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1. Introduction

Let M be a smooth compact manifold, and Xc ⊂ X := T ∗M a closed compact do-
main with a smooth boundary. In this paper we address the question: what quantum 
objects are naturally associated with Xc? This question has been addressed indirectly 
in “classical” cases. For example, if Xc is the unit disk bundle associated to a Rie-
mannian metric on M assumed compact, then morally speaking Xc corresponds to the
(�-dependent) subspace H of L2(M) spanned by the eigenfunctions of the semiclassical 
Laplacian, P̂ = �2Δ, with eigenvalues in [0, 1]. This heuristics is in good measure justi-
fied by the theorem that, if Π : L2(M) → H is the orthogonal projection, then for any 
�-pseudodifferential operator Q̂ one has:

lim
�→0

1
dim H

Tr ΠQ̂Π = 1
Vol Xc

∫
Xc

Q dλ, (1)

where Q is the principal symbol of Q̂ and dλ is Liouville measure (see [8]). But can one 
say more?

We discuss a more systematic answer to this question in the case when Xc is “fibrating 
and Bohr–Sommerfeld”, by which we mean the following. The boundary ∂Xc is always 
foliated by curves tangent to the kernel of the pull-back of the symplectic form. The 
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fibrating condition is that there exists a manifold S and a submersion π : ∂Xc → S whose 
fibers are the leaves of the null-foliation. This is satisfied iff Xc has a globally defining 
function whose Hamilton flow on ∂Xc is periodic with a common minimal period (see 
Lemma 3.2). The Bohr–Sommerfeld condition is that all leaves, γ, of π satisfy∫

γ

α ∈ 2πZ,

where α is the tautological one-form in T ∗M . We will show that under these conditions 
there exist spaces J�,m of pseudodifferential operators with singular symbols naturally 
associated with Xc. (Here (�, m) is a bi-degree, to be explained later.) The frequency 
sets of their Schwartz kernels are contained in the union of Lagrangian submanifolds of 
T ∗(M × M)

Δ′
c ∪ F ∂X ′

c,

where

Δc =
{
(x, x) ∈ Xc × Xc

}
and F ∂Xc is the flow-out

F ∂Xc =
{
(x, y) ∈ ∂Xc × ∂Xc; x, y in the same leaf

}
.

Here, for any Lagrangian submanifold Λ′ ⊂ T ∗M×T ∗M , Λ = {(x, ξ; y, η) ∈ T ∗M×T ∗M ;
(x, ξ; y, −η) ∈ Λ′} is the canonical relation (see [20, Definition 21.2.12]). Intuitively speak-
ing, the diagonal part, Δc, is expected to be a part of any pseudodifferential operator 
calculus associated with Xc. The flow-out part, F ∂Xc, is there because the fibrating-
and-Bohr–Sommerfeld conditions imply that there should be a significant part of Hilbert 
space associated with the symplectic reduction of the boundary of Xc. The two symbols, 
one on Δc and one on F ∂Xc, have a compatibility condition that comes about most 
naturally in our setting.

In particular, the space J−1/2,1/2 is closed under composition, and it includes the pro-
jector Π mentioned above, in the case of Zoll metrics. The Bohr–Sommerfeld condition 
is needed for the existence of a global symbolic calculus, and goes along with having to 
restricting Planck’s constant to take the values � = 1/N , N = 1, 2, . . . . The fibrating 
condition is needed in order for F ∂Xc to be a closed submanifold of X × X.

The Schwartz kernels are semiclassical analogues of the oscillatory integrals with singu-
lar symbols of [24,16], associated to a pair of intersecting conic Lagrangian submanifolds. 
See also [21], where a precise calculus for a more generalized class is discussed, and [17]
where a connection with a class of Legendre distributions is explained. In the conic case, 
the realization that if the Lagrangians are the diagonal and a flow-out one obtains a 
symbol calculus is due to the results in [1]. This is possible because
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Δc ◦ F ∂Xc, F ∂Xc ◦ Δc, F ∂Xc ◦ F ∂Xc ⊂ F ∂Xc; Δc ◦ Δc ⊂ Δc,

so composing two operators with wave-front set in Δc∪F ∂Xc produces an operator with 
wave-front set contained in the same union. We believe that the present semiclassical 
setting provides a very natural expression for the Antoniano–Uhlmann algebra.

In the Zoll case, there have been numerous papers aimed at refining the general 
result (1), mostly in terms of the remainder estimate. For instance, in [11], the second 
term in the Szegö formula for Zoll manifolds is proved. Other references in this direction 
are [12,6,23,22,27].

Here we are not focusing on remainder estimates, but on the fact that there is an 
operator algebra with a symbolic calculus that provides a quantization of Xc and, among 
other things, a broader (symbolic) setting for Szegö limit theorems. Furthermore, the 
existence of the operator algebra allows us to go farther in the analysis of the operators 
ΠQ̂Π mentioned above, with respect to previous works.

The issues we raise here are also connected with work of [10], on the relationship 
between symplectic cutting and quantization, in the homogeneous (non-semiclassical) 
category. They consider the case when Xc = φ−1(−∞, 0] where φ : X → R is the 
moment map for a homogeneous action of the circle group on S1. In this setting one can 
form the symplectic cut

Y = Xc/∼.

Their work centers on the algebra of operators {ΠQ̂Π; [Π, Q̂] = 0} where Q̂ ranges over 
(non-semiclassical) ΨDOs on M and Π is a spectral projector, as above, associated to a 
quantization of the circle action by a Fourier integral operator. Roughly speaking they 
show that such an algebra can be considered a quantization of the symplectic manifold Y .

1.1. Main results

We now describe our main results.

Theorem 1.1. Let Xc ⊂ T ∗M be such that ∂Xc is “fibrating and Bohr–Sommerfeld”. 
Then there exist vector spaces of semiclassical pseudodifferential operators with singular 
symbols, J�,m(M×M ; Δ, F ∂Xc), where � is restricted to the sequence 1/N , N = 1, 2, . . . , 
such that:

1. The frequency set of the Schwartz kernel of any operator in the algebra is contained 
in the union Δ′ ∪ F ∂X ′

c.
2. Let Σ = Δ ∩ F ∂Xc. Then J�,m are microlocally Lagrangian states of order � + m

on Δ′ \ Σ′ and � on F ∂X ′
c \ Σ′, and therefore there are symbol maps:

σ0 : J → | ∧ |1/2(Δ \ Σ), σ1 : J → | ∧ |1/2(F ∂Xc \ Σ)
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(where | ∧|1/2 denotes the space of half-densities, and we will ignore Maslov factors). 
There is in fact a symbolic calculus, that will be described below.

3. J�,m ◦ J �̃,m̃ ⊂ J�+�̃+1/2,m+m̃−1/2, in particular J−1/2,1/2 is an algebra.
4. Assume that Xc is compact. Then every

Â ∈ J−1/2,1/2(M × M ; Δ, F ∂Xc)

with microsupport contained in Xc is smoothing and

Tr(Â) = (2π)−n�−n

∫
Xc

σ0(Â)ωn

n! + O
(
�−n+1 log(1/�)

)
where ω is the symplectic form of T ∗M and n is the dimension of M .

The manifold Xc has an associated operator algebra, AXc
, which consists of elements 

in the algebra J(M ×M ; Δ, ∂Xc) which are microlocally of order O(�∞) in the comple-
ment T ∗M \ Xc. The lack of superscripts here indicates that the operators may be of 
any bi-degree.

Theorem 1.2. (See Section 5.1 for details.) Assume ∂Xc is compact and of contact type. 
Then there exist orthogonal projections Π ∈ J−1/2,1/2 whose symbol σ0 is the character-
istic function of Xc. Moreover, for any zeroth-order pseudodifferential operator on M , Q̂, 
the “cut” operator ΠQ̂Π is in the algebra, and σ0(ΠQ̂Π) can be identified with Q|Xc

.

As an immediate corollary we obtain the following Szegö limit theorem:

Corollary 1.3. Assume that Xc is compact, Π ∈ J−1/2,1/2 an orthogonal projector as in 
the previous theorem and let � = 1/N . Then for any integer m ≥ 0

Tr(ΠQ̂Π)m = (2π)−n Nn

∫
Xc

Qm ωn

n! + O
(
Nn−1 log(N)

)

Finally, we have a result on the propagator Πe−it�−1ΠQ̂Π where the symbol, Q, of 
the pseudodifferential operator Q̂ preserves Xc “to second order”:

Theorem 1.4. (See Section 6 for details.) Suppose Q̂ is a zeroth-order semiclassical pseu-
dodifferential operator satisfying the conditions of Lemma 6.1. Assume sub Q̂(�) = 0. 
Then

Πe−it�−1ΠQ̂Π ∈ J−1/2,1/2(M × M ; Δ(t), F ∂Xc(t)
)
,

where
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Δ(t) =
{
(x, y)

∣∣ x, y ∈ T ∗(M × M), x = ΦQ
t (y)

}
F ∂Xc(t) =

{
(x, y)

∣∣ x, y ∈ ∂Xc, ∃s ∈ R such that x = ΦP
s ΦQ

t (y)
}

,

and ΦP
s , ΦQ

t are the Hamiltonian flows of P , Q at times s, t respectively.

Remarks.

(1) The result on the trace (part (4) of Theorem 1.1) extends to the spaces J�,m provided 
m ≥ −1/2. If m is sufficiently negative, the leading contribution to the trace comes 
from the asymptotic singularity of the kernel of the operator at Σ.

(2) The symbol calculus for σ0 is just the usual pseudodifferential calculus. The symbol 
calculus for σ1 is more complicated (and non-commutative). In fact σ1 comes with 
an extension to a distribution on F ∂Xc conormal to Σ, and there exists a formula 
for the smooth part of the σ1 of the composition in terms of the corresponding 
extensions of the factors.

(3) The restriction that � = 1/N is necessary to have a well-defined global symbol on 
the flow-out F ∂Xc (see [13, Chap. VII, §0]). Locally elements of the J�,m are given 
by semiclassical oscillatory integrals with � → 0 continuously.

(4) The error estimate O(� log(1/�)) is sharp for the class J−1/2,1/2, but in Corollary 1.3
the error should be O(�2), see Remark 4.4.

(5) The idea that the image of Π quantizes Xc and that the operators ΠQ̂Π can be 
considered as associated observables appeared first in the physics literature, see 
[3], §II E and [4] (where a connection with symplectic cutting is also made). The 
operators ΠQ̂Π do not form an algebra, however, while the class J−1/2,1/2 does.

(6) Our work also implies that the results of [10] also hold in the semiclassical case.

The paper is organized as follows. In Section 2, the spaces J�,m are defined in a model 
case by oscillatory integrals with amplitudes having expansions in � with coefficients that 
are classical symbols. In Section 3, the spaces are defined globally on manifolds, and the 
existence of a symbolic calculus is established. The principal symbol on each Lagrangian 
blows-up at the intersection, and they satisfy a symbolic compatibility condition there. 
The theorem on the trace is proved in Section 4. Section 5 considers cases where the 
algebra admits projectors, yielding a symbolic proof of a generalized Szegö limit theo-
rem. Section 6 studies the propagator of certain elements in the algebra, and proves an 
Egorov-type theorem. Finally, Section 7 shows numerically a surprising phenomenon of 
propagation of coherent states in situations not considered in Section 6.

2. The model case

2.1. Definitions

We begin by discussing the microlocal model case: M = Rn and Xn
c = {p1 ≥ 0}, where 

(x1, . . . , xn, p1, . . . , pn) are canonical coordinates in T ∗Rn. Let F ∂Xn
c be the flow-out of 
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∂Xn
c = {p1 = 0}. We will use this case to define operators J�,m(Rn × Rn; Δn, F ∂Xn

c ), 
where Δn ⊂ T ∗Rn × T ∗Rn is the diagonal.

Roughly speaking, elements in J�,m(Rn×Rn, Δn, F ∂Xn
c ) will be defined as oscillatory 

integrals with amplitudes as follows:

1. We denote by A�,m the class of all smooth functions a(s, x, y, p, σ, �) with compact 
support in s, x, y, p such that, as � → 0

a(s, x, y, p, σ, �) ∼
∞∑

j=−�

�jaj(s, x, y, p, σ)

(in a sense that will be explained below) where, for each j, aj(s, x, y, p, σ) is a poly-
homogeneous classical symbol in σ of degree m:

aj(s, x, y, p, σ) ∼
−∞∑
r=m

aj,r(s, x, y, p, σ), ∀λ > 0

aj,r(s, x, y, p, λσ) = λraj,r(s, x, y, p, σ).

2. The operators in J�,m(Rn×Rn; Δn, F ∂Xn
c ) are those whose Schwartz kernels are of 

the form

A(x, y, �) = 1
(2π�)n

∫
e

i
�
[(x1−y1−s)p1+(x′−y′)p′]+isσa(s, x, y, p, σ, �) ds dp dσ, (2)

where we have split the variables: x = (x1, x′), y = (y1, y′) (x′, y′ ∈ Rn−1).

We now give the details.

Definition 2.1. Let (x, y) and s be the standard coordinates on R2n and R respectively, 
and let p, σ be the dual coordinates to x, s. We denote by z = (x, y, s) coordinates 
in R2n × R. Define A�,m to be the space of smooth families a(s, x, y, p, σ, �) compactly 
supported in z, p such that

∣∣(∂/∂z)α(∂/∂p)β(∂/∂σ)γa
∣∣ ≤ C�−�

(
1 + |σ|

)m−|γ|
, (3)

for some constant C = C(α, β, γ) and � ∈ (0, h0] for some fixed h0 > 0.

Let aj(s, x, y, p, σ) ∈ Sm be a sequence of classical symbols in the σ variable, of order 
m, and compactly supported in (s, x, y, p), i.e., aj is smooth,

∣∣(∂/∂z)α(∂/∂p)β(∂/∂σ)γaj(s, x, y, p, σ)
∣∣ ≤ C(α, β, γ)

(
1 + |σ|

)m−|γ|
,
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for some constant C = C(α, β, γ), and there exists a sequence aj,r of smooth functions 
in σ �= 0, homogeneous of degree r in σ, such that aj ∼

∑−∞
r=m aj,r in the standard sense. 

Given a ∈ A�,m, we will say that a ∼
∑∞

j=−� �
jaj iff for all integers K ≥ 0

a −
−�+K∑
j=−�

�jaj ∈ A�−K−1,m.

Definition 2.2. Denote by A�,m
classical ⊂ A�,m the set of all a(s, x, y, p, σ, �) that satisfy 

a ∼
∑∞

j=−� �
jaj , as above, and let Σn = Δn∩F ∂Xn

c . Define J�,m(Rn×Rn; Δn, F ∂Xn
c )

to be the set of kernels of the form

A(x, y, �) + F1(x, y, �) + F2(x, y, �)

where A(x, y, �) is as in (2) with a ∈ A�′,m′

classical where

�′ = � + 1/2, m′ = m − 1/2,

and F1, F2 are the kernels of semiclassical Fourier integral operator in sc-I�+m(Rn×Rn;
Δn \Σn), sc-I�(Rn×Rn; F ∂Xn

c ), respectively. Here sc-I denotes the spaces of semiclas-
sical Fourier integral operators.

Remark 2.3. As we will see, it is necessary that F1 and F2 appear in the definition in 
order for the classes J to be closed under composition.

We have yet to give sense to the formula in Eq. (2). Denote by D = 1 + D2
s where 

Ds = 1
i

∂
∂s . Notice that Deisσ = (1 + σ2)eisσ. For a ∈ A�′,m′

classical, we define A(x, y, �) as

A(x, y, �) = 1
(2π�)n

∫
ei�

−1(x−y)p+isσ 1
(1 + σ2)k Dk

(
e−i�−1sp1a(s, x, y, p, σ, �)

)
dsdpdσ.

(4)

The integral above is absolutely convergent for k � 0 large enough since Dk(e−i�−1sp1a)
is O(σm). It can be easily checked that the definition above does not depend on k using 
integration by parts.

Equivalently, one can define the integral in (2) as an iterated integral, where one first 
integrates over the variables (s, p) with respect to which the amplitude is compactly 
supported. The resulting function of σ is rapidly decreasing and therefore integrable. 
Both of these interpretations are useful in proofs.

We now state the first property of the kernels we have just defined:

Proposition 2.4. For any A ∈ J�,m(Rn × Rn; Δn, F ∂Xn
c ), the frequency set of A is 

contained in the union of the Lagrangians Δn and F ∂Xn
c :
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FS(A) ⊂ Δn′ ∪ F ∂Xn
c
′.

Moreover, away from the intersection Σn = Δn ∩ F ∂Xn
c , A is microlocally in the space 

sc-I�+m(Rn × Rn; Δn \ Σn) and sc-I�(Rn × Rn; F ∂Xn
c \ Σn).

Remark 2.5. This is a consequence of Theorem 3.13, proved in Section 3.3.

2.2. The symbol maps

By the second part of Proposition 2.4, one has two symbol maps:

σ0 ↗ | ∧ |1/2
(
Δn \ Σn

)
J�,m

(
Rn × Rn; Δn, F ∂Xn

c

)
σ1 ↘ | ∧ |1/2

(
F ∂Xn

c \ Σn
)
.

(5)

It is easy to see that, for A as above, they are given by the following formulae:

σ0(A) := 2πa−�′,m′(s, x, y, p, σ)
√

dxdp|y=x,s=0,p1=σ
and

σ1(A) :=
√

2π

∫
a−�′(s, x, y, p, σ)eisσdσ

√
dxdy1dp′|y′=x′,p1=0,s=x1−y1

. (6)

Notice that σ0 has a singularity as σ = p1 converges to zero, that is, as the point where 
σ0 is evaluated tends to the intersection, Σn. The same is true of σ1, and the leading 
singularities of σ0 and σ1 are Fourier transforms of each other. This is exactly as in 
[16, §5], and (appropriately understood) will be true in the manifold case as well.

Proposition 2.6. One has the following exact sequence:

0 → J�,m−1 ⊕ J�−1,m → J�,m σ0→ Rm
(
Δn \ Σn

)
→ 0.

Here Rm(Δn \ Σn) is, roughly speaking, the space of smooth functions on Δn \ Σn

that have singularities of degree m at Σn in the normal directions (for details we refer 
to [16, §5 and §6]).

The classes of operators with kernels in the J�,m are closed under composition in the 
following sense:

Proposition 2.7. The composition of properly supported operators with kernels in J�,m

and J �̃,m̃, respectively, is an operator with kernel in J�+�̃+1/2,m+m̃−1/2. In particular 
J−1/2,1/2 is an algebra:

J−1/2,1/2 ◦ J−1/2,1/2 ⊂ J−1/2,1/2,

and for any u ∈ J�,m, v ∈ J �̃,m̃, we obtain (ignoring Maslov factors and half-densities):
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σ0(u ◦ v)(x, x) = σ0(u)(x, x)σ0(x, x), σ1(x, y) = 1√
2π

∫
σ1(u)

(
x, z(t)

)
σ1
(
z(t), y

)
dt,

where z(t) is the bicharacteristic curve joining x and y.

Note that, by the symbol calculus for semiclassical FIOs [15] there are formulae for 
the symbols σ0, σ1, of the composition. (Microlocally near Δ \ Σ the operators are 
pseudodifferential and the symbol calculus for σ0 is the usual one.) We will have more 
to say about the symbol calculus in the next section.

Proof. (Our proof follows the lines of the proof of Theorem 0.1 in [1].) It is not hard 
to show that the classes J are closed under composition by operators F1, F2 as in 
Definition 2.2. Therefore we start with kernels as in (2). It is also not hard to show that 
it suffices to prove the theorem in the case when the amplitudes of these kernels are 
independent of �, in which case � = �̃ = −1/2. Let us therefore consider

u(x, y) = 1
(2π�)n

∫
ei�

−1((x−y)p−sp1)+isσa(s, x, y, p, σ)dsdpdσ,

v(y, z) = 1
(2π�)n

∫
ei�

−1((y−z)p̃−s̃p̃1)+is̃σ̃ã(s̃, y, z, p̃, σ̃)ds̃dp̃dσ̃,

where a and ã are classical symbols in σ and σ̃ of orders m′ = m −1/2 and m̃′ = m̃−1/2, 
respectively. For χ0 a function that vanishes near the origin, and 1 outside a compact 
support, we have

u(x, y) = 1
(2π�)n

∫
ei�

−1((x−y)p−sp1)+isσa(s, x, y, p, σ)χ0(σ)dsdpdσ + ũ,

v(y, z) = 1
(2π�)n

∫
ei�

−1((y−z)p̃−s̃p̃1)+is̃σ̃ã(s̃, y, z, p̃, σ̃)χ0(σ̃)ds̃dp̃dσ̃ + ṽ,

where ũ, ṽ ∈ sc-I�(Rn × Rn; F ∂Xn
c ). We can therefore assume that a, ã are zero near 

σ = 0, σ̃ = 0 respectively. The composition has Schwartz kernel:

ω(x, z) = 1
(2π�)n

∫
eisσ+is̃σ̃Ddsds̃dσdσ̃dp,

with

D = 1
(2π�)n

∫
ei�

−1φ(a · ã)(s, s̃, x, y, z, p, p̃, σ, σ̃) dydp̃,

where

φ = (x − y)p + (y − z)p̃ − s̃p̃1 − sp1.
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The critical points for this phase for each x, z, p fixed are: p̃ = p, y′ = z′, y1 = z1 − s̃. 
So, by the stationary phase theorem, we obtain:

D ∼ ei�
−1φ(y=(z1−s̃,z′),p̃=p)a

(
s, x, y =

(
z1 − s̃, z′), p, σ

)
ã
(
s̃, y =

(
z1 − s̃, z′), z, p, σ̃

)
as � → 0. Stationary phase in fact gives us a complete asymptotic expansion in increasing 
powers of �, with coefficients derivatives of a and ã evaluated at the critical points. It 
suffices to consider the contribution to ω of the leading term in the expansion of D (the 
other terms are treated in the same manner):

ω0(x, z) := 1
(2π�)n

∫
ei�

−1[(x′−z′)p′+(x1−z1−s−s̃)p1]+isσ+is̃σ̃a
(
s, x,

(
z1 − s̃, z′), p, σ

)
× ã

(
s̃,
(
z1 − s̃, z′), z, p, σ

)
dsds̃dpdσdσ̃.

Making the change of variables t = s + s̃, we can write

ω0(x, z) = 1
(2π�)n

∫
ei�

−1[(x1−z1−t)p1+(x′−z′)p′]+itσ̃b(t, x, z, p, σ̃)dtdpdσ̃,

where

b(t, x, z, p, σ̃) =
∫

eis(σ−σ̃)a
(
s, x,

(
z1 − t + s, z′), p, σ

)
× ã

(
t − s,

(
z1 − t + s, z′), z, p, σ̃

)
dsdσ.

Next, we split ω0 in three parts, as follows.
Let χk = χk(σ, ̃σ), k = 1, 2 be smooth, classical symbols of degree zero such that

χ1 =
{

1 for |σ| ≤ 1
2ε|σ̃|

0 for |σ| ≥ ε|σ̃|
and χ2 =

{
1 for |σ̃| ≤ 1

2ε|σ|
0 for |σ̃| ≥ ε|σ|

for ε � 1. We let

Υk(x, z) = 1
(2π�)n

∫
ei�

−1[(x1−z1−t)p1+(x′−z′)p′]+itσ̃b(t, x, z, p, σ̃) χk dtdpdσ̃ k = 1, 2,

and

Υ0 = ω0 − Υ1 − Υ2.

We will show that Υk, k = 1, 2 is a semiclassical state in the flow out while Υ0 is an 
integral of the form (2).
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Let us rewrite, for k = 1, 2,

Υk = 1
(2π�)n

∫
e�

−1(x′−z′)p′
(∫

ei�
−1(x1−z1−t)p1Ck(x, z, t, p) dp1 dt

)
dp′

where

Ck(x, z, t, p) :=
∫

eitσ̃+is(σ−σ̃)χkaã dsdσdσ̃,

interpreted as an iterated integral (first with respect to s). On the support of χ1 one has 
|σ| ≤ ε|σ̃| which implies |σ − σ̃| ≥ |σ̃| − |σ| ≥ (1 − ε)|σ̃|, and therefore

1
|σ − σ̃|N ≤ 1

(1 − ε)N
1

|σ̃|N ≤
(

ε

1 − ε

)N 1
|σ|N

for all N > 0. Since aã vanish near σ̃ = 0 = σ and χ1 vanishes in a conic neighborhood 
of the diagonal, we can integrate by parts repeatedly to obtain

C1(x, z, t, p) =
∫

eitσ̃+is(σ−σ̃) χ1

(−i)N (σ − σ̃)N DN
s (aã)dsdσdσ̃.

Since DN
s (aã) is of the same order in σ, ̃σ and N is arbitrary, C1 is Schwartz in the 

variable t. Applying once again the method of stationary phase this implies that∫
ei�

−1(x1−z1−t)p1C1(x, z, t, p) dp1 dt

is a semiclassical symbol and therefore Υ1 is a semiclassical state on the flow out. The 
proof for Υ2 is analogous.

To show that Υ0 is as desired we only need to show that

b0(t, x, z, p, σ̃) =
∫

eis(σ−σ̃)a
(
s, x,

(
z1 − t + s, z′), p, σ

)
ã
(
t − s,

(
z1 − t + s, z′), z, p, σ̃

)
×
(
1 − χ1(σ, σ̃) − χ2(σ, σ̃)

)
dsdσ

is a classical symbol in σ̃ of order m′ + m̃′.
Making the change of variables τ = σ

σ̃ , we obtain:

b0 = σ̃

∫
eisσ̃(τ−1)a

(
s, x,

(
z1 − t + s, z′), p, σ̃τ

)
ã
(
t − s,

(
z1 − t + s, z′), z, p, σ̃

)
×
(
1 − χ1(σ̃τ, σ̃) − χ2(σ̃τ, σ̃)

)
dsdτ.

Notice that τ is bounded in the support of the amplitude, and so using stationary phase 
in σ̃, we get an expansion for b0 in terms of σ̃, where the leading term is
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b ∼ 2πam′
(
0, x,

(
z1 − t, z′), p, σ̃

)
ãm̃′

(
t,
(
z1 − t, z′), z, p, σ̃

)
,

and we conclude b is a classical symbol in σ̃ of degree m′ + m̃′.
The symbol of ω(x, z) in the diagonal is easily computed as:

σ0(ω)(x, z = x) = 2πbm′+m̃′(t = 0, x, z = x, p, p1 = σ̃)

= (2π)2am′(0, x, z = x, p, σ̃ = p1)ãm̃′(t = 0, z = x, z = x, p, σ̃ = p1)

= σ0(u)(x, z = x)σ0(v)(z = x, x).

The symbol in the flow-out is the sum of the principal symbols of each summand at 
(t = z1 − x1, x′ = z′, z1 − t + s = x1 + s), which after the cancellation of χ1, χ2, reduces 
to

√
2π

∫
eitσ̃eis(σ−σ̃)a

(
s, x,

(
x1 + s, x′), (0, p′

)
, σ
)

× ã
(
t − s,

(
x − 1 + s, x′), (z1, x′), (0, p′

)
, σ̃
)
dsdσdσ̃

= 1√
2π

∫ (√
2π

∫
eisσa

(
s, x,

(
x1 + s, x′), (0, p′

)
, σ
)
dσ

)
×
(√

2π

∫
ei(t−s)σ̃ã

(
t − s,

(
x1 + s, x′), (z1, x′), (0, p′

)
, σ̃
)
dσ̃

)
ds

= 1√
2π

∫
σ1(u)

(
x,
(
x1 + s, x′), (0, p′

))
σ1(v)

((
x1 + s, x′), (z1, x′), (0, p′

))
ds. �

3. The manifold case

3.1. The spaces J�,m on manifolds

In this section we extend the definition of the spaces J�,m to the manifold case. Let M
be a C∞ manifold of dimension n, and Xc ⊂ T ∗M be a compact domain with smooth 
boundary contained in the cotangent bundle. The boundary ∂Xc is then foliated by 
curves tangent to the kernel of the pull-back of the symplectic form. In addition, we 
assume that the fibrating and Bohr–Sommerfeld conditions are satisfied, i.e., the leaves 
of the null foliation are the fibers of a submersion π : ∂Xc → S, and for each leaf 
γ ⊂ ∂Xc, ∫

γ

α ∈ 2πZ, (7)

where α is the tautological one-form in T ∗M .

Definition 3.1. Given Xc as above, define the flow-out as

F ∂Xc :=
{
(x, y)

∣∣ x, y ∈ ∂Xc, x, y are in the same leaf
}
⊂ T ∗(M × M). (8)
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The condition that ∂Xc be fibrating easily implies that F ∂X is a closed submanifold 
of T ∗(M × M).

Lemma 3.2. There exists an open neighborhood ∂Xc ⊂ U ⊂ T ∗M of ∂Xc, and a map

P : U → R (9)

such that zero is a regular value of P , ∂Xc = P−1(0), the orbits of the Hamilton flow 
generated by P are 2π periodic on the boundary ∂Xc, and coincide with the leaves of the 
foliation.

Remark 3.3. From now on we will fix a defining function of Xc, P , with the properties 
of this lemma.

Proof. There exists U and F : U → R such that ∂Xc = F−1(0), where zero is a regular 
value. The Hamiltonian vector field ΞF is tangent to F−1(0) = ∂Xc, and therefore 
the trajectories of the Hamiltonian F coincide set-theoretically with the leaves of the 
foliation. In particular, they are periodic. For each x ∈ ∂Xc, let T (x) denote the minimal 
period of the trajectory through x. The fibrating condition can be seen to imply that 
the function T is smooth. Extend this function to a smooth function T : U → R+. The 
defining function that satisfies the conclusions of the lemma is then

P = T

2π
F �

Remark 3.4. Notice that the boundary ∂Xc of Xc may not be connected. In those cases, 
the flow-out F ∂Xc consist of the union of Lagrangian that are pairwise disjoint.

Let Δ ⊂ T ∗(M × M) be the diagonal in T ∗(M × M).

Lemma 3.5. The diagonal and the flow-out (Δ, F ∂Xc) intersect cleanly.

Proof. Let (x, x) ∈ Δ ∩ F ∂Xc. It is easy to show that

T(x,x)F ∂Xc =
{(

δx + rΞP (x), δx
) ∣∣ δx ∈ Tx∂Xc, r ∈ R

}
,

and so

T(x,x)Δ ∩ T(x,x)F ∂Xc =
{
(δx, δx)

∣∣ δx ∈ Tx∂Xc

}
= T(x,x)(Δ ∩ F ∂Xc) �

By an analogue to Proposition 2.1 in [16], there exists a locally finite covering {Ui}i
of Δ ∩ F ∂Xc, Ui ⊂ T ∗(M × M) open and contractible, where each Ui intersects only 
one connected component of F ∂Xc, and for each Ui a canonical transformation
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χi : Ui −→ T ∗R2n

mapping Ui ∩ Δ to Δn, and Ui ∩ F ∂Xc to F ∂Xn
c , where Δn, F ∂Xn

c are the diagonal 
and flow-out in the model case, respectively.

Definition 3.6. Let Σ = Δ ∩ F ∂Xc be the intersection of the diagonal and the flow-out. 
The space J�,m(M ×M ; Δ, F ∂Xc) is the set of families of functions A(x, y, �) which can 
be written in the form

A = A0 + A1 +
∑

ωi

where:

1. A0 ∈ sc-I�+m(M × M ; Δ \ Σ) and A1 ∈ sc-I�(M × M ; F ∂Xc), and
2. ωi is microlocally supported in Ui and is of the form

ωi = Fi(vi),

where vi ∈ J�,m(Rn × Rn; Δn, F ∂Xn
c ) and Fi is a semiclassical Fourier integral 

operator associated to χ−1
i .

Remark 3.7. As in [16], one can show that the definition does not depend on the choice 
of the semiclassical FIOs Fi.

Proposition 3.8. In the general case the conclusion of Proposition 2.4 still holds, namely: 
Operators with kernel A ∈ J�,m(M × M ; Δ, F ∂Xc) have frequency set contained in the 
union

FS(A) ⊂ Δ′ ∪ F ∂X ′
c.

Away from the intersection Σ they are microlocally semiclassical Fourier integral oper-
ators sc-I�+m(M × M ; Δ \ Σ) and sc-I�(M × M, F ∂Xc \ Σ) respectively. Furthermore, 
one has well-defined symbol maps (ignoring Maslov factors)

σ0 ↗ | ∧ |1/2(Δ \ Σ)
J�,m(M × M ; Δ, F ∂Xc)

σ1 ↘ | ∧ |1/2(F ∂Xc \ Σ).
(10)

The proof of the existence of the symbol calculus is the subject of the following section.
Our construction, in particular, gives a way to associating to Xc an algebra of oper-

ators, which can be thought of as a quantization of Xc:

Definition 3.9. We will denote by AXc
the space of elements in J(M × M ; Δ, ∂Xc) that 

are microlocally of order O(�∞) in the complement of Xc.
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It is not hard to see that AXc
is indeed closed under composition. (Elements in this 

algebra correspond to amplitudes that are of order −∞ in σ as σ → −∞.)

3.2. Symbolic calculus

Here we discuss how Proposition 3.8 can be proved (for � tending to zero along certain 
sequences) using the methods from [26]. We begin by recalling the ideas and results from 
[26] that we will need.

The pre-quantum circle bundle of T ∗M can be identified with the following subman-
ifold of T ∗(M × S1):

Z =
{
(x, θ; ξ, κ) ∈ T ∗(M × S1); κ = 1

}
,

with the obvious circle action. The connection form, α, is the pull-back to Z of the 
canonical one form of T ∗(M × S1).

Definition 3.10. (See [26].) A Lagrangian submanifold Λ ⊂ T ∗M will be called admissible
iff there exists a conic Lagrangian submanifold,

Λ̃ ⊂ T ∗(M × S1) ∩ {κ > 0}

such that

Λ = (Λ̃ ∩ Z)/S1. (11)

We call such a Λ̃ a homogenization of Λ.

It is not hard to see that Λ is admissible if and only if it satisfies the following 
Bohr–Sommerfeld condition: There exists φ : Λ → S1 such that

ι∗η = d log φ,

where ι : Λ → T ∗M is the inclusion and η the canonical one form of T ∗M . Given such 
a φ, a homogenization of Λ can be defined by:

Λ̃ =
{

eiθ = φ(λ), κ > 0
}

. (12)

Definition 3.11. Let M be a C∞ manifold and consider a family of smooth functions {ψ�}. 
The � transform of the family ψ� is the following distribution (if the series converges 
weakly) in M × S1:

Ψ(x, θ) =
∞∑

m=0
ψ1/m(x)eimθ.
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The main point of the previous two definitions is the following

Lemma 3.12. (See [26].) The � transform of a semiclassical state associated to an ad-
missible Lagrangian is a Lagrangian distribution associated to a homogenization of the 
Lagrangian submanifold.

We claim that the previous lemma generalizes to our spaces J�,m of semiclassical pseu-
dodifferential operators with singular symbols, so that the � transform of their kernels 
are Guillemin–Uhlmann operators (i.e. those defined in [16]) on M × S1.

Thus we now consider Δ to be the diagonal in T ∗(M×M) and F ∂Xc as in (8). Clearly 
a homogenization for Δ is the diagonal Δ̃ of T ∗(M ×S1)+ = T ∗(M ×S1) ∩{κ > 0}. Let 
P be a globally defining function for ∂Xc with periodic Hamilton flow on it, as in (9). 
Then a homogenization for F ∂Xc is the flow-out of the homogenization of P , which is 
the function P̃ : T ∗(U × S1)+ → R defined as

P̃
(
x, eiθ; ξ, κ

)
= κP (x, ξ/κ),

where U is the neighborhood of ∂Xc described in Lemma 3.2. Specifically,

F̃ ∂Xc =
{(

ΦP̃
s

(
x, eiθ, ξ, κ

)
;
(
x, eiθ, ξ, κ

)) ∣∣ s ∈ R, κ > 0, P (x, ξ/κ) = 0
}

(13)

where ΦP̃
s is the Hamilton flow generated by the equations (here p = ξ/κ)

ẋ = ∂P

∂p
(x, p), θ̇ = −p

∂P

∂p
(x, p)

ξ̇ = −κ
∂P

∂x
(x, p), κ̇ = 0.

Notice that F̃ ∂Xc is closed if the flow ΦP
t is 2π periodic, which happens if the Bohr–

Sommerfeld condition ∫
γ

pdx ∈ 2πZ

is satisfied for orbits γ ⊂ ∂Xc of P . The function φ : F ∂Xc → S1 associated to this 
homogenization is

φ(x, y) = e−i
∫ y
x

pdx,

where 
∫ y

x
pdx is the action from x to y, and the integral is taken on the curve in the leaf 

joining x to y.
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3.3. The existence of the symbolic calculus

Notice that Δ and F ∂Xc intersect cleanly. As a result, their homogenizations Δ̃ and 

F̃ ∂Xc are conic and intersect cleanly too, forming an intersecting pair, in the sense 
of [24,16]. The relationship between the semiclassical objects defined above and the 
operators described in [16] is as follows:

Theorem 3.13. Let Δ, F ∂Xc be as above, and Δ̃, F̃ ∂Xc their homogenization, respec-
tively. Then any operator A ∈ J�,m(M × M ; Δ, F ∂Xc) if and only if its �-transform 

belongs to I�,m(M × S1 × M × S1; Δ̃, F̃ ∂Xc).

Proof. We sketch the ideas of the proof in the model case. Let A(x, y, �) be as in Eq. (2). 
Let us assume first that the amplitude 1

(2π�)n a does not depend on � so that

A(x, y, �) =
∫

ei�
−1[(x1−y1−s)p1−(x′−y′)p′]+isσa(s, x, y, p, σ)dsdpdσ,

where a(s, x, y, p, σ) is a classical symbol in σ of order m′ = m − 1/2, and compactly 
supported in s, x, y, p. The �-transform of A is then

A(x, θ, y, α) =
∞∑
k=1

∫
eik[(x1−y1−s)p1+(x′−y′)p′+(θ−α)]+isσa(s, x, y, p, σ)dsdpdσ

=
∫

ei[(x1−y1−s)p1+(x′−y′)p′+(θ−α)]

1 − ei[(x1−y1−s)p1+(x′−y′)p′+(θ−α)] e
isσa(s, x, y, p, σ)dsdpdσ.

This distribution is the push-forward under the projection (s, x, y, θ, α, p) → (x, y, θ, α)
of the product of the distributions

Γ (s, x, y, θ, α, p) = ei[(x1−y1−s)p1+(x′−y′)p′+(θ−α)]

1 − ei[(x1−y1−s)p1+(x′−y′)p′+(θ−α)]

and

Υ (s, x, y, θ, α, p) =
∫

eisσa(s, x, y, p, σ)dσ.

Γ is a distribution in space conormal to the hypersurface (x1 − y1 − s)p1 + (x′ − y′)p′ =
−(θ − α), while Υ is a distribution conormal to s = 0. Therefore, A(x, θ, y, α) is a 

Guillemin–Uhlmann distribution associated to the pair (Δ̃n, F̃ ∂Xn
c ). The general case 

(i.e. when a also depends on �) is an asymptotic sum of derivatives and integrals (with 
respect to the θ variables) of the previous case. The converse is also true, and the proof 
is analogue to that in [26] for semiclassical states. �
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This proposition together with Proposition 2.4 of [26], relating the frequency set of 
an �-dependent vector and the wave-front set of its � transform, implies part (1) of 
Theorem 1.1.

The symbols of operators in J�,m(Δ, F ∂Xc) are the reduction of the symbols of its 
�-transform, in the following sense. Let x, y ∈ F ∂Xc \ Σ, x = ΦP

s (y) for some s ∈ R, 
and take

(x̃, ỹ) =
(
ΦP̃
s

(
y, eiθ=0 = 1, κ = 1

)
,
(
y, eiθ=0 = 1, κ = 1

))
∈ F̃ ∂Xn

c .

Using (13), we obtain an isomorphism between T(x̃,ỹ)F̃ ∂Xc and T(x,y)F ∂Xc × R × R, 
which leads to∣∣T(x̃,ỹ)F̃ ∂Xc

∣∣1/2 ∼= |T(x,y)F ∂Xc × R× R|1/2 ∼= |T(x,y)F ∂Xc|1/2 (14)

Therefore, every half-density in T(x̃,ỹ)F̃ ∂Xc will define a half-density in T(x,y)F ∂Xc. 
Let Σ̃ = F̃ ∂Xc ∩ Δ̃. For each family A ∈ J�,m, denote its �-transform by Ã. There is a 
well defined symbol map

σ̃1 = σ1(Ã)
F̃ ∂Xc−Σ̃

∈ C∞(
F̃ ∂Xc \ Σ̃, Ω̃1 ⊗ L̃1

)
,

where Ω̃j is the bundle of half-densities on F̃ ∂Xc, and L̃i is the corresponding Maslov 
bundle. Ignoring Maslov factors, we can define the symbols on F ∂Xc\Σ by the identifica-
tion (14), i.e., restricting the symbol of the �-transform to θ = 0, κ = 1 (σ1 = σ̃1|θ=0,κ=1). 
The construction of the principal symbol on the diagonal is similar.

Let Σn = Δn ∩ F ∂Xn
c , Σ̃n = Δ̃n ∩ F̃ ∂Xn

c . In the model case, we know by [16] that 
A(x, θ, y, α) is microlocally in

I�+m
(
Rn × S1 × Rn × S1; Δ̃n \ Σ̃n

)
and I�

(
Rn × S1 × Rn × S1; F̃ ∂Xn

c \ Σ̃n
)
.

Therefore A� is microlocally in sc-I�+m(Rn×Rn; Δn\Σn) and sc-I�(Rn×Rn; F ∂Xn
c \Σn)

in the sense that the �-transform is microlocally in their corresponding spaces. We have 
proved the following

Proposition 3.14. ⋂
�

J�,m = sc-I∞(
Rn × Rn; Δn

)
and ⋂

m

J�,m = sc-I�
(
Rn × Rn; F ∂Xn

c

)
.
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3.4. A symbolic compatibility condition

Recall that the foliation of ∂Xc is fibrating, i.e., there exists a C∞ Hausdorff mani-
fold S and a smooth fiber map

π : ∂Xc → S, (15)

whose fibers are the connected leaves of the foliation defined Section 3.1. Elements of 
F ∂Xc are pairs of points in ∂Xc that lie in the same fiber of π.

Generalizing a construction in [14], given s ∈ S let SOs be the ∗-algebra of all 
pseudodifferential operators, acting on the space of half-densities C∞(|Fs|1/2), where Fs

is the fiber of π : ∂Xc → S above s. Let SO be the sheaf of ∗-algebras on S whose 
stalk at s is SOs. We will say that a section k of SO is smooth if the Schwartz kernel 
of the operator k(s) depends smoothly on s ∈ S. The Schwartz kernel theorem, applied 
fiber-wise to the fibers of π, together with the natural symplectic structure of S yield 
the following:

Proposition 3.15. The vector space of smooth sections of the sheaf SO is naturally iso-
morphic to the space of half-densities on F ∂Xc \Σ that extend to F ∂Xc as a conormal 
distribution to Σ

Proof. Let γ = (γ1, γ2) ∈ F ∂Xc, s = π(γ1) = π(γ2) ∈ S. One then has the following 
fiber product diagram:

TγF ∂Xc

dπ1

dπ2

Tγ1∂Xc

dπ

Tγ2∂Xc
dπ

TsS

and so we get the exact sequence

0 TγF ∂Xc Tγ1∂Xc ⊕ Tγ2∂Xc TsS 0

v (dπ1v, dπ2v)

(v1, v2) dπ(v2) − dπ(v1)

This gives a natural identification

C ∼= |TγF ∂Xc|1/2 ⊗ |Tγ1∂Xc ⊕ Tγ2∂Xc|−1/2 ⊗ |TsS|1/2.

Since S is a symplectic manifold, there is a canonical half-density on TsS, and we get an 
identification
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|TγF ∂Xc|1/2 ∼= |Tγ1∂Xc ⊕ Tγ2∂Xc|1/2 ∼= |Tγ1∂Xc|1/2 ⊗ |Tγ2∂Xc|1/2.

Finally, given a half density in Tγk
∂Xc, k = 1, 2, we need to get a half-density in Tγk

Fs, 
where Fs is the fiber of π above s. We have the following exact sequence:

0 −→ ker dπγk
−→ Tγk

∂Xc −→ TsS −→ 0

which, by the same process as above, gives an identification

|Tγk
Fs|1/2 = | ker dπγk

|1/2 ∼= |Tγk
∂Xc|1/2

Hence

|TγF ∂Xc|1/2 ∼= |Tγ1Fs|1/2 ⊗ |Tγ2Fs|1/2 ∼=
∣∣T(γ1,γ2)(Fs × Fs)

∣∣1/2
This gives a smooth isomorphism between two line bundles over F ∂Xc: |T F ∂Xc|1/2
and the line bundle Υ → F ∂Xc whose fiber over (γ1, γ2) is |T(γ1,γ2)(Fs × Fs)|1/2, where 
π(γ1) = s = π(γ2). Clearly a section of the sheaf SO is a distributional section of Υ
conormal to Σ, and by the previous isomorphism this is equivalent to a distributional 
section of |T F ∂Xc|1/2 conormal to Σ. �

The previous isomorphism yields an algebra structure on the space of distributional 
half densities on F ∂Xc which are conormal to Σ. Analogously as in [14, Proposition 2.7], 
one can see that the algebraic structure on this space is given, away from Σ, by the 
composition of half densities regarded as symbols of Fourier integral operators associated 
to F ∂Xc.

Let us now take A ∈ J�,m. The symbol σ1(A) in F ∂Xc\Σ blows-up as the point where 
σ1 is evaluated tends to the intersection. In fact, in [1] it was shown that this symbol 
has a natural extension to a distribution conormal to Σ. Using the same identification 
above, this determines the kernel of a pseudodifferential operator on the fiber above each 
point of S. We have proved:

Proposition 3.16. For A ∈ J�,m(M × M, Δ, F ∂Xc), the symbol σ1(A) can be identified 
with a global section of the sheaf SO, that is, with a family of classical pseudodifferential 
operators of order m′ = m −1/2 acting on fibers of π : ∂Xc → S (orbits in the flow-out).

For each s ∈ S and Fs the corresponding fiber above s, let us denote this operator 
by σ1(A)s:

C∞(Fs)
σ1(A)s−−−−−→ C∞(Fs)

As a result, there is a well-defined symbol

σ
(
σ(A)s

)
: T ∗Fs \ 0 → C.
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As we will now see, this symbol is related to the symbol σ0(A) of A on the diagonal. 
(This is the compatibility of the symbols of A announced earlier.)

Let P be a defining function of ∂Xc with a 2π-periodic flow on ∂Xc. We have the 
following diffeomorphism

∂Xc × S1 −→ F ∂Xc

(x, t) �−→
(
ΦP
t x, x

)
from which one can see that, for any γ = (x, x) ∈ Σ = Δ ∩ F ∂Xc, there is a natural 
isomorphism

NF ∂Xc

Σ := TγF ∂Xc/TγΣ ∼= TxFs

(NF ∂Xc

Σ is the normal space to Σ in F ∂Xc at γ). Therefore, for each x ∈ ∂Xc, T ∗
xFs is 

isomorphic to the dual space (NF ∂Xc

Σ )∗.
Now let NΔ

Σ := TγΔ/TγΣ be the normal space to Σ in Δ at γ. By [16], NF ∂Xc

Σ and 
NΔ

Σ are supplementary Lagrangian subspaces of the two-dimensional symplectic vector 
space W = (TγΣ)⊥/TγΣ. Therefore, NF ∂Xc

Σ and NΔ
Σ are in duality with each other 

(they are canonically paired by the symplectic form of W ). In the end we obtain a 
natural isomorphism

T ∗
xFs

∼=
(
NF ∂Xc

Σ

)∗ ∼= NΔ
Σ .

The symbol of A on the diagonal belongs to a class Sm′(Ω0; Δ, Σ) of smooth functions 
on Δ \Σ which blow up at a prescribed rate at Σ (see [16] for more details). Every element 
in this class determines a smooth function on NΔ

Σ \ {0}. The compatibility condition
alluded to in the introduction is the following:

Theorem 3.17. The symbol of A ∈ J�,m(M × M, Δ, F ∂Xc) on the flow-out, identified 
with a family {σ1(A)s}s∈S of pseudodifferential operators along the fibers Fs, satisfies 
that for each x ∈ Fs

σ
(
σ1(A)s

)
x
(τ) = lim

y→x
y∈Xc\∂Xc

σ0(A)(y, y)
Pm′(y) and

σ
(
σ1(A)s

)
x
(−τ) = lim

y→x
y∈T∗M\Xc

σ0(A)(y, y)
Pm′(y) , (16)

where τ ∈ T ∗
xFs is the dual of the Hamilton field of P at x regarded as an element 

in TxFs, and the two limits are taken from the interior of Xc and the exterior of Xc, 
respectively. Moreover, this condition is intrinsic, i.e., it does not depend on the choice 
of P .
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The proof reduces to the model case, where it is immediate. One can also verify 
directly that changing P by a multiplicative factor does not alter the relationships (16).

The symbols in the flow-out become more natural under the present setting, as can 
be seen in the following symbolic version of Proposition 2.7.

Proposition 3.18. The composition of properly supported operators with kernels in J�,m

and J �̃,m̃, respectively, is an operator with kernel in J�+�̃+1/2,m+m̃−1/2. For any A ∈
J�,m, B ∈ J �̃,m̃, we obtain the usual symbol in the diagonal:

∀x ∈ Xc \ ∂Xc σ0(A ◦ B)(x, x) = σ0(A)(x, x)σ0(B)(x, x),

and for any fiber Fs above s ∈ S,

σ1(A ◦ B)s = σ1(A)s ◦ σ1(B)s.

3.5. The adjoint

The class J�,m is closed under the operation of taking adjoints, and information about 
the symbol of the adjoint is given in the following

Proposition 3.19. Let A ∈ J�,m(M ×M ; Δ, F ∂Xc), then the adjoint A∗ belongs again to 
J�,m(M × M ; Δ, F ∂Xc), and

σ0
(
A∗)(x, x) = σ0(A)(x, x) for (x, x) ∈ Δ \ Σ, and

σ1
(
A∗)

s
=
(
σ1(A)s

)∗
, for each s ∈ S.

Proof. The first statement is as in the usual theory of �-pseudodifferential operators. It 
is enough to prove the rest in the model case. Take A with Schwartz kernel

K(x, y, h) = 1
(2π�)n

∫
ei�

−1((x−y)·p−sp1)+isσa(s, x, y, p, σ, �)dsdpdσ,

where a ∈ A�′,m′

classical, �′ = � + 1/2, m′ = m − 1/2. The Schwartz kernel of the adjoint is 
given by

K∗(x, y) = K(y, x) = 1
(2π�)n

∫
ei�

−1((x−y)p−sp1)+isσa(−s, y, x, p, σ, �)dsdpdσ,

where a(s, x, p, σ, �) was replaced by a(−s, y, x, p, σ, �). Taking x = (x, (p1 = 0, p′)), 
y = φP

s x = ((x1 + s, x′), (p1 = 0, p′)), the symbol in the flow-out is given by

σ1
(
A∗)(φP

s x, x
)

=
√

2π

∫
a−�′(−s, y, x, p, σ)eisσdσ

√
dxdy1dp′|x′=y′,p =0,s=x −y
1 1 1
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=
√

2π

∫
a−�′(−s, y, x, p, σ)e−isσdσ

√
dxdy1dp′|x′=y′,p1=0,y1−x1=−2

= σ1(A)
(
x, φP

s x
)

The proof is now clear, since the symbol σ1(A∗) intertwines the variables and takes the 
conjugate of σ1(A). �
4. Asymptotics of the trace

4.1. The trace in the case m′ ≥ 0

We now assume that Xc is compact and ∂Xc is fibrating, as in Section 3. We will 
prove:

Theorem 4.1. Let Â be an operator in the class AXc
. Then, if m > 1/2,

Tr(Â) = (2π)−n�−�−m−n

∫
Xc

σ0(x, x, p,−p)dxdp + O
(
�−�−m−n+1), (17)

where σ0 is the symbol of A on the diagonal. If m = 1/2,

Tr(Â) = (2π)−n�−�−m−n

∫
Xc

σ0(x, x, p,−p)dxdp + O
(
�−�−m−n� log(1/�)

)
. (18)

The rest of this subsection is devoted to a proof of this result, which we break into a 
series of lemmas. Note that it is enough to estimate the integral along the diagonal of 
the kernel of A in the model case with �′ = 0. Consider therefore a semiclassical kernel 
of the form:

u�(x, y) = 1
(2π�)n

∫
ei�

−1[(x1−y1−s)p1+(x′−y′)p′]+isσa(s, x, y, p, σ)dsdpdσ, (19)

where p = (p1, p′), x = (x1, x′), y = (y1, y′) and a is a classical symbol in σ of degree 
m′ = m − 1/2, compactly supported in (s, x, y, p).

Lemma 4.2. Let μ0 > 0 be large enough so that a|{|p1|>μ0/2} = 0, and let ρ ∈ C∞
0 be 

a smooth function with compact support which is equal to one in [−μ0/2, μ0/2] and is 
supported in [−μ0, μ0]. Then

u�(x, x) = 1
(2π�)n

∫
e−isp1/�+isσa(s, x, x, p, σ)ρ(�σ)dsdpdσ + O

(
�∞

)
, (20)

uniformly in x.
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Proof. The rigorous definition of uh when the integral in σ diverges is given in Eq. (4): 
If K � 0 (K ≥ m′/2 + 1), then uh is equal to the absolutely convergent integral

1
(2π�)n

∫
ei�

−1[(x1−y1−s)p1+(x′−y′)p′]+isσ 1
(1 + σ2)K DK

×
[
e−is�−1p1a(s, x, y, p, σ)

]
dsdpdσ,

and therefore

u�(x, y) = 1
(2π�)n

K∑
j=0

∫
ei�

−1[(x−y)p−sp1]+isσ
(
−i�−1p1

)2K−j aj(s, x, y, p, σ)
(1 + σ2)K dsdpdσ,

where the last expression is obtained by expanding the action of DK . Note that, ∀j, 
aj consists of linear combinations of derivatives of a with respect to s (and therefore 
aj ∈ A0,m′). Using this we get that the remainder in Eq. (20) is equal to

K∑
j=0

1
(2π�)n

∫
e−isp1/�+isσ aj(s, x, x, p, σ)

(1 + σ2)K
(
−i�−1p1

)2K−j(1 − ρ(�σ)
)
dsdpdσ.

Let bj(s, x, p, σ; �) = aj(s,x,x,p,σ)
(1+σ2)K (−i�−1p1)2K−j(1 − ρ(�σ)). We will show that for

each j,

Bj := 1
(2π�)n

∫
e−isp1�

−1+isσbj dsdpdσ

is O(�∞).
Starting with the change of variables μ = �σ, ω = −p1 + μ, we obtain that

Bj = �−1

(2π�)n

∫
eisω/�bj

(
s, x,

(
−ω + μ, p′

)
, �−1μ; �

)
dsdωdp′dμ

= 1
(2π�)n

∫
e−i�ξ1ξ2cj

(
x, μ, p′; �; ξ

)
dξdp′dμ,

where ξ = (ξ1, ξ2) are the dual variables to (s, ω), and

cj
(
x, μ, p′; �; ξ

)
= 1

2π

∫
e−i(s,ω)·ξbj

(
s, x,

(
−ω + μ, p′

)
, �−1μ; �

)
dsdω

is the Fourier transform of bj in the (s, ω) variables. Using the inequality

∣∣∣∣∣eit −
N−1∑ (it)k

k!

∣∣∣∣∣ ≤ |t|N
N ! , (21)
k=0
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we obtain that for each N > 0,

∫
e−i�ξ1ξ2cj

(
x, μ, p′; �; ξ

)
dξ −

N−1∑
k=0

∫ (−i�ξ1ξ2)k

k! cj
(
x, μ, p′; �; ξ

)
dξ

=
∫

RN (ξ; �)cjdξ,

where |RN (ξ; �)| ≤ �N |ξ1ξ2|N
N ! . Moreover, for each k = 0, . . . , N − 1,

(i�)k

k!

∫
(−ξ1ξ2)kcjdξ = 2π(−i�)k

k!

(
∂2

∂s∂p1

)k

bj
(
s, x, p, �−1μ; �

)
|s=0,p1=μ

= 2π(−i�)k (1 − ρ(μ))
(1 + (�−1μ)2)k!

(
∂2

∂s∂p1

)k

aj

(
s, x,

(
μ, p′

)
, �−1μ

)
|s=0,p1=μ

= 0,

since ρ(μ) is equal to one in the support of a. It follows that∣∣∣∣∫ e−i�ξ1ξ2cjdξ

∣∣∣∣ ≤ �N

N !

∫ ∣∣(ξ1ξ2)Ncj
∣∣dξ

= �N

2πN !

∥∥∥∥∫ e−i(s,ω)·ξ
(

∂2

∂s∂ω

)N(
bj
(
s, x,

(
−ω + μ, p′

)
, �−1μ; �

))
dsdω

∥∥∥∥
L1

ξ

,

where ‖ · ‖L1
ξ

denotes the L1-norm of a function of the ξ variables. The well-known 
inequality

‖v̂‖L1(Rd) ≤
∑

|α|≤d+1

∥∥∂αv
∥∥
L1(Rd) (22)

implies that the above bound is in turn bounded by

�N

2πN !
∑
|α|≤3

∥∥∥∥∂α

(
∂2

∂s∂ω

)N[
bj
(
s, x,

(
−ω + μ, p′

)
, �−1μ; �

)]∥∥∥∥
L1

s,ω

= �N

2πN !
∑
|α|≤3

∥∥∥∥ (1 − ρ(μ))(−i�−1)2K−j

(1 + (�−1μ)2)K ∂α

(
∂2

∂s∂ω

)N

×
[
aj

(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
(−ω + μ)2K−j

]∥∥∥∥
L1

s,ω

,

where ‖ · ‖L1
s,ω

is defined similarly, and ∂α = ∂α1

∂sα1
∂α2

∂ωα2 , α = (α1, α2). Therefore Bj is 
bounded above by
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�−n+N−2K+j

(2π)n+1N !
∑
|α|≤3

∫ ∣∣∣∣∂α

(
∂2

∂s∂ω

)N

×
[
(−ω + μ)2K−jaj(s, x, (−ω + μ, p′), �−1μ)

(1 + (�−1μ)2)k
(
1 − ρ(μ)

)]∣∣∣∣dsdωdp′dμ

= �−n+N+1−2K+j

(2π)n+1N !
∑
|α|≤3

∫ ∣∣∣∣∂α

(
∂2

∂s∂p1

)N[
p2K−j
1 aj(s, x, p, σ)

(1 + σ2)k
(
1 − ρ(�σ)

)]∣∣∣∣dsdpdσ.

Finally, notice that the integrand is O(σm′−2K) and that 1 − ρ(�σ) has support in 
|σ| ≥ �−1μ0/2. Therefore the above upper bound is less than a constant times

�−n+N+1−2K+j

∞∫
�−1μ0/2

σm′−2Kdσ = �−n+N+1−2K+j σm′−2K+1

m′ − 2K + 1 |
∞
�−1μ0/2

= O
(
�j−n−m′+N

)
.

Since this is true for all positive integers N we are done. �
Lemma 4.3. If m′ ≥ 0,∫

u�(x, x) dx = 1
(2π�)n

∫
2πa

(
0, x, x, μ, p′, �−1μ

)
dx dp′ dμ + O

(
�−n−m′+1). (23)

Proof. By (20), it suffices to estimate

ũ�(x, x) = 1
(2π�)n

∫
e−isp1/�+isσa(s, x, x, p, σ)ρ(�σ)dsdpdσ.

By an argument identical to the one used in the proof of Lemma 4.2,

ũ�(x, x) = 1
(2π�)n �

−1
∫

eisω/�a
(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)dsdp′dωdμ.

We will apply the method of stationary phase to the (s, ω) integral, before integrating 
with respect to p′ and μ. To this end introduce the notation

u�

(
x, x, p′, μ

)
= 1

(2π�)n �
−1

∫
eisω/�a

(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)dsdω,

so that the left-hand side of (23) is equal to 
∫

u�(x, x, p′, μ) dxdp′dμ modulo O(�∞). We 
also have that

u�

(
x, x, p′, μ

)
= 1

n

∫
e−i�ξ1ξ2c

(
x, μ, p′; �; ξ

)
dξ,
(2π�)
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where ξ = (ξ1, ξ2) are the dual variables to (s, ω), and

c
(
x, μ, p′; �; ξ

)
= 1

2π

∫
e−(s,ω)·ξa

(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)dsdω

is the Fourier transform of ρa in (s, ω). Note that∫
c
(
x, μ, p′; �; ξ

)
dξ = 2πa

(
0, x, x,

(
μ, p′

)
, �−1μ

)
,

and therefore (by (21))

u�

(
x, x, p′, μ

)
− 1

(2π�)n 2πa
(
0, x, x,

(
μ, p′

)
, �−1μ

)
= 1

(2π�)n

∫
R(ξ, �)c(ξ)dξ, (24)

where |R(ξ, �)| ≤ �|ξ1ξ2|. Integrating (24) we see that the error term in (23) is bounded 
by

1
(2π�)n

∫
K

‖Rc‖L1
ξ

(
x, p′, μ

)
dx dp′ dμ, (25)

where K is a compact set containing the support of the left-hand side of (24). Using (22)
again,

�‖ξ1ξ2c‖L1
ξ

= �

2π

∥∥∥∥∫ e−i(s,ω)·ξ ∂2

∂s∂ω
a
(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)dsdω

∥∥∥∥
L1

≤ �

2π

∑
|α|≤3

∥∥∥∥∂α ∂2

∂s∂ω
a
(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)

∥∥∥∥
L1

(s,ω)

.

Since a(s, x, y, p, σ) is a classical symbol in σ of order m′ and compactly supported in 
the rest of the variables, ∀α there exists a constant C = C(α) such that∣∣∣∣ �2π

∂α ∂2

∂s∂ω
a
(
s, x, x,

(
−ω + μ, p′

)
, �−1μ

)
ρ(μ)

∣∣∣∣
≤ C(α)

(
1 + �−1|μ|

)m′
� = C(α)

(
� + |μ|

)m′
�−m′+1 (26)

for all (s, x, y, p). Integrating (26) with respect to (s, ω) over a sufficiently large compact 
set we obtain that

‖Rc‖L1
ξ

(
x, p′, μ

)
≤ C

(
� + |μ|

)m′
�−m′+1.

We now integrate this inequality over the compact set, K, in (25), to obtain that the 
error term in (23) is bounded above by a constant times
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�−m′−n+1
∫

|μ|≤μ1

(
� + |μ|

)m′
dμ (27)

for some μ1 > 0 independent of �, and this is O(�−m′−n+1) when m′ ≥ 0. �
Remark 4.4. Lemma 4.3 implies the theorem (with a better error estimate in case m′ = 0) 
if the amplitude a is homogeneous in the variable σ.

Proof of Theorem 4.1. Let us first assume that m′ > 0. Since a is a symbol in σ of degree 
m′ > 0, there exists ã(x, p) and a constant C such that

∣∣a(0, x, x, p, σ) − σm′
ã(x, p)χ(σ)

∣∣ ≤ C
(
1 + |σ|

)m′−1
,

where χ(σ) is smooth in σ �= 0, and homogeneous of degree zero in σ. Then, in particular,∣∣∣∣ 2π

(2π�)n a
(
0, x, x, μ, p′, �−1μ

)
− 2π

(2π�)n �
−m′

μm′
χ(μ)ã

(
0, x,

(
μ, p′

))∣∣∣∣
≤ (2π)1−nC

(
1 + �−1|μ|

)m′−1
�−n.

The left-hand side of this inequality is supported in μ ∈ [−μ0, μ0]. After integrating with 
respect to μ, the remainder is bounded by constant times

�−n

μ0∫
−μ0

(
1 + �−1|μ|

)m′−1
dμ = 2�−n−m′+1

μ0∫
0

(� + μ)m
′−1dμ

= 2�−n−m′+1((μ0 + �)m
′ − �m

′)
/m′

= O
(
�−n−m′+1) since m′ > 0.

Therefore, for any �′ and m′ > 0∫
u�(x, x) dx = (2π)−n�−�−m−n

∫
2πpm

′

1 ã(0, x, p)dxdp + O
(
�−�−m−n+1),

where 2πpm
′

1 ã(0, x, p) is the principal symbol on the diagonal.
Now let’s assume m′ = 0. Since a is a symbol in σ of degree zero, there exists ã(x, p)

such that,

∣∣a(0, x, x, p, σ) − ã(x, p)χ(σ)
∣∣ <

C

1 + |σ|

for some constant C > 0. Then∣∣∣∣ 2π
n

a
(
0, x, x, μ, p′, �−1μ

)
− 2π

n
ã
(
x,
(
μ, p′

))
χ(μ)

∣∣∣∣ <
(2π)1−nC

−1 �−n
(2π�) (2π�) 1 + � |μ|
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Again, since the left hand side is supported in the set {|μ| ≤ μ0}, after integrating 
with respect to μ, the remainder is bounded by a constant times

�−n

μ0∫
0

1
1 + �−1μ

dμ = �−n+1
μ0∫
0

1
μ + �

dμ = �−n+1(log(μ0 + �) − log(�)
)

= O
(
�−n+1 log(1/�)

)
.

Therefore, for m = 1/2∫
u�(x, x) dx = (2π)−n�−�−m−n

∫
2πã(0, x, p)dpdx + O

(
�−�−m−n+1 log(1/�)

)
,

where 2πã(0, x, p) is the principal symbol of the family on the diagonal. �
4.2. The trace in the case m′ ≤ −4

Theorem 4.5. With the previous notation, if m ≤ −7/2, and Â an operator in AXc
, then 

each classical ΨDO σ1(A)s obtained from the symbol of Â in the flow out on each orbit 
is of trace class, and

Tr(Â) = (2π)−n+1/2�−n−�+1/2
∫
S

Tr
(
σ1(A)s

)
ds + O

(
�−n−�+3/2). (28)

Lemma 4.6. If m′ < 0 and �′ = 0,∫
u�(x, x) dx = 1

(2π�)n 2π

∫
a
(
0, x, x, μ, p′, �−1μ

)
dx dp′ dμ + O

(
�−n+2). (29)

Proof. This follows immediately from (27) (which was derived under no assumptions 
on m′). �
Proof. Starting with Eq. (19), since m′ ≤ −4

a2(s, x, y, p) :=
∫

eisσa(s, x, y, p, σ)dσ

is absolutely convergent and can be extended to a C2 function of s. In addition, a2 is 
compactly supported in s, x, y, p. Using the stationary phase theorem for C2k amplitudes 
[19, Theorem 7.7.5], we get∫

ei�
−1sp1a2

(
s, x, x,−p1, p′

)
dsdp1 ∼ 2π�a2

(
0, x, x, 0, p′

)
,

and then
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∫
u�(x, x) dx = (2π)−n+1/2�−n−�+1/2

∫ √
2πa2

(
0, x, x, 0, p′

)
dxdp′ + O

(
�−n−�+3/2),

where 
√

2πa2(0, x, x, 0, p′) =
√

2π
∫

eisσa(s, x, x, p)dσ|s=0,p1=0 is the extension of the sym-
bol σ1 to the intersection of the Lagrangians. This is the desired result in the model 
case. �
5. Projectors and “cut” quantum observables

In this section we will prove that, under a mild additional condition on ∂Xc, the 
algebra AXc

contains orthogonal projectors. We will also prove that, in case there exists 
an �-pseudodifferential operator on M , P̂ , such that:

1. The spectrum of P̂ is discrete and is contained in �Z, and
2. Xc = P−1(I) for I ⊂ R a closed interval,

then the spectral projector of P̂ associated to the interval I is in AXc

5.1. On the existence of projectors

In addition to the assumptions on ∂Xc that we have been making throughout, let 
us now assume that ∂Xc is of contact type. Recall that this means that there exists a 
one-form β on ∂Xc such that (a) dβ is the pull-back of the symplectic form to ∂Xc, and 
(b) β�ΞP is constant, where P is a defining function of Xc with periodic flow on ∂Xc.

Following the proof of Lemma 5 in [5], one obtains:

Lemma 5.1. There exists a smooth function, which will be called again P : T ∗M → R, 
such that

(a) P is bounded from below and tends to ∞ at infinity in the cotangent directions,
(b) ∂Xc = P−1(0), and
(c) there exists a neighborhood W of ∂Xc such that the Hamilton flow of P is 2π-periodic 

in W .

Next we recall (see [18, Proposition 3.8]) how to obtain a quantum version of the 
previous result:

Lemma 5.2. Let P̂ (�) be a semiclassical pseudodifferential operator with principal symbol 
P and vanishing sub-principal symbol. Let μ be the Maslov index of the trajectories of ΦP

(the Hamilton flow of P ) in W . Assume the Bohr–Sommerfeld conditions (7). Then there 
exists a semiclassical pseudodifferential operator R̂2(�) of order −2 such that for ε � 1



1786 G. Hernandez-Duenas, A. Uribe / Journal of Functional Analysis 268 (2015) 1755–1807
Spec
(

P − μ

4 �− R̂2(�)
)
∩ [−ε/3, ε/3] ⊂ �Z

when we restrict � to the sequence � = 1/N with N large.

Proof. Pick ε > 0 such that P−1[−ε, ε] ⊂ W . Let ρ be a smooth function with support 
in [−ε, ε], such that ρ ≡ 1 on [−ε/2, ε/2]. Let

γ = 1
2π

2π∫
0

p(t)ẋ(t) − P
(
x(t), p(t)

)
dt

be the (common) action of the trajectories of the Hamilton flow of P in W . Then 
e−2πi�−1(P̂−μ

4 �−γ) is microlocally in W a pseudodifferential operator with symbol iden-
tically equal to one, and thus one can write

ρ(P̂ )e−2πi�−1(P̂−μ
4 �−γ) = ρ(P̂ )

(
I + �R̂(�)

)
,

where R̂(�) is a zeroth order �-ΨDO. Recall that γ is an integer in ∂Xc, and therefore, 
for � = 1/N we obtain

ρ(P̂ )e−2πi�−1(P̂−μ
4 �) = ρ(P̂ )

(
I + �R̂(�)

)
.

Since I + �R̂(�)ρ(P̂ ) has spectrum close to 1 for � � 1, one can then define for � small

R̂2 = − �

2πi
log

(
I + �R̂(�)ρ(P̂ )

)
,

and since R̂2 commutes with P̂ , we obtain

ρ(P̂ )e−2πi�−1(P̂−μ
4 �−R̂2) = ρ(P̂ )

(
I + �R̂(�)

)(
I + �R̂(�)ρ(P̂ )

)−1
.

Since ρ ≡ 1 on [−ε/2, ε/2], the spectral theorem guarantees that the above operator is 
the identity on any eigenfunction of P̂ with eigenvalue in [−ε/2, ε/2]. Since, for � small 
enough, the spectrum of P̂ − μ

4 � − R̂2 in [−ε/3, ε/3] corresponds to eigenfunctions of P̂
with eigenvalues in [−ε/2, ε/2], the result follows. �

Let us define P̂2 := P̂ − μ
4 � − R̂2, whose principal symbol continues to be P . Let χ be 

the characteristic function on (−∞, 0], and define the projector

Π = χ(P̂2)

Theorem 5.3. The projector Π defined above belongs to the class J−1/2,1/2(M × M,

Δ, F ∂Xc).
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Proof. Let ρ be the cut-off function of the previous proof. We decompose

Π = (1 − ρ)χ(P̂2) + ρχ(P̂2)

Clearly (1 − ρ)χ(P̂2) is a semiclassical pseudodifferential operator. Therefore we need 
to prove that ρχ(P̂2) belongs to J−1/2,1/2. This operator has microsupport in W .

We take Rn−1 × S1 as the model case with coordinates (x, θ) and T ∗(Rn−1 × S1)
with coordinates (x, θ; p, τ). Let ΠE = ΠE

N be the projector on eigenfunctions of P̂n :=
�Dθ = �

i
∂
∂θ with eigenvalues greater than or equal to E/N , where E ∈ Z is a constant. 

(Here θ is the 2π-periodic variable in S1.) Let Ts = e−is�−1P̂2 , and let

Tn
s = e−i�−1sP̂n

be the translation representation on L2(Rn−1 × S1). Let (x0, p0) ∈ W . As in [9,10], 
there exist an S1-invariant neighborhood U ⊂ W of (x0, p0) (the circle action given 
by the Hamilton flow of P ), an S1-invariant open set Un ⊂ T ∗(Rn−1 × S1), and an 
S1-equivariant canonical transformation

φ : U → Un,

which sends ∂Xc ∩ U into {(x, θ; p, τ) ∈ T ∗(Rn−1 × S1) | τ = E}. Again, as in [9,10], 
one can show that there exists a semiclassical zeroth order Fourier integral operator

F : L2(M) → L2(Rn−1 × S1),
with microsupport on U × Un such that

F ∗F = IUn , F F ∗ = IU ,

and

Fρχ(P̂2) = ρ
(
ΠE

)
F.

This reduces the proof to the model case. It suffices to show that ΠQ̂ is on the algebra, 
for any zeroth order compactly supported semiclassical pseudodifferential operator Q̂ in 
Rn−1 × S1. Note that

ΠEQ̂ = 1
2π

2π∫
0

e−iNsP̂n

eiNsEQ̂
1

1 − eis
ds

The operator e−iNsP̂n

eiNsEQ̂ is a semiclassical FIO with Lagrangian{(
(x, θ; p, τ = E), (y = x, α + s = θ;−p,−τ = −E)

) ∣∣ x ∈ Rn−1, θ, α ∈ [0, 2π]
}

.
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Therefore, in local coordinates, the Schwartz kernel of ΠEQ̂ can be written as

1
(2π�)n

1
2π

∫
eiN((x−y)p+(θ−α−s)(τ−E))q(x, θ, y, α, p, τ, �) 1

1 − eis
dpdτds, (30)

where q is symbol with expansion in �. Notice that 1
1−eis is a conormal distribution in 

s = 0 and Eq. (30) shows the hybrid nature of the amplitude of the projector. Eq. (30)
also proves that ΠEQ̂ ∈ J−1/2,1/2, with principal symbol χXc

Q(x, θ; p, τ) in the diagonal, 
and

1√
2π

Q(ΦP
s (x, θ; p, τ))
1 − eis

in the flow-out. �
Remark 5.4. If one has an �-pseudodifferential operator P̂ with discrete spectrum such 
that

Spec
(
P̂ (�)

)
⊂ �Z,

then the previous proof shows that, for any given E1, E2 ∈ Z such that E1 < E2, and 
for j = 1, 2:

the trajectories on P−1(Ej) satisfy the Bohr–Sommerfeld condition (7).

Under these circumstances, the orthogonal projector onto

HN = span of eigenvectors of P̂ (�) with eigenvalues in [E1, E2],

is in the algebra J−1/2,1/2(M × M ; Δ, F ∂Xc), associated to

Xc =
{

x ∈ T ∗M
∣∣ E1 ≤ P (x) ≤ E2

}
.

5.2. Cut quantum observables

In this section we fix a projector Π as in Section 5.1, and consider “cut” quantum 
observables, by which we mean operators of the form

ΠQ̂Π

where Q is a pseudodifferential operator on M . By Theorem 5.3 these operators are in 
J−1/2,1/2(M×M ; Δ, F ∂Xc). The symbolic properties of these operators are summarized 
by the following Proposition:
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Proposition 5.5. Let Q̂(�) be a zeroth-order semiclassical pseudodifferential operator with 
compact microsupport. Then ΠQ̂Π is in the class J−1/2,1/2(M ×M ; Δ, F ∂Xc). Its sym-
bols, ignoring Maslov factors, are as follows:

σ0(ΠQ̂Π)(x, x) = χXc
(x)Q(x)

√
dx ∧ dp, (31)

σ1(ΠQ̂Π)s = ΠFs
M|QFs

ΠFs
(32)

where χXc
is the characteristic function of Xc, x = (x, p) ∈ T ∗M , Fs is the fiber above 

s ∈ S, Q|Fs
is the restriction of Q to Fs, MQ|Fs

is the operator “multiplication by 
Q|Fs

”, and ΠFs
is the Szegö projector in the orbit Fs, i.e., for u : Fs → C smooth, 

u(ΦP
s y) =

∑
j uj(y) eijs√

2π , [ΠFs
u](x) =

∑
r≥0

ur(x)√
2π .

Remark 5.6. Notice that the Szegö projector ΠFs
is a classical pseudodifferential operator 

with principal symbol χ(T∗Fs)+ , where (T ∗Fs)+ is the part with positive momentum 
variable, in the direction of the Hamilton flow. This function is smooth in T ∗Fs \ 0.

Remark 5.7. The symbol of Π|Fs
MQ|Fs

Π|Fs
is χ(T∗Fs)+Q|Fs

, which agrees with the 
symbol in the diagonal, restricted to the intersection. This is the so-called symbolic 
compatibility condition referred to in Theorem 3.17.

Proof. The first part was proven in Theorem 5.3. The principal symbol in the diagonal 
is clear. Using the relation (0.2) in [1], we obtain that for y ∈ ∂Xc, s �= 0,

σ1
(
ΦP
s (y); y

)
= 1√

2π

1
2π

2π∫
0

Q(ΦP
s−s̃(y))

1 − ei(s−s̃)
1

1 − eis̃
ds̃

= 1√
2π

1
2π

2π∫
0

Q(ΦP
s̃ (y))

1 − eis̃
1

1 − ei(s−s̃) ds̃.

Since Q(ΦP
s̃ (y)) is a smooth 2π-periodic function in s̃, there exists a sequence of functions 

{Qj(y)}∞j=−∞ such that

Q
(
ΦP
s̃ (y)

)
=

∞∑
j=−∞

Qj(y) eijs̃√
2π

,

and the symbol becomes:

σ1
(
ΦP
s (y); y

)
= 1√

2π

1
2π

∫ (∑
j

Qj(y)√
2π

eijs̃
)(∑

k≥0

eiks̃
)( ∑

k′≥0

eik
′(s−s̃)

)
ds̃

= 1√
2π

1
1 − eis

[∑
eijs

Qj(y)√
2π

+
∑ Qj(y)√

2π

]
.

j≥0 j<0
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We now interpret this as the kernel of an operator acting on the fibers of ∂Xc → S. 
Let us consider a fiber Fs ⊂ ∂Xc, and a function u : Fs → C. For every fixed y ∈ ∂Xc, 
let ur(y) and Qj(y) be the corresponding Fourier coefficients in each decomposition

u
(
ΦP
s y

)
=

∞∑
r=−∞

ur(y) eirs√
2π

, Q
(
ΦP
s y

)
=

∞∑
j=−∞

Qj(y) eijs√
2π

As a pseudodifferential operator, the symbol in the flow-out of ΠQ̂Π acting the func-
tion u, is given by

[
σ1(ΠQ̂Π)su

]
(x) =

∫
Fs

σ1(ΠQ̂Π)(x, y)u(y)dy =
∫
S1

σ1(ΠQ̂Π)
(
x, ΦP

s x
)
u
(
ΦP
s x

)
ds

=
∫ 1√

2π

1
1 − e−is

[∑
j≥0

Qj(x)√
2π

+
∑
j<0

Qj(x)√
2π

eijs
]∑

r

ur(x) eirs√
2π

ds

=
∑

r≥0,j≥−r

ur(x)Qj(x)√
2π

(33)

On the other hand,

[
ΠFs

M|QFs
ΠFs

(u)
]
(x) = ΠFs

M|QFs

(∑
r≥0

ur(y)√
2π

)
(x) = ΠFs

(
Q(y)

∑
r≥0

ur(y)√
2π

)
(x)

= ΠS1

(
Q
(
ΦP
s x

)∑
r≥0

ur(ΦP
s x)√

2π

)
|s=0

= ΠS1

( ∑
j∈Z,r≥0

Qj(x)√
2π

ur(x)ei(j+r)s
√

2π

)
|s=0

=
∑

r≥0,j≥−r

Qj(x)ur(x)√
2π

,

which agrees with Eq. (33). This proves

σ1(ΠQ̂Π)s = ΠFs
M|QFs

ΠFs
,

which yields (32) after applying Proposition 3.18. �
Operators of the form ΠNQ̂NΠN : HN → HN generalize Toeplitz matrices, and this 

is reflected in its principal symbol in F ∂Xc. (In case M = S1 and ΠN the projector 
onto the span of {eijθ, j = 0, . . . , N}, the ΠN Q̂NΠN are to leading order the generalized 
Toeplitz matrices of [7, p. 84].)
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5.2.1. Applications: a symbolic proof of the Szegö limit theorem
We begin with the functional calculus, the heart of which is the following

Lemma 5.8. Let Q̂ be a self-adjoint pseudodifferential operator of order zero on M . Then

Π e−itΠQ̂Π ∈ J−1/2,1/2(M × M ; Δ, F ∂Xc).

Proof. Let us define

W (t) = Πe−itΠQ̂Π .

It is the solution of the problem⎧⎨⎩
1
i

∂

∂t
W (t) + ΠQ̂ΠW (t) = 0

W (t)|t=0 = Π
(34)

The idea in the following proof is to construct a solution which will be in the algebra 
and will make the right-hand side of first equation (34) of order O(�∞).

As a first approximation we take

W̃0 = Πe−itQ̂,

which satisfies

1
i

∂

∂t
W̃0 + ΠQ̂ΠW̃0 = −Π[Π, Q̂]e−itQ̂.

We will prove below that [Π, Q̂] ∈ sc-I−1/2(M×M ; F ∂Xc) (see Section 5.2.2). Therefore, 
we obtain ⎧⎨⎩

1
i

∂

∂t
W̃0(t) + ΠQ̂ΠW̃0(t) =: R̃0(t) ∈ sc-I−1/2(M × M ; F ∂Xc)

W̃0(t)|t=0
= Π

We will now modify W0 so as to make the right hand side O(�∞) instead of an operator 
in sc-I−1/2(M × M ; F ∂Xc). For the rest of the proof, it will be convenient to identify 
symbols in the flow-out with corresponding families of smoothing operators acting on 
functions on the fibers Fs for each s ∈ S. The symbol R0(t) has a corresponding family 
of operators {R̃0,s(t)}s∈S . Let us consider the following problem,⎧⎪⎨⎪⎩

1
i

∂

∂t
Ṽ0,s + ΠFs

MQ|Fs
ΠFs

◦ Ṽ0,s = −R̃0,s,

Ṽ0,s = 0,
|t=0
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whose solution is

Ṽ0,s(t) = −i

t∫
0

e
i(t̃−t)ΠFsMQ|Fs

ΠFs R̃0,s(t̃)dt̃.

Notice that Ṽ0,s is a smoothing operator. Let us call V0 the smooth symbol in F ∂Xc

given by the operator Ṽ0,s. Take Ṽ0 ∈ sc-I−1/2(M × M ; F ∂Xc) with symbol V0. By 
construction

1
i

∂

∂t
(W̃0 + Ṽ0) + ΠQ̂Π(W̃0 + Ṽ0) = �R̃1(t) ∈ sc-I−3/2(M × M ; F ∂Xc).

Proceeding inductively one can find a sequence of operators Ṽj such that for all J

1
i

∂

∂t

(
W̃0 +

J∑
j=0

�j Ṽj

)
+ ΠQ̂Π

(
W̃0 +

J∑
j=0

�j Ṽj

)

= �J+1R̃J+1 ∈ sc-I−3/2−J (M × M ; F ∂Xc) (35)

Finally, take an operator Ṽ ∈ sc-I−1/2(M × M ; F ∂Xc) such that Ṽ ∼
∑∞

j=0 Ṽj , and 

define W̃ = W̃0 + Ṽ . Then

1
i

∂

∂t
W̃ + ΠQ̂ΠW̃ = O

(
�∞

)
.

A standard application of Duhamel’s principle finishes the proof. �
Proposition 5.9. Let Q̂ be a self-adjoint semiclassical pseudodifferential operator. Then 
for any smooth function f , Πf(ΠQ̂Π), is in the class J−1/2,1/2(M ×M ; Δ, F ∂Xc). The 
symbols, ignoring Maslov factors, are as follows:

σ0
(
Πf(ΠQ̂Π)

)
(x, x) = χXc

(x)f
(
Q(x)

)√
dx ∧ dp, and (36)

σ1
(
Πf(ΠQ̂Π)

)
|Fs

= ΠFs
f(ΠFs

MQ|Fs
ΠFs

), (37)

where Fs, Q|Fs
, MQ|Fs

, and ΠFs
are as in Proposition 5.5.

Proof. We have:

Πf(ΠQ̂Π) = 1√
2π

∫
Πe−itΠQ̂Π f̌(t)dt, (38)

where f̌(t) = 1√
2π

∫
eistf(s)ds. By the previous lemma we can conclude that Πf(ΠQ̂Π) ∈

J−1/2,1/2. Moreover
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σ0
(
Πf(ΠQ̂Π)

)
(x, x) = 1√

2π

∫
e−itQ(x)χXc

(x)f̌(t)dt = f
(
Q(x)

)
χXc

(x),

and

σ1
(
Πf(ΠQ̂Π)

)
s

= 1√
2π

∫
ΠFs

e−itΠFsMQFs
ΠFs f̌(t)dt = ΠFs

f(ΠFs
MQFs

ΠFs
). �

As an immediate corollary of Theorems 4.1 and 5.5, we obtain the following Szegö 
limit theorem:

Corollary 5.10. Assume that Xc is compact. Then for any smooth function f

Tr
(
ΠNf(ΠN Q̂NΠN )

)
= (2π)−nNn

∫
Xc

f ◦ Q
ωn

n! + O
(
Nn−1 log(N)

)
.

5.2.2. Commutators
We now describe another property of the projector. Let Q̂ be a semiclassical pseu-

dodifferential operator as above. The projector Π behaves microlocally as the identity 
on the interior Xc, suggesting that [Π, Q̂] is microlocally O(�∞) on the diagonal. Using 
Proposition 3.14, we anticipate that [Π, Q̂] ∈ sc-I−1/2(M × M ; F ∂Xc). We now prove 
that this is indeed the case, and compute the principal symbol of the commutator.

Proposition 5.11. For any zeroth order compactly supported semiclassical pseudodiffer-
ential operator Q̂, [Π, Q̂] ∈ sc-I−1/2(M × M ; F ∂Xc) is a semiclassical Fourier integral 
operator, with (smooth) principal symbol

σ
(
[Π, Q̂]

)(
x = ΦP

s y; y
)

=
{ 1√

2π
Q(y)−Q(x)

1−eis if x �= y

1
i
√

2π{P, Q}(x) if x = y.
(39)

Furthermore, if the principal symbol of Q̂ is constant along the orbits in the flow-out, the 
Hamilton flows ΦP and ΦQ of P and Q commute in ∂Xc, and the subprincipal symbol 
of Q vanishes on ∂Xc (Levi condition), then [Π, Q̂] ∈ I−5/2(M × M ; F ∂Xc).

Remark 5.12. The Hamilton flow of the principal symbol of an operator that commutes 
with Π preserves the region Xc. However, the converse is not true; the invariance of the 
region Xc is a much weaker condition than the commuting property.

Proof. It is enough to prove it in the model case Rn−1 × S1 with coordinates (x, θ)
and T ∗(Rn−1 × S1) with coordinates (x, θ; p, τ). We only consider one energy level, say 
E so that Xc = {τ ≥ E}. For simplicity, let us consider zeroth order semiclassical 
pseudodifferential operators of the form:
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Q̂(�)f(x, θ) =
∑
m

eimθ

∫
q(x, p, θ, �m)eixp/�f̂(p, m, �)dp, where

f̂(p, m, �) = 1
(2π�)n+1

∫
e−iyp/�e−imαf(y, α)dydα,

and q(x, p, θ, s) is the full symbol. Decompose q in its Fourier modes, qk(x, p, θ, s) =∑
eikθqk(x, p, s). Then Q̂ =

∑
Q̂k, where

Q̂k(�)f =
∑
m

eimθ

∫
eikθqk(x, p, �m)eixp/�f̂(p, m, �)dp (40)

is an sc-ΨDO with symbol qk(x, p, s). The kernel of Qk is

KQk
(x, y, θ, α) =

∑
m

ei(k+m)θ−imαpk(x, y, m, �),

where

pk(x, y, m, �) = 1
(2π�)n+1

∫
ei(x−y)p/�qk(x, p, �m)dp.

A calculation shows that for k > 0,

K[ΠN ,Q̂k(1/N)](x, θ, y, α)

= Nn+1

(2π)n+1

∫
eiN(x−y)peiNE(θ−α)

[ ∑
0<j≤k

e−ij(θ−α)eikθqk(x, p, E − j/N)
]
dp.

Notice that the amplitude in the integral above (in brackets) has an expansion in powers 
of �, and in fact is a semiclassical symbol. The phase parametrizes the flow-out of {τ = E}
by the canonical S1 action, which is F ∂Xc. This proves that the commutator is in the 
corresponding class, and the principal symbol is

1√
2π

∑
0<j≤k

e−ij(θ−α)eikθqk(x, p, E) = qk(x, p, E)eikα − qk(x, p, E)eikθ

1 − e−i(α−θ) .

The case k < 0 is similar, and taking the sum over k, we obtain (39).
For the last part, assume that the principal symbol is constant in the fibers of 

∂Xc → S, which implies that [Π, Q̂] ∈ sc-I−3/2(M × M ; F ∂Xc). Assuming the Levi 
condition, we will show next that the principal symbol (corresponding to the degree 
−3/2) vanishes again. Take x0, y0 ∈ F ∂Xc, x0 �= y0. Consider two zeroth order semi-
classical pseudodifferential operators T̂1, T̂2 of disjoint compact microsupport, such that 
their principal symbol is 1 in a neighborhood x, y respectively. Notice that

T̂1[Π, Q̂]T̂2 = [T̂1ΠT̂2, Q̂] + T̂1Π[Q̂, T̂2] + [Q̂, T̂1]ΠT̂2. (41)
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Near (x, y), the symbol of T̂1[Π, Q̂]T̂2 and [Π, Q̂] coincide. Consider, on the other hand, 
the first term on the right-hand side of Eq. (41). First, by the assumption on the mi-
crosupports of T1 and T2, the operator T̂1ΠT̂2 does not have wave-front set along the 
diagonal, and therefore it is in sc-I−1/2(M × M ; F ∂Xc). We can then apply Proposi-
tion 6.3 below to compute the symbol of the commutator [T̂1ΠT̂2, Q̂]. Near (x0, y0) the 
symbol T̂1ΠT̂2 is equal to the symbol of Π, and clearly the (diagonal) Lie derivative of 
this symbol with respect to the Hamilton flow of Q is zero. Therefore the symbol of this 
commutator (as an operator of order −3/2) is zero.

The principal symbols of the last two terms in (41) also vanish because the principal 
symbols of T1, T2 are constant near x0, y0, respectively. Therefore, the (−3/2) princi-
pal symbol of [Π, Q̂] vanishes off the diagonal, and therefore everywhere on F ∂Xc by 
continuity. This concludes the proof. �
6. On some propagators e−it�−1ΠQ̂Π

6.1. The classical counterpart

We begin by considering classical hamiltonians Q : T ∗M → R with the property that 
their Hamilton field is tangent to ∂Xc, that is, ΞQ(x) ∈ Tx∂Xc for all x ∈ ∂Xc. It is easy 
to see that this occurs if and only if the Poisson bracket satisfies {P, Q}|∂Xc

= 0, and as 
a consequence, Q is constant on the fibers of ∂Xc → S. The Hamilton flow of such a Q
preserves the region Xc, that is, it defines a classical flow in the symplectic manifold with 
boundary Xc. The restriction of Q to ∂Xc descends to a smooth function QS : S → R, 
which in turn defines a Hamilton flow on S. However, the following diagram (where ΦQ

t

denotes the Hamilton flow of Q, etc.) does not commute in general:

∂Xc
ΦQ

t |∂Xc−→ ∂Xc

↓ ↓

S
Φ

QS
t−→ S

(42)

Lemma 6.1. Assume that ΞQ is tangent to ∂Xc, and let P be a defining function of Xc, 
as above. Then the diagram (42) commutes for all t if and only if the Poisson bracket 
of P and Q vanishes to second order at the boundary ∂Xc, by which we mean that there 
exists a smooth function F such that

{P, Q} = P 2F.

Proof. Since ΞQ(x) ∈ Tx∂Xc for all x ∈ ∂Xc = P−1(0), then {Q, P}(x) = dPx(ΞQ) = 0
for all x ∈ ∂Xc. Therefore we can write {P, Q} = F0P for some smooth function F0, and

[ΞP , ΞQ] = Ξ{P,Q} = F0ΞP + P ΞF0
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will vanish on ∂Xc if and only if F0 itself vanishes on ∂Xc. As a result,

ΦP
s ◦ ΦQ

t (x) = ΦQ
t ◦ ΦP

s (x)

∀x ∈ ∂Xc if and only if {P, Q} vanishes to second order on ∂Xc. �
We now discuss the relation of the above considerations with Lerman’s symplectic cut 

construction [10]. The “cut” space is

Y = Xc/∼,

where the equivalence relation on Xc is: x ∼ y iff x and y are on the boundary ∂Xc and 
in fact on the same leaf of ∂Xc → S. There is an obvious inclusion S ↪→ Y and it is clear 
that, as sets,

Y = Int(Xc)
∐

S (43)

(disjoint union). Let us give Y the quotient topology. Then a function Q satisfying 
{Q, P}|∂Xc

= 0 induces a continuous function QY : Y → R, which is smooth when 
restricted to each of the pieces in (43). If the Poisson bracket vanishes to second order, 
then, by the previous lemma, one has a commutative diagram

Xc
ΦQ

t |Xc−→ Xc

↓ ↓

Y
Φ

QY
t−→ Y

(44)

where ΦQY is a Hamilton flow defined piece-wise by restricting Q to the pieces in (43).
In Lerman’s construction the topological space Y acquires the structure of a symplectic 

manifold of which S is a symplectic submanifold. However, in general, QY is not smooth
with respect to Lerman’s structure; for this it is necessary that {Q, P}|∂Xc

= 0 to infinite 
order, as implied by the following lemma:

Lemma 6.2. If {P, Q}|∂Xc
= 0 to order k, meaning that there exists a smooth function F

such that {P, Q} = P kF , then QY ∈ Ck−1(Y ).

Proof. Take the model case M = Rn−1×S1 with coordinates (x, θ), T ∗M with canonical 
coordinates (x, θ; p, τ), and Xc = {(x, θ; p, τ) | τ ≥ 0}. Then the symplectic cut is the 
manifold Y ∼= R

2(n−1)
(x,p) × Cz (where the symplectic form on C is ( 1√

2idz ∧ dz)), and the 
projection Xc → Y is

(x, θ; p, τ) �→
(
x, p;

√
τeiθ

)
.
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Any function Q(x, θ; p, τ) whose Hamilton flow preserves Xc descends to the continuous 
function QY on Y

QY (x, p, z) = Q
(
x, arg z; p, |z|2

)
for z �= 0 and QY (x, p, 0) = Q(x, θ; p, 0) for any value of θ. (The continuity of QY will 
be seen in what follows.) If {P, Q} vanishes to order k in ∂Xc, then

{P, Q} = ∂Q

∂θ
= τkF (x, θ; p, τ)

for some smooth function F . This implies that there exist smooth functions G1(x, θ; p, τ), 
G2(x; p, τ) such that

Q = τkG1(x, θ; p, τ) + G2(x; p, τ).

It follows that

QY (x, p, z) =
{
|z|2kG1(x, arg z; p, |z|2) + G2(x; p, |z|2) if z �= 0
G2(x; p, 0) if z = 0.

Define Q̃Y (x′, ξ′, z) = QY (x′, ξ′, z) −G2(x′, |z|2, ξ′). Then QY and Q̃Y differ by a smooth 
function, and therefore it suffices to show that Q̃Y (x′, ξ′, z) is Ck. For this, we’ll show 
that a function of the form

G̃k(x, p, z) =
{
|z|2kG(x, arg z; p, |z|2) if z �= 0
0 if z = 0

is a Ck function for any smooth function G(x, θ; p, τ). The function G̃k is smooth in the 
region z �= 0, so we only need to show the existence and continuity of partial derivatives 
at z = 0. We will prove the statement by induction. Write z = (u1, u2). For k = 1,

∂G̃1(x, p, z)
∂u1

∣∣∣
z=0

= lim
u1→0

u2
1G(x, 0; p, u2

1)
u1

= 0,

and for z �= 0

∂G̃1

∂u1
= 2u1G

(
x, arg z; p, |z|2

)
− u2

∂G

∂θ

(
x, arg z; p, |z|2

)
+ 2u1|z|2

∂G

∂τ

(
x, arg z; p, |z|2

)
,

which converges to zero as z → 0. The partial derivative with respect to u2 is similar, 
showing that G̃1 ∈ C1.
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Assume that the statement is valid for k − 1 > 0. Notice that

∂G̃k

∂u1
= 2ku1G̃k−1 − u2

(̃
∂G

∂θ

)k−1

+ 2u1

(̃
∂G

∂τ

)k

, and

∂G̃k

∂u2
= 2ku2G̃k−1 + u1

(̃
∂G

∂θ

)k−1

+ 2u2

(̃
∂G

∂τ

)k

.

Each of the terms on the right-hand side of each of the equalities above are at least 
Ck−1, finishing the proof. �
6.2. A symbolic description of the propagator e−ith−1ΠQ̂Π

Throughout this section Q will denote a smooth function such that the Poisson bracket 
{P, Q} vanishes to second order at ∂Xc (cf. Lemma 6.1). As we saw in the previous 
section we then obtain a classical flow ΦQ

t |Xc
that descends to a continuous flow on the 

cut space Y . In this section we analyze the quantum mechanical propagator e−ith−1ΠQ̂Π , 
where Q̂ is a semiclassical pseudodifferential operator on M with symbol Q and whose 
subprincipal symbol satisfies

Sub Q̂|Xc
= 0.

Before we state the main result, let us start with a proposition:

Proposition 6.3. For each semiclassical Fourier integral operator Ṽ (�) ∈ sc-I−1/2(M×M ;
F ∂Xc), the commutator [Q̂(�), Ṽ (�)] is in sc-I−3/2(M×M ; F ∂Xc). Its principal symbol 
is

σ[Q̂,Ṽ ](x, y) = �

i
LΞQ

V (x, y),

where V is the principal symbol of Ṽ , and LΞQ
is the Lie derivative obtained by letting 

the Hamilton flow of Q act diagonally on F ∂Xc.

Proof. Write the Schwartz kernel of Q̂ in the model case as

Q̂(y, x) = 1
(2π�)n

∫
ei(y−x)p/hq(y, p, �)dp,

where

q(y, p, �) ∼ q0(y, p) + �q1(y, p) + . . . ,

and the Schwartz kernel of Ṽ ∈ sc-I−1/2(M × M ; F ∂Xc) as
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Ṽ (z, y) = 1
(2π�)n

∫
ei(z

′−y′)ω/�v(z, y, ω, �)dω,

where

v(z, y, ω, �) ∼ v0(z, y, ω) + �v1(z, y, ω) + . . .

Then the Schwartz kernel of Ṽ ◦ Q̂ is

Ṽ ◦ Q̂(z, x) = 1
(2π�)n

∫
ei�

−1(z′−x′)ω

×
[

1
(2π�)n

∫
ei�

−1[(y−x)p+(x′−y′)ω]v(z, y, ω, �)q(y, p, �)dydp

]
dω

Applying the stationary phase method to the integral in brackets, one gets

1
(2π�)n

∫
ei�

−1[(y−x)p+(x′−y′)ω]v(z, y, ω, �)q(y, p, �)dydp

∼ v0(z, x, ω)q0
(
x, (0, ω)

)
− �

i

∂v0(z, x, ω)
∂x

∂q0(x, p)
∂p

∣∣∣
p=(0,ω)

− �

i
v0(z, x, ω)∂q0(x, p)

∂x∂p
∣∣∣
p=(0,ω)

+ �v1(z, x, ω)q0
(
x, (0, ω)

)
+ �v0(z, x, ω)q1

(
x, (0, ω)

)
. (45)

The Schwartz kernel of Q̂ ◦ Ṽ can be written as

Q̂ ◦ Ṽ (z, x) = 1
(2π�)n

∫
ei(z

′−x′)ω/�

×
[

1
(2π�)n

∫
ei�

−1[(z−y)p+(y′−z′)ω]q(z, p, �)v(y, x, ω, �)dpdy

]
dω

Applying stationary phase to the amplitude above, one gets

1
(2π�)n

∫
ei�

−1[(z−y)p+(y′−z′)ω]q(z, p, �)v(y, x, ω, �)dpdy

∼ q0
(
z, (0, ω)

)
v0(z, x, ω) + �

i

∂q0(z, p)
∂p

∣∣∣
p=(0,ω)

∂v0(z, x, ω)
∂z

+ �q1
(
z, (0, ω)

)
v0(z, x, ω) + �q0

(
z, (0, ω)

)
v1(z, x, ω) (46)

Therefore, the commutator [Q̂, Ṽ ] has as leading amplitude

v0(z, x, ω)
(
q0
(
z, (0, ω)

)
− q0

(
x, (0, ω)

))
.
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This vanishes at x′ = z′, which corresponds to the flow-out. Therefore [Q̂, Ṽ ] ∈
sc-I−3/2(M × M ; F ∂Xc). In order to compute the principal symbol there, we notice 
that

q0
(
z, (0, ω)

)
− q0

(
x, (0, ω)

)
=
(
z′ − x′) · d(z, x, ω),

where d = (d2, . . . , dn) is a vector-valued function such that

d(z, x, ω)|x′=z′ = ∇x′q0
(
x, (0, ω)

)
|x′=z′

.

Therefore

1
(2π�)n

∫
ei(z

′−x′)ω/�
(
q0
(
z, (0, ω)

)
− q0

(
x, (0, ω)

))
v0(z, x, ω)dω

= −�

i(2π�)n

∫
ei(z

′−x′)ω/�
n−1∑
j=1

∂

∂ωj

(
dj(z, x, ω)v0(z, x, ω)

)
dω. (47)

The principal symbol of [Q̂, Ṽ ] in sc-I−3/2(M × M ; F ∂Xc) can be then computed 
taking all the contributions from Eqs. (45), (46) and (47). Since q0(x, p) is constant 
along the orbits, then

∂2q0(x, p)
∂xj∂pj

∣∣∣
p=(0,ω)

= ∂2q0(z, p)
∂xj∂pj

∣∣∣ x′=z′
p=(0,ω)

, for any j ≥ 2.

Since {Q, P} vanishes at second order on ∂Xc, then ∂2q0(x,p)
∂x1∂x1 |p1=0

= 0. Assuming all 
these conditions, and the fact that the subprincipal symbol

Sub Q̂(x, p) = q1(x, p) − 1
2i

n∑
j=1

∂2

∂xj∂p1
∣∣∣
p=(0,ω)

vanishes on ∂Xc, the principal symbol of the commutator reduces to

∂q0(z, p)
∂p

∣∣∣ x′=z′
p=(0,ω)

∂v0(z, x, ω)
∂z

∣∣∣
x′=z′

+ ∂q0(x, p)
∂p

∣∣∣ x′=z′
p=(0,ω)

∂v0(z, x, ω)
∂x

∣∣∣
x′=z′

−
n∑

j=2

∂q0(x, p)
∂xj

∣∣∣ x′=z′
p=(0,ω)

∂v0(z, x, ω)
∂ω

∣∣∣
x′=z′

.

One can check that this is the Lie derivative of V with respect to the Hamiltonian field 
ΞQ in the sense in the statement of the lemma. �
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Notice that there is a way to define classes J�,m for a general pair of admissible 
Lagrangian submanifolds that intersect cleanly (see [24,16]), and not only for the diagonal 
and the flow-out of ∂Xc. The main result of this section is the following:

Theorem 6.4. Suppose Q̂ is a zeroth-order semiclassical pseudodifferential operator sat-
isfying the conditions of Lemma 6.1. Assume sub Q̂(�) = 0. Then

Πe−it�−1ΠQ̂Π ∈ J−1/2,1/2(M × M ; Δ(t), F ∂Xc(t)
)
,

where

Δ(t) =
{
(x, y)

∣∣ x, y ∈ T ∗(M × M), x = ΦQ
t (y)

}
(48)

F ∂Xc(t) =
{
(x, y)

∣∣ x, y ∈ ∂Xc, ∃s ∈ R such that x = ΦP
s ΦQ

t (y)
}

. (49)

Remark 6.5. In this statement t is a parameter, but we could also consider t as a variable 
(in which case the kernel of the operator would be a family of functions on R ×M ×M). 
Also, the symbols of Πe−it�−1ΠQ̂Π can easily be computed.

Proof. Let us define the following operator:

W (t) := Πe−it�−1ΠQ̂Πeit�
−1Q̂. (50)

We first prove the following:

Lemma 6.6. W (t) ∈ J−1/2,1/2(M × M ; Δ, F ∂Xc), and the principal symbol in the diag-
onal is σ0 = χXc

.

Proof. Let us define Dt = 1
i

∂
∂t . W (t) satisfies the following equation

{
�DtW (t) +

[
Q̂, W (t)

]
+ [Π, Q̂]W (t) = 0

W|t=0 = Π
(51)

Similarly to the proof of Lemma 5.8, using the symbol calculus we will construct a 
sequence of approximate solutions of Eq. (51). This construction makes the right-hand 
side of order O(�∞), and an application of Duhamel’s principle concludes the proof.

As a first approximation we take W̃0 = Π. This is a sensible choice since

�2S̃2 := �DtW̃0 + [Q̂, W̃0] + [Π, Q̂]W̃0

= −[Π, Q̂](I − Π) ∈ sc-I−5/2(M × M ; F ∂Xc),

by Proposition 5.11.
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We now modify W̃0 by elements in I(M × M ; F ∂Xc) to lower the order of the re-
mainder. It is easy to see that the symbol of the correction term is the solution to the 
problem ⎧⎨⎩

∂V1(x, y, t)
∂t

+ LΞQ
V1(x, y, t) = −iS2,

V1|t=0 = 0

where S1 is the principal symbol of S̃1 ∈ sc-I−1/2(M×M ; F ∂Xc). Let Ṽ1 ∈ sc-I−1/2(M×
M ; F ∂Xc) be an operator with this as symbol, and let W̃1 = W̃0 + �Ṽ1.

Since [Π, Q̂] ∈ sc-I−5/2(M × M ; F ∂Xc) by Proposition 5.11, we get

�3S̃3 := �DtW̃1 + [Q̂, W̃1] + [Π, Q̂]W̃1 ∈ I−7/2(M × M ; F ∂Xc)

Proceeding inductively in this fashion, we obtain an infinite sequence {Ṽj} such that 
for all J

�Dt

(
W̃0 +

J∑
j=1

�j Ṽj

)
+
[

Q̂, W̃0 +
J∑

j=1
�j Ṽj

]
+ [Π, Q̂]

(
W̃0 +

J∑
j=1

�j Ṽj

)

= �J+2S̃J+2 ∈ I−5/2−J (M × M ; F ∂Xc).

Next we take an operator Ṽ ∈ sc-I−1/2(M × M ; F ∂Xc) such that Ṽ ∼
∑∞

j=1 �
j Ṽj , and 

define W̃ = W̃0 + Ṽ . �
Going back to the proof of the theorem, notice that

Πe−it�−1ΠQ̂Π = W (t)e−itNQ̂.

The Lagrangian Δ(t) intersects Δ and F ∂Xc transversally. Using a variation of Propo-
sition 4.1 in [16], we conclude that composing elements in J−1/2,1/2(M × M ; Δ, F ∂Xc)
with e−it�−1Q̂ gives elements in J−1/2,1/2(M × M ; Δ(t), F ∂Xc(t)). �
6.3. An Egorov-type theorem

We can easily prove the following corollary.

Corollary 6.7. Let Q̂ be a zeroth order semiclassical pseudodifferential operator satis-
fying the conditions of Lemma 6.1, and the Levi condition. Then for any zeroth order 
semiclassical pseudodifferential operator Â(�), we have

B̃(t) := eit�
−1ΠQ̂ΠΠÂΠe−it�−1ΠQ̂Π ∈ J−1/2,1/2(M × M, Δ, F ∂Xc),

with the following principal symbols:
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σ0
(
B̃(t)

)
(x, x) = χXc

(x)
(
a ◦ ΦQ

t (x)
)

for (x, x) ∈ Δ \ Σ, and

σ1
(
B̃(t)

)
|Fs

= ΠFs
M(a◦ΦQ

t )|Fs

ΠFs
,

where a is the principal symbol of Â, ΦQ
t the Hamilton flow Q, Fs is an orbit in ∂Xc, 

and ΠFs
is the Szegö projector of Fs.

Proof. Let us consider W (t) as in Eq. (50). Notice that

B̃(t) = eit�
−1ΠQ̂ΠΠÂΠe−itNΠQ̂Π = W (−t)eitQ̂Âe−itQ̂W (−t)∗,

which proves it belongs to the algebra. Since eit�
−1Q̂Âe−it�−1Q̂ is a semiclassical pseu-

dodifferential operator with symbol a ◦ ΦQ
t , the symbol on the diagonal can be trivially 

obtained. To compute the symbol on the flow-out, we note that the principal symbols of 
W are exactly those of Π and we use Proposition 2.7:

σ1
(
B̃(t)

)(
y = ΦP

s (x), x
)

= 1√
2π

∫
σ1
(
W (−t)

)(
y, ΦP

s̃ (x)
)
σ1
(
eitQ̂Âe−itQ̂W (−t)∗

)(
ΦP
s̃ (x), x

)
ds̃

= 1√
2π

∫ 1√
2π

1
1 − ei(s−s̃) a

(
ΦQ
t ΦP

s̃ (x)
) 1√

2π

1
1 − eis̃

ds̃.

As a pseudodifferential operator on the fibers, this is ΠFs
M(a◦ΦQ

t )|Fs

ΠFs
. �

7. A numerical study of propagation of coherent states

Let Q̂ be a zeroth order semiclassical pseudodifferential operator with symbol Q. 
It is well-known that, if ψ(x0,p0) is a coherent state with center at (x0, p0), then 

e−it�−1Q̂(ψ(x0,p0)) is a coherent state (appropriately “squeezed”) with center at
ΦQ
t (x0, p0), where ΦQ is the Hamilton flow of Q. If the flow ΦQ preserves Xc and the 

center (x0, p0) is in the interior of Xc, then the same conclusion holds for the propagation 
e−it�−1ΠQ̂Π(ψ(x0,p0)) of the coherent state by ΠQ̂Π, as the trajectory of the center will 
remain away from the boundary ∂Xc and everything is as if we were in the boundaryless 
case.

In this section we present results of a numerical calculation of e−it�−1ΠQ̂Π(ψ(x0,p0))
in an example where the Hamilton flow of Q does not preserve Xc, that is, trajectories 
of ΦQ cross the boundary ∂Xc.

We consider the Harmonic oscillator P̂ = 1
2 (x2 − �2∂2

x) in R1, and the corresponding 
projector Π onto the span of its eigenfunctions with eigenvalues less than or equal to one. 
We take Q = x2 − p2, and Q̂ the obvious quantization of Q. Fig. 1 shows some energy 
levels of Q. Notice that the energy levels cross the boundary of Xc = {x2 + p2 ≤ 2}.
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Fig. 1. Energy levels of Q and the boundary ∂Xc = {P = 1}.

We now take a coherent state centered in the interior of Xc, and numerically compute 
its propagation under ΠQ̂Π. We do the calculation in Bargmann space, for simplicity.

We recall that the Bargmann space is defined as the Hilbert space

B =
{

f : C → C : f entire and
∫ ∣∣f(z)

∣∣2e−
|z|2
� dmz < ∞

}
,

where dmz = dxdp and z = x−ip√
2 , with the Hermitian inner product

〈f, g〉 =
∫

f(z)g(z)e− zz
� dmz.

The Harmonic oscillator in Bargmann space is given by

P̂ = �z
∂

∂z
+ �

2 ,

with principal symbol P (z, z) = zz and eigenbasis{
bn = zn

√
�nn!

}
n∈N∪{0}

, P̂ bn = �

(
n + 1

2

)
bn = λnbn.

The quantization of Q = x2 − p2 in Bargmann space is the operator Q̂ = �2 ∂2

∂z2 + z2. 
Applying Q̂ to the eigenbasis, we get

Q̂(bn) = �
√

n(n − 1)bn−2 + �
√

(n + 1)(n + 2)bn+2,

which gives a “generalized” Toeplitz matrix for ΠN Q̂ΠN for each positive integer N , 
where � = 1

N . The (normalized) coherent state in Bargmann space, with center at w, is 
given by the simple formula
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Fig. 2. A coherent state is propagated by e−itNΠNQ̂ΠN (Q = x2 − p2) at time t = 0 (left), t = 0.25 (middle) 
and t = 0.5 (right). The contour plots of the Husimi densities at each time and of Q are also given (bottom).

Ψw(z) = e
zw
� e−

ww
2� .

We apply the propagator e−it�−1ΠN Q̂ΠN to the projected coherent state

Ψw(z, N) := ΠNΨw(z) =
N∑

n=0

wn

√
n!�n

e−
ww
2� bn.

In Bargmann space, we measure the concentration in phase space of any semiclassical 
family ψ by taking the absolute value of the family times the square root of the Bargmann 
weight, namely, by forming the Husimi density:

|ψ|H(z) :=
∣∣ψ(z)

∣∣e−zz/2�.

We took as initial data a projected coherent state with center at w = −0.25 −0.6i, which 
corresponds to (x, p) =

√
2(−0.25, 0.6). Fig. 2 consists of plots of the Husimi density 

in the z variable of the initial projected coherent state, its propagation at t = 0.25
(approximately when the center of the coherent state hits the boundary), and at time 
t = 0.5. We observe that after the time of collision of the center with the boundary, the 
coherent state splits into two localized states with centers on inward trajectories and with 
the same classical energy. Here we took N = 100. The splitting happens immediately after 
the center collides with the boundary; thus one can speak of infinite-propagation speed 
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along the boundary. Note that the evolution is time-reversible, so that in some cases the 
opposite phenomenon will occur, namely, two localized states with same classical energy 
will hit the boundary at the same time and combine into one. We note that similar 
phenomena has been reported in [2,25] and references therein, where one wave packet 
may split in two wave packets in the semiclassical limit.
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