allows us to obtain more detailed features of the vessel
when the cross sections are irregular. It can provide useful information in situations where experimental data
could not be available.

Finding detailed experimental data is not an easy task. When available, one can use such data to estimate
the model’s parameters. For instance, a relation between stress and strain in a dog’s artery is shown in [1]. In

this context, the strain ℛ is the ratio between the midwall radius 𝑅 =
𝑅𝐸 +𝑅𝐼

2
and the non-stressed midwall

radius 𝑅𝑜, ℛ =
𝑅

𝑅𝑜
. The outer (𝑅𝐸) and inner (𝑅𝐼) vessel’s radii be defined as 𝑅𝐸 = 𝑅+ 1

2ℎ𝑑, 𝑅𝐼 = 𝑅− 1
2ℎ𝑑,
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Figure 10. Relation between strain and stress in dog’s arteries. Experimental data from [1]
(bottom panel of Fig. 1) in star symbols and the corresponding curves for different midwall
radii 𝑅, and fixing the wall thickness ℎ𝑑 = 0.5 mm and the 𝑝𝑜 = 9 kPa. Furthermore, the
pressure 𝑝 was calculated using 𝛽 = 2 and 𝐺𝑜 is as (29), with 𝐸𝑌 = 250 kPa.

where ℎ𝑑 is the wall’s thickness. The stress 𝜎 is given by

𝜎 =
2[𝑝𝑜 + 𝑝](︁

𝑅
𝑅𝐼

)︁2

−
(︁
𝑅
𝑅𝐸

)︁2 ,

where 𝑝 is transmural pressure (28) and (29). The relation Strain-Stress relates how much an object is deformed
respects its initial state and the force that is required to deform it. Figure 10 shows the experimental data in [1] for
the strain-stress relation together with different midwall radii 𝑅, and fixing the wall thickness ℎ𝑑 = 0.5 mm and
the 𝑝𝑜 = 9 kPa. Furthermore, the pressure 𝑝 was calculated using 𝛽 = 2 and 𝐺𝑜 is as (29), with 𝐸𝑌 = 250 kPa.
As we can see, the model’s parameters can satisfactorily approximate experimental data when chosen properly.
Of course, the parameter values used in our numerical tests are different because they are meant for idealized
aorta simulations in humans.

6. Conclusions

Three-dimensional blood flow models provide detailed information of the fluid’s evolution, giving accurate
and realistic results. However, they involve a high computational cost and are not always a practical tool. As
an alternative, one-dimensional models have been derived in the literature. Those models consist of limiting
equations that assume the cross sections to be circular with a small radius when compared to the artery’s length.
Of course, those models involve a low computational cost but they are limited by the conditions used to derive
them. Although they have shown to be useful to simulate pressure waves, one looses detailed information of the
artery’s evolution.

In this work, we have presented a new intermediate two-dimensional model that allows for arbitrary cross
sections. The limiting model is valid for small cross-sectional ratios and other reasonable assumptions. We present
this model as an alternative with a better balance between realism and computational cost. The resulting system
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is conditionally hyperbolic and the spectral properties are described. We have also provided a well-balanced
positivity-resulting central-upwind scheme to obtain numerical results. We tested it in idealized aorta models
with damaged areas among other scenarios.

In [30], a different expression for the transmural pressure given in (28) is offered in order to consider blood
flows in veins. It is also possible to do it in this context as long as the fluid is Newtonian. Furthermore, in such
situations one could also consider veins with twists. In the present model, the axis passing through the center
of the vessel is assumed to be aligned in the (𝑥, 𝑧) plane for simplicity. However, it can be easily generalized to
any curve as along as the radius curvature does not exceed the vessel radius. The above research directions will
be considered in a future work.

Appendix A. Derivation of the model

The model is derived in this appendix. The first step is the description of the Navier-Stokes equations in
cylindrical coordinates, taking into account Fluid-Structure interactions in a moving domain and an elastic
membrane. For that end, let us define the gradients in cartesian and cylindrical coordinates by

∇ = (𝜕𝑥, 𝜕𝑦, 𝜕𝑧), and ∇𝑐 = (𝜕𝑠, 𝜕𝑟, 𝜕𝜃), (A.1)

respectively, where (𝑥, 𝑦, 𝑧) and (𝑠, 𝑟, 𝜃) are related by equation (1). The corresponding velocity fields are given
by

V = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧), V𝑐 = (𝑉𝑠, 𝑉𝑟, 𝑉𝜃). (A.2)

Applying change of variables, we find that the velocity field in the cylindrical coordinates is given by

𝑉𝑠 =
𝑟

|𝐽 |
{cos(𝛼(𝑠))𝑉𝑥 + sin(𝛼(𝑠))𝑉𝑧},

𝑉𝑟 = − sin(𝛼(𝑠)) sin(𝜃)𝑉𝑥 + cos(𝜃)𝑉𝑦 + cos(𝛼(𝑠)) sin(𝜃)𝑉𝑧,

𝑉𝜃 =
1
𝑟
{− sin(𝛼(𝑠)) cos(𝜃)𝑉𝑥 − sin(𝜃)𝑉𝑦 + cos(𝛼(𝑠)) cos(𝜃)𝑉𝑧}.

(A.3)

The partial derivatives in cylindrical coordinates are given in terms of the derivatives in cartesian coordinates
by

𝜕𝑠 =
|𝐽 |
𝑟
{cos(𝛼(𝑠))𝜕𝑥 + sin(𝛼(𝑠))𝜕𝑧}

𝜕𝑟 = − sin(𝛼(𝑠)) sin(𝜃)𝜕𝑥 + cos(𝜃)𝜕𝑦 + cos(𝛼(𝑠)) sin(𝜃)𝜕𝑧
𝜕𝜃 = 𝑟{− sin(𝛼(𝑠)) cos(𝜃)𝜕𝑥 − sin(𝜃)𝜕𝑦 + cos(𝛼(𝑠)) cos(𝜃)𝜕𝑧}.

(A.4)

We take the incompressible Navier-Stokes equations with varying density as the full system to be reduced.
Such system can be written as

𝐷

𝐷𝑡
𝜌 = 0,

𝐷

𝐷𝑡
(𝜌𝑉𝑥) = −𝜕𝑥 𝑃 + 𝜈𝛥 𝑉𝑥,

𝐷

𝐷𝑡
(𝜌𝑉𝑦) = −𝜕𝑦 𝑃 + 𝜈𝛥 𝑉𝑦,

𝐷

𝐷𝑡
(𝜌𝑉𝑧) = −𝜕𝑧 𝑃 + 𝜈𝛥 𝑉𝑧 − 𝜌𝑔,

∇ ·V = 0.

(A.5)



A NEW TWO-DIMENSIONAL BLOOD FLOW MODEL 29

We need to re-write the divergence, material derivative, and Laplacian in cylindrical coordinates. Let (𝐹1, 𝐹2, 𝐹3)
a vectorial field. Then,

∇ · (𝐹1, 𝐹2, 𝐹3) =
1
|𝐽 |
∇𝑐 ·

[︁
|𝐽 |
(︁
𝐹1, 𝐹2, 𝐹3

)︁]︁
, (A.6)

where the vector field
(︁
𝐹1, 𝐹2, 𝐹3

)︁
is given by

𝐹1 =
𝑟

|𝐽 |
{cos(𝛼(𝑠))𝐹1 + sin(𝛼(𝑠))𝐹3},

𝐹2 = cos(𝜃)𝐹2 + sin(𝜃)[− sin(𝛼(𝑠))𝐹1 + cos(𝛼(𝑠))𝐹3],

𝐹3 =
1
𝑟
{− sin(𝜃)𝐹2 + cos(𝜃)[− sin(𝛼(𝑠))𝐹1 + cos(𝛼(𝑠))𝐹3]}.

(A.7)

In cylindrical coordinates, the material derivative can be expressed as

𝐷𝑓

𝐷𝑡
= 𝜕𝑡(𝑓) + V𝑐 · ∇𝑐(𝑓)

=
1
|𝐽 |

{︁
𝜕𝑡(|𝐽 |𝑓) +∇𝑐 · (|𝐽 |𝑓V𝑐)− 𝑓∇𝑐 · (|𝐽 |V𝑐)

}︁
.

(A.8)

In the case of incompressible fluids, the last term vanishes and we obtain

𝐷𝑓

𝐷𝑡
=

1
|𝐽 |
{𝜕𝑡(|𝐽 |𝑓) + 𝜕𝑠(|𝐽 |𝑓𝑉𝑠) + 𝜕𝑟(|𝐽 |𝑓𝑉𝑟) + 𝜕𝜃(|𝐽 |𝑓𝑉𝜃)}. (A.9)

Furthermore, the Laplacian can be expressed as

𝛥(𝑓) =
1
|𝐽 |

𝜕𝑠

(︂
𝑟2

|𝐽 |
𝜕𝑠 𝑓

)︂
+

1
|𝐽 |

𝜕𝑟(|𝐽 |𝜕𝑟 𝑓) +
1
|𝐽 |

𝜕𝜃

(︂
|𝐽 |
𝑟2
𝜕𝜃 𝑓

)︂
.

Straightforward but long calculations gives the Navier-Stokes equations (1) in cylindrical variables. The new
system is given by

𝐷

𝐷𝑡
(𝜌) = 0,

𝐷

𝐷𝑡

(︃
𝜌

[︂
|𝐽 |
𝑟

]︂2
𝑉𝑠

)︃
= −𝜕𝑠𝑃2 +

|𝐽 |
𝑟
𝜕𝑠

(︂
|𝐽 |
𝑟

)︂
𝜌𝑉 2

𝑠 − sin(𝛼(𝑠))𝜌𝑔,

+ 𝜈

{︃
𝛥

(︃[︂
|𝐽 |
𝑟

]︂2
𝑉𝑠

)︃
−𝛥

(︃[︂
|𝐽 |
𝑟

]︂2)︃
𝑉𝑠 + 2

𝑟

|𝐽 |
𝜕𝑟

[︂
|𝐽 |
𝑟

]︂
𝜕𝑠(𝑉𝑟)

+ 2
𝑟

|𝐽 |
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂
𝜕𝑠(𝑉𝜃) +∇𝑐

(︂
𝑟

|𝐽 |
𝜕𝑠

(︂
|𝐽 |
𝑟

)︂)︂
·V𝑐

}︃
,

𝐷

𝐷𝑡
(𝜌𝑉𝑟) = −𝜕𝑟(𝑃2) +

|𝐽 |
𝑟
𝜕𝑟

(︂
|𝐽 |
𝑟

)︂
𝜌𝑉 2

𝑠 + 𝑟𝜌𝑉 2
𝜃

+ 𝜈

{︂
𝛥(𝑉𝑟)− 2

𝑟

|𝐽 |
𝜕𝑟

(︂
|𝐽 |
𝑟

)︂
𝜕𝑠(𝑉𝑠)−

2
𝑟
𝜕𝜃(𝑉𝜃)

−
(︂
𝑟

|𝐽 |

)︂2

𝜕𝑠

(︂
|𝐽 |
𝑟
𝜕𝑟

(︂
|𝐽 |
𝑟

)︂)︂
𝑉𝑠

− 1
|𝐽 |2

[︃(︂
|𝐽 |
𝑟

)︂2

+
(︂
|𝐽 |
𝑟
− 1
)︂2
]︃
𝑉𝑟 −

𝜕𝑟(|𝐽 |)𝜕𝜃(|𝐽 |)
|𝐽 |2

𝑉𝜃

}︃
, (A.10)
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𝐷

𝐷𝑡

(︀
𝜌𝑟2𝑉𝜃

)︀
= −𝜕𝜃(𝑃2) +

|𝐽 |
𝑟
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂
𝜌𝑉 2

𝑠

+ 𝜈

{︃
𝛥
(︀
𝑟2𝑉𝜃

)︀
− 2

𝑟

|𝐽 |
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂
𝜕𝑠(𝑉𝑠)

+
2
𝑟
𝜕𝜃(𝑉𝑟)−

2
|𝐽 |

𝜕𝑟(|𝐽 |𝑟𝑉𝜃)−
[︂
𝑟

|𝐽 |

]︂2
𝜕𝑠

(︂
|𝐽 |
𝑟
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂)︂
𝑉𝑠

+
𝑟

|𝐽 |2
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂
𝑉𝑟 −

[︂
𝑟

|𝐽 |
𝜕𝜃

(︂
|𝐽 |
𝑟

)︂]︂2
𝑉𝜃

}︃
,

∇𝑐 · (|𝐽 |V𝑐) = 0,

where 𝑃2 = 𝑃 + 𝑟 cos(𝛼(𝑠)) sin(𝜃)𝜌𝑔 is the transmural pressure.

A.1. The reduced equations

We carry out an asymptotic analysis to remove small terms in the equations that do not add a significant
contribution in the budget and allows us to simplify the model. Following [6], we define 𝑉𝑠,0, 𝑉𝑟,0, and 𝑉𝜃,0 be
the characteristic radial, axial and angular velocities. Let also 𝜆 and 𝑅0 be the characteristic axial and radial
lengthscales. Each quantity is non-dimensionalized as 𝑟 = 𝑅0𝑟, 𝑠 = 𝜆𝑠, 𝑡 = 𝜆

𝑉0
𝑡, 𝑉𝑠 = 𝑉𝑠,0𝑉𝑠, 𝑉𝑟 = 𝑉𝑟,0𝑉𝑟,

𝑉𝜃 = 𝑉𝜃,0𝑉𝜃, 𝑃 = 𝜌𝑉 2
0 𝑃 . Following equation (2), the small parameter in this expansion is the ratio between

radial and axial lengthscales

𝜖 :=
𝑅0

𝜆
=
𝑉𝑟,0
𝑉𝑠,0

·

This is a reasonable assumption because this ratio is about 𝑅0
𝜆 = 𝒪

(︀
10−2

)︀
for the aorta between the renal and

iliac arteries
The non-dimensional version of the model is given by

𝐷̃

𝐷𝑡
(𝜌) = 0

𝐷̃

𝐷𝑡

⎛⎝𝜌[︃ ˜|𝐽 |
𝑟

]︃2

𝑉𝑠

⎞⎠ = − [𝑃 ]
𝜌0𝑉 2

𝑠,0

𝜕𝑠 𝑃2 −
𝑔𝑇

𝑉𝑠,0
sin(𝛼(𝑠))𝜌+

˜|𝐽 |
𝑟
𝜕𝑠

(︃
˜|𝐽 |
𝑟

)︃
𝜌𝑉𝑠

2

+
𝜈𝑇

𝜌0𝑅2
0

{︃(︂
𝑅0

𝜆

)︂2 1
˜|𝐽 |
𝜕𝑠

⎛⎝ 𝑟2

˜|𝐽 |
𝜕𝑠

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2

𝑉𝑠

⎞⎠⎞⎠
+

1
˜|𝐽 |
𝜕𝑟

⎛⎝ ˜|𝐽 |𝜕𝑟

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2

𝑉𝑠

⎞⎠⎞⎠+
1
˜|𝐽 |
𝜕𝜃

⎛⎝ ˜|𝐽 |
𝑟2
𝜕𝜃

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2

𝑉𝑠

⎞⎠⎞⎠
+ 2

𝑟
˜|𝐽 |
𝜕𝑟

(︃
˜|𝐽 |
𝑟

)︃
𝜕𝑠

(︁
𝑉𝑟

)︁
+ 2

𝑟
˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃
𝜕𝑠

(︁
𝑉𝜃

)︁
+
(︂
𝑅0

𝜆

)︂2

∇̃𝑐

(︃
𝑟
˜|𝐽 |
𝜕𝑠

(︃
˜|𝐽 |
𝑟

)︃)︃
· Ṽ𝑐

−
(︂
𝑅0

𝜆

)︂2 1
˜|𝐽 |
𝜕𝑠

⎛⎝ 𝑟2

˜|𝐽 |
𝜕𝑠

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2
⎞⎠⎞⎠𝑉𝑠
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− 1
˜|𝐽 |
𝜕𝑟

⎛⎝ ˜|𝐽 |𝜕𝑟

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2
⎞⎠⎞⎠𝑉𝑠 − 1

˜|𝐽 |
𝜕𝜃

⎛⎝ ˜|𝐽 |
𝑟2
𝜕𝜃

⎛⎝[︃ ˜|𝐽 |
𝑟

]︃2
⎞⎠⎞⎠𝑉𝑠}︃

𝐷̃

𝐷𝑡

(︁
𝜌𝑉𝑟

)︁
= − [𝑃 ]

𝜌0𝑉 2
𝑟,0

𝜕𝑟 𝑃2 +
(︂
𝑉𝑠,0
𝑉𝑟,0

)︂2 ˜|𝐽 |
𝑟
𝜕𝑟

(︃
˜|𝐽 |
𝑟

)︃
𝜌𝑉𝑠

2
+ 𝜌𝑟𝑉𝜃

2

+
𝜈𝑇

𝜌0𝑅2
0

{︃(︂
𝑅0

𝜆

)︂2 1
˜|𝐽 |
𝜕𝑠

(︃
𝑟2

˜|𝐽 |
𝜕𝑠

(︁
𝑉𝑟

)︁)︃
+

1
˜|𝐽 |
𝜕𝑟

(︁
˜|𝐽 |𝜕𝑟

(︁
𝑉𝑟

)︁)︁
+

1
˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟2
𝜕𝜃

(︁
𝑉𝑟

)︁)︃
− 2

𝑟
˜|𝐽 |
𝜕𝑟

(︃
˜|𝐽 |
𝑟

)︃
𝜕𝑠

(︁
𝑉𝑠

)︁
− 2
𝑟
𝜕𝜃

(︁
𝑉𝜃

)︁

−

(︃
𝑟
˜|𝐽 |

)︃2

𝜕𝑟

(︃
˜|𝐽 |
𝑟

)︃
∇̃𝑐

(︃
˜|𝐽 |
𝑟

)︃
· Ṽ𝑐 (A.11)

− 𝑟
˜|𝐽 |
𝜕𝑠𝜕𝑟

(︃
˜|𝐽 |
𝑟

)︃
𝑉𝑠 −

1
𝑟2
𝑉𝑟 −

1
˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃
𝑉𝜃

}︃
𝐷̃

𝐷𝑡

(︁
𝜌(𝑟)2𝑉𝜃

)︁
= − [𝑃 ]

𝜌0𝑅2
0𝑉

2
𝜃,0

𝜕𝜃 𝑃2 +
(︂

𝑉𝑠,0
𝑅0𝑉𝜃,0

)︂2 ˜|𝐽 |
𝑟
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃
𝜌𝑉𝑠

2

+
𝜈𝑇

𝜌0𝑅2
0

{︃(︂
𝑅0

𝜆

)︂2 1
˜|𝐽 |
𝜕𝑠

(︃
𝑟2

˜|𝐽 |
𝜕𝑠

(︁
(𝑟)2𝑉𝜃

)︁)︃
+

1
˜|𝐽 |
𝜕𝑟

(︁
˜|𝐽 |𝜕𝑟

(︁
(𝑟)2𝑉𝜃

)︁)︁
+

1
˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟2
𝜕𝜃

(︁
(𝑟)2𝑉𝜃

)︁)︃
− 2𝑟

˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃
𝜕𝑠

(︁
𝑉𝑠

)︁
+

2
𝑟
𝜕𝜃

(︁
𝑉𝑟

)︁

− 2
˜|𝐽 |
𝜕𝑟

(︁
˜|𝐽 |𝑟𝑉𝜃

)︁
−

[︃
𝑟
˜|𝐽 |

]︃2

𝜕𝑠

(︃
˜|𝐽 |
𝑟
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃)︃
𝑉𝑠

− 𝑟

˜|𝐽 |
2 𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃
𝑉𝑟 −

[︃
𝑟
˜|𝐽 |
𝜕𝜃

(︃
˜|𝐽 |
𝑟

)︃]︃2

𝑉𝜃

}︃
∇̃𝑐 ·

(︁
˜|𝐽 |Ṽ𝑐

)︁
= 0.

We recall the assumptions (3) and (4), given by

[𝑃 ]
𝜌𝑜𝑉 2

𝑠,𝑜

= 𝑂(1),
𝑉𝑠,𝑜
𝑅𝑜𝑉𝜃,𝑜

= 𝑂(1), and
𝑔𝑇

𝑉𝑠,𝑜
= 𝑂(1), 𝑅𝑜|𝛼′(𝑠)| = 𝑂(𝜖),

and
𝜈𝑇

𝜌𝑜𝑅2
𝑜

= 𝑂(𝜖).

There is just one leading order term in the momentum equation in the radial direction that is found as
follows. The first term in the right-hand side has a factor of

[𝑃 ]
𝜌𝑜𝑉 2

𝑟,𝑜

=
[𝑃 ]
𝜌𝑜𝑉 2

𝑠,𝑜

𝑉 2
𝑠,𝑜

𝑉 2
𝑟,𝑜

= 𝑂(𝜖−2).

The second term has a factor of order 𝑂(𝜖−2). However, we ignore that term because

𝜕𝑟(|𝐽 |/𝑟) = − sin(𝜃)𝛼′(𝑠)𝑅𝑜 = 𝑂(𝜖).
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The viscosity terms are all order 𝑂(𝜖) or higher, and the left-hand side is 𝑂(1). Thus, taking the leading order
term, we obtain

𝜕𝑟

(︁
𝑃2

)︁
= 0,

which implies that 𝑃2 is independent of 𝑟.
In the equation of balance for the angular momentum, we will exclude only terms that are order 𝑂(𝜖) or

higher to keep the contribution of the artery’s curvature on the flow. The first term in the right-hand side has
a factor

[𝑃 ]
𝜌𝑜(𝑅𝑜𝑉𝜃,𝑜)2

=
[𝑃 ]
𝜌𝑜𝑉 2

𝑠,𝑜

𝑉 2
𝑠,𝑜

(𝑅𝑜𝑉𝜃,𝑜)2
= 𝑂(1),

and we keep it. As discussed above, the non-dimensional parameter involving the viscosity term is order 𝑂(𝜖).
For the terms inside the brackets, we assume that 𝑟𝑉𝜃, 𝑉𝑟 and |𝐽 |/𝑟 depend all weakly on 𝜃, which is consistent
with the fact that the blood flow moves mainly in the axial direction. As a result, only two terms in front of
the viscosity coefficient has a leading contribution, as specified below in equation (5).

Similarly, we only exclude terms in the momentum equation that are order 𝑂(𝜖) or higher. All the terms
before the viscosity coefficient are order 𝑂(1) or 𝑂(𝜖). Only one viscosity term inside the brackets has a leading
contribution. The other terms have either a factor of order 𝑂(𝜖), or can be neglected due to the weak dependance
on 𝜃.

The reduced system in dimensional form is given in equation (5) in Section 2.2 . In that equation we redefine
𝑝 = 𝑃2 as the transmural pressure to avoid heavy notation. In Section 2.2, those equations are then integrated
in the radial direction to derive the desired model (8).
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