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Moist convection in the tropical atmosphere involves the interaction of deep pre-
cipitating clouds that can be organized into different patterns and propagate long 
distances. Their modeling to predict their evolution can be done with PDE-based 
models but it requires the parametrization of different cloud micro-physical pro-
cesses. Simplified models can maintain a balance between complexity and precision, 
and can still capture qualitative observations made in nature. In this work, we 
prove global existence and uniqueness of a model for precipitating turbulent con-
vection. The model considers a moisture dynamics with phase changes. It assumes 
fast auto-conversion and rain evaporation together with a hydrostatic pressure ap-
proximation. We also show positivity of the variables associated to moisture and 
equivalent potential temperature. The existing literature is discussed and the new 
challenges in this model are highlighted.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

A variety of natural phenomena in the atmosphere can be successfully studied and predicted with the 
aid of PDE-based models. Geophysical fluid flows are complex and in many cases the mathematical models 
involved in their analysis present a variety of limitations. The complexity arises in part due to the turbulent 
motions and the big range of time- and length-scales entailed in their evolution. Consequently, sophisticated 
models that can accurately capture features of the phenomenon under consideration may inherit theoretical 
complications and its implementation may face numerical and computational challenges.

Moist convection in the atmosphere involves the evolution of water in its different phases, vapor, liquid and 
ice [7,29]. In contrast with dry convection, the addition of water and the corresponding phase changes bring 
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into play several cloud microphysical processes. Mesoscale convective systems, appearing as individual cloud 
systems in horizontal scales of roughly 100 km and 1 h to 1 day, form an important aspect of organized 
tropical convection [15]. Theoretical understanding of the physical processes involved can improve their 
numerical modeling and predictions [30,23,10]. Instead of modeling the detailed cloud microphysics involving 
individual droplets, bulk cloud physics with closures involving mixing ratios is often a favorable alternative. 
See for instance [11,16,17,29] and references therein. Moist convection can be modeled via the anelastic 
equations [1,19,25] but its implementation could be computationally expensive due to its complexity, and 
simplifications resulting in reduced models are often a more attractive path. The thermodynamic component 
of the model can, for instance, follow the Boussinesq approximations valid for flows in which the depth of 
the fluid motion is small compared to the density scale height [28,31], or the primitive equations where the 
pressure follows the hydrostatic approximation [24]. Regardless of the approximation, those models are aimed 
at understanding the formation and evolution of different natural geophysical phenomena. For instance, 
cloud resolving models have shown to be very useful in providing details for convective organizations that 
are often not available from observational data.

The above approaches are some examples of different techniques and approximations, resulting in math-
ematical PDE-based models that can be used to study geophysical flows. Many of those models consider a 
dry atmosphere or treat moisture in an implicit fashion. Nevertheless, the impact of moisture in atmospheric 
dynamics is crucial. Some models are more comprehensive than others and can provide more detailed infor-
mation to improve their predictions. Such needed complexity can sometimes result in less accessible systems 
that are computationally expensive but also difficult to be treated theoretically. Models with a good balance 
between complexity and precision can provide useful insight into the mechanisms behind different physical 
processes. A variety of phenomena can be replicated with simplified models by focusing on specific physical 
processes while still being able to be examined conceptually. Well-posedness and regularity are fundamental 
theoretical aspects of any mathematical model that one must assess when possible. Mathematical analysis 
of some of those models involving moisture dynamics explicitly can be found in [3,18,20,32–34]. Global 
well-posedness can be proved for a model that couples the primitive equations to moisture dynamics where 
phase changes are allowed between water vapor, cloud water and rain. First, it was done in [13] for passively 
transported nonlinear dynamics, where the velocity field is known. Later, in [14], the proof was extended to 
the case where the velocity field evolves as part of the solution.

A minimal model for precipitating turbulent convection was derived and numerically analyzed in [12]. The 
model was able to capture different cloud regimes in response to different background wind shear profiles. 
It was shown to be able to reproduce squall lines in the presence of strong wind shear at low altitudes 
and scattered convection in the absence of it. The model agreed with qualitative observations made in 
nature when squall lines are formed, such as their tilted profile, speed and direction of propagation and the 
formation of cold pools right beneath it. Despite limitations needed for a minimal and idealized model, the 
numerical results showed that the above squall line features observed in nature were also reproduced by the 
model. The minimal model used a Boussinesq system together with a moisture dynamics. One assumption in 
this model is fast auto-conversion, where rainwater forms instantaneously when the atmosphere saturates. 
Fast auto-conversion was also used in [21,6] where squall lines and cyclogenesis were investigated. The 
minimal model in [12] further assumes fast rain evaporation, where rainwater evaporates when it falls to 
unsaturated regions at a timescale faster than the dynamical scales of interest. As a result, cloud water is 
ignored and one only retains water vapor and rainwater. The minimal model, which is known as FARE for 
its Fast Autoconversion and Rain Evaporation assumptions, is written in terms of conservation laws for 
momentum, energy, moist entropy and total water.

In this work, we present a mathematical analysis of a model that assumes the same moisture dynamics 
based on fast auto-conversion and rain evaporation from [12]. Instead of a Boussinesq approximation, we 
use the primitive equations where a hydrostatic balance occurs between the vertical pressure gradient and 
the buoyancy force of the system. Our main contribution consists of proving the local and global existence 
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of solutions of the PDE that dictates the time evolution in our model. We also guarantee global uniqueness 
and positivity of solution variables such as total water and equivalent potential temperature. For local 
existence, we follow ideas found in [13], where velocity is known (passive transport) but water vapor and 
rainwater evolve in time according to their own equations of motion where condensation and evaporation 
processes are parameterized using piece-wise defined stiff terms that activate when the total water exceeds 
a threshold (water vapor at saturation). On the contrary, in the present work only the total water evolves in 
time while the water vapor and rainwater are computed diagnostically from it. In a nonlinear manner, it is 
done via a transition smooth function, which avoids stiff terms and possible theoretical complications. See 
for instance, the work in [34], where the Authors deal with nonlinear and discontinuous terms coming from 
phase changes when water vapor reaches saturation, making the well-posedness proofs more challenging. In 
particular, a variational inequality is included in order to represent the Heaviside graph as a subdifferential 
of a convex functional.

The use of a smooth transition function requires certain bounding assumptions and the application 
of known results from Bochner spaces. In order to guarantee existence and global uniqueness, we also 
need to introduce Lipschitz continuity conditions on the transition function. This is a property that our 
transition function satisfies, but it could be easily generalized to other Lipschitz continuous functions. For 
well-posedness, we also follow ideas of [14], which considers time evolving velocities to be solved as part 
of the solution. Under the FARE assumptions, some care is required with the estimations that involve the 
buoyant force. This is because the estimations of the errors depend on the velocity, for which it is necessary 
to redefine a total error and the choice of certain appropriate parameters coming from Young’s inequality. 
In this paper, we present a detailed analysis for the local and global existence and uniqueness, keeping 
track of the coefficients involved in the bounds required in the proofs. One has to solve for the horizontal 
velocity in a smaller space and the vertical velocity obtained via the continuity constraint is shown to belong 
into a bigger one. Likewise, the positivity of total water and equivalent potential temperature requires the 
incorporation of a new integration space where the time derivative of the transition function makes sense. 
Careful estimations are also needed for the hydrostatic pressure, buoyancy and precipitation terms in order 
to show local and global existence, positivity and global uniqueness. All the constants involved in our analysis 
are presented explicitly for both local and global existence, which may allow for a better understanding of 
the behavior of the estimates. In order to make it more clear, technical results in Appendix A that are 
shown in references [13,14] do not include the proofs and are clearly identified. Throughout the text, we also 
specify when we follow the techniques in [13,14] and highlight the main differences. For instance, here we do 
not use pressure coordinates and the uniqueness proof does not decompose the velocity into its baroclinic 
and barotropic components. Instead, logarithmic type anisotropic Sobolev embedding inequalities from [4]
are employed. In the proof for existence, the hydrostatic pressure is integrated in a special way to guarantee 
the rigid lid assumptions. The pressure estimates require additional steps that are explained in Lemmas 11
and 12 in Appendix A.

Although the techniques in this work heavily rely on the works found in [13,14], the PDE-based model 
in this paper has fundamental differences. Our FARE assumptions remove one of the phases (cloud water) 
and rain forms according to a transition function as soon as the moisture exceeds a saturation threshold. 
Such threshold appears in the estimates and requires a special treatment. Although we impose a specific 
structure for the transition function to be consistent with the FARE assumptions, in general one only 
requires certain mild conditions. In a case where rain is bounded (which is physically consistent), one can 
assume a transition function of compact support with important implications in the proofs, and one can 
show that the square of the L2 norm of the velocity field grows at most linearly in time. The rest of this 
work is organized as follows. Section 2 contains information about the variables involved and explains the 
corresponding physical interpretations. Section 3 starts with the local and global well-posedness, followed 
by uniqueness. Some estimates are left to Appendix A.
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2. The hydrostatic-FARE model

The Fast Auto-conversion and Rain Evaporation (FARE) model presented in [12] has demonstrated to be 
able to capture observations made in nature such as the response to scattered convection versus squall line 
formation in the absence or presence of strong windshear near the bottom surface in the troposphere [12]. 
The model was minimal in the sense that it considers bulk cloud physics in a simplified way, assuming that 
any excess of water from saturation levels is instantaneously converted into rain. Moisture dynamics is then 
dictated by one evolution equation for total water from which vapor and rain can be computed. In deriving 
such a simplified model that captures qualitative features of turbulent convection, one can achieve the goal 
of analyzing the model in a more theoretical way. The purpose of this work is to go in that direction for a 
model with similar assumptions to that in the FARE model but adopting hydrostatic pressure conditions. 
This section shows details of the model and introduces notation.

The model is given by the following system of PDEs:

Duh

Dt
+ f0(ẑ × u)h = −∇hp + ν1Δhuh + ν2∂

2
zuh, (1a)

∂zp = b(qt, θe; z), (1b)

Dθe
Dt

= κ1Δhθe + κ2∂
2
zθe, (1c)

Dqt
Dt

− VT∂zqr = μ1Δhqt + μ2∂
2
zqt, (1d)

∇h · uh + ∂zw = 0. (1e)

In the above description and throughout the paper, ∇h and Δh are the horizontal gradient and horizontal 
Laplacian respectively. The material derivative is defined as

D

Dt
= ∂t + uh · ∇h + w∂z. (2)

Furthermore, the velocity field is denoted as u = (u, v, w) = (uh, w) and is separated into horizontal and 
vertical component; f0 is the Coriolis parameter (set to be a constant); p is the rescaled pressure; ν1 and ν2
are the horizontal and vertical kinematic viscosity coefficients respectively; and κ1, κ2, μ1 and μ2 are diffusion 
coefficients. The total water mixing ratio qt = qv + qr accounts for the water vapor qv (gas phase) and rain 
qr (liquid phase) components of water in warm clouds. As mixing ratios, those quantities are measured in 
units of density of the phase by density of the total fluid’s parcel. The equivalent potential temperature θe
describes the temperature that a parcel of air would reach if all the water vapor in the parcel is condensed 
and the parcel was brought adiabatically to a reference pressure. This quantity is conserved under adiabatic 
processes even if water condenses, releasing its latent heat. The ordinary potential temperature θ is related to 
the equivalent potential temperature through a thermodynamic linearized relation given by θe = θ + L

cp
qv, 

where L = 2.5 × 106 J kg−1 is the latent heat release, and cp = 103 J kg−1 K−1 is the specific heat at 
constant pressure. The rainfall speed is denoted by VT , and it is assumed to be constant for simplicity [12].

Equation (1a) describes conservation of horizontal momentum. Equation (1b) corresponds to the hydro-
static pressure assumption, where b(qt, θe; z) is the buoyancy force given by

b(qt, θe; z) := g
(

θe
θ0

−
(

L
cpθ0

− ε0

)
qv − qr

)
. (3)

Here θ0 is a reference value for the potential temperature, g is the gravitational constant, and Rv/Rd = ε0+1
is the ratio of gas constants. Conservation of equivalent potential temperature is dictated by equation (1c), 
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Fig. 1. Schematic graphs of χε (left) and χ′
ε (right).

indicating that it is a material invariant in the absence of viscosity. Equation (1d) describes conservation 
of total moisture plus precipitation of rainwater. Finally, the last equation (1e) corresponds to the incom-
pressibility condition. We will call the above model HFARE, where H stands for the hydrostatic pressure 
condition.

The evolution of water vapor and rainwater usually involves parameterizations of condensation and evap-
oration processes [21]. Such parameterizations activate when the atmosphere saturates, typically inserting 
stiff terms. In [12], the fast autoconversion and rain evaporation constraints led to a phase change process in 
which the excess of water from a threshold (water vapor at saturation qvs) will automatically be considered 
rain. As a consequence, one evolution equation for the total water dictates the moisture dynamics while the 
water vapor and rain components are obtained diagnostically. However, in this work qv and qr are smooth 
functions of qt and qvs in a phase transition from vapor to liquid. This is in contrasts to what it was done 
in [12], where such dependence consists of piece-wise defined expressions. Our approach avoids dealing with 
stiff terms that might not be differentiable and allows for a progressive transition from water vapor to rain. 
Specifically, rain is computed as

qr := χε(qt − qvs(z)),

where qvs(z) is the water vapor at saturation which is in turn a given decreasing function of height, ε is 
a small positive parameter, and χε ∈ C∞(R) is a smooth transition function with bounded derivative, 
satisfying

χε(ζ) =
{

0 if ζ ≤ 0,
ζ if ζ > ε.

(4)

Since the derivative of χε is bounded and χε(0) = 0, then there exist positive constants cχ and cε such that

|χε(ζ)| ≤ cχ|ζ| and |χ′
ε(ζ)| ≤ cε. (5)

Moreover, due to the mean value theorem, χε and its derivative are Lipschitz–continuous, i.e., there exists 
L1 and L2, such that

|χε(q1) − χε(q2)| ≤ L1|q1 − q2| and |χ′
ε(q1) − χ′

ε(q2)| ≤ L2|q1 − q2|. (6)

See Fig. 1 for an schematic of χε and its derivative.
We note that the buoyancy can be explicitly computed as

b(qt, θe; z) = g

(
θe −

(
L − ε0

)
qt +

(
L − ε0 − 1

)
χε(qt − qvs(z))

)
. (7)
θ0 cpθ0 cpθ0
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2.1. Domain, initial and boundary conditions

We seek for solutions to system (1) with spatial domain of cylindrical type: M = M′ × [z0, z1], where 
M′ is a smooth bounded domain in R2 and z0 < z1. The boundary is given by

Γ0 := {(x, y, z) ∈ M : z = z0},
Γ1 := {(x, y, z) ∈ M : z = z1},
Γs = {(x, y, z) ∈ M : (x, y) ∈ ∂M′, z0 ≤ z ≤ z1}.

Under the definition of the material derivative (see equation (2)), we can rewrite the HFARE model (1) as:

∂tuh + (uh · ∇h)uh + w∂zuh + f0(ẑ × u)h = −∇hp + ν1Δhuh + ν2∂
2
zuh, (8a)

∂zp = b(qt, θe; z), (8b)

∂tqt + uh · ∇hqt + w∂zqt = VT∂zχε(qt − qvs) + κ1Δhqt + κ2∂
2
zqt, (8c)

∂tθe + uh · ∇hθe + w∂zθe = μ1Δhθe + μ2∂
2
zθe, (8d)

∇h · uh + ∂zw = 0, (8e)

with initial data

uh(·, 0) = uh0 , w(·, 0) = w0 , qt(·, 0) = qt0 , and θe(·, 0) = θe0, (9)

subject to boundary conditions

Γ0 : ∂zuh = 0, w = 0, ∂zθe = αθ0θe, ∂zqt = αq0qt, (10a)

Γ1 : ∂zuh = 0, w = 0, ∂zθe = −αθ1θe, ∂zqt = −αq1qt, (10b)

Γs : ∂nuh = 0, ∂nθe = −αθsθe· ∂nqt = −αqsqt, (10c)

where α�0, α�1 and α�s with � ∈ {q, θ}, are non–negatives scalars. That is, we require Robin boundary 
conditions for the equivalent potential temperature and total water. The normal velocity at the lateral 
boundaries vanishes. Zero Neumann boundary conditions are required for the horizontal velocity at the top 
and bottom. This will be particularly helpful in guaranteeing that the vertical velocity vanishes at those 
boundaries, under rigid lid assumptions. More details will be provided in Section 3.

2.2. Spaces of functions

We introduce the following spaces of functions using standard notation and terminology from Sobolev 
space theory. In particular, if Ω ⊂ Rd is a domain with d ∈ N, Γ is an open or closed Lipschitz curve, and 
s ∈ R. We define Hs(Ω) = [Hs(Ω)]d and Hs(Γ) := [Hs(Γ)]d, whereas for the case s = 0 we will simply 
write H0(Ω) := L2(Ω) and H0(Γ) := L2(Γ). The associated norms will be denoted by ‖ · ‖Hs(Ω), ‖ ·
‖Hs(Γ), ‖ · ‖L2(Ω) and ‖ · ‖L2(Γ). In addition, X will denote a Banach space with norm ‖ · ‖X . We also define 
the Bochner space Lp(0, T, X) := {f : [0, T ] → X : ‖f‖Lp(0,T,X) < +∞}, with its corresponding norm

‖f‖Lp(0,T,X) :=

⎛⎝ T∫
0

‖f‖pXdt

⎞⎠1/p

,

for 1 ≤ p < ∞ and
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‖f‖L∞(0,T,X) := ess sup
0≤t≤T

‖f‖X .

Similarly, C([0, T ]; X) denotes the Banach’s space that includes all continuous functions f : [0, T ] → X with 
associated norm

‖f‖C([0,T ];X) := max
0≤t≤T

‖f‖X < +∞.

3. Well-posedness

Our main goal in this work is to prove the local and global existence of the hydrostatic-FARE model 
described in (8) subject to boundary conditions (10). The details are provided in this section.

3.1. Local well-posedness

The local existence is proved based on the following known results for linear parabolic equations, subject 
to the Robin boundary conditions on cylindrical-type domains.

Lemma 1. Let the initial data (u0, v0, qt0, θe0) ∈ H2(M), w0 ∈ H1(M) be such that the total water and 
equivalent potential temperature are non negative; the initial velocity field is divergence-free; and satisfy the 
boundary conditions (10). Then there exists a unique local solution (u, v, w, qt, θe), which depends continu-
ously on the initial data, in some short time interval (0, T0), to system (8) subject to the boundary conditions 
(10), satisfying

u, v, qt, θe,∈ C([0, T0];H2(M)), w ∈ C([0, T0];H1(M))

∂tu, ∂tv, ∂tqt, ∂tθe,∈ L2(0, T0, L
2(M))

Proof. The proof consists of constructing a sequence of vector fields given by {(un, vn, qnt , θ
n
e )}∞n=0 that 

converges to the strong solution. We will denote the solution vector by S := (u, v, qt, θe) and let Sn+1 :=
(un+1, vn+1, qn+1

t , θn+1
e ), with n = 0, 1, · · · be the unique strong solution to the linear parabolic system

∂tun+1
h − ν1Δhun+1

h − ν2∂
2
zun+1

h = −(un
h · ∇h)un

h − wn∂zun
h −∇hpn − f0(ẑ × un)h, (11a)

∂tq
n+1
t − κ1Δhq

n+1
t − κ2∂

2
zq

n+1
t = −un

h · ∇hq
n
t − wn∂zq

n
t + VT∂zχε(qnt − qvs(z)), (11b)

∂tθ
n+1
e − μ1Δhθ

n+1
e − μ2∂

2
zθ

n+1
e = −un

h · ∇hθ
n
e − wn∂zθ

n
e , (11c)

∂zpn = b(qnt , θne ; z), (11d)

∂zw
n = −∇h · un

h. (11e)

We note that w is not an element in the sequence S. It is computed via the continuity equation and we can 
only show that it belongs to C([0, T0]; H1(M)) instead of C([0, T0]; H2(M)). In addition, we consider the 
initial data

Sn+1∣∣
t=0 := (un+1, vn+1, qn+1

t , θn+1
e )

∣∣
t=0 := (u0, v0, qt0, θe0) = S0. (12)

The incompressibility condition allows us to write the vertical velocity as in integral that can easily 
satisfy one zero Dirichlet boundary condition either at the top or at the bottom boundaries. However, it 
is not clear that such integral will satisfy the same boundary condition on the other side. The hydrostatic 
pressure needs to be integrated in a specific way in order to guarantee the rigid lid conditions in system 
(11) for the sequence Sn for n = 0, 1, · · · . This is shown on the following lemma.
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We note that the condition 
∫ z1
z0

∇h · un
h dz = 0, consistent with the incompressibility of the fluid, is 

related to the boundary condition wn
z=z0,z1 = 0. We directly compute wn according to equation (11e) and 

the integral condition is proved in the next lemma.

Lemma 2. The sequence Sn+1 = (un+1, vn+1, qn+1
t , θn+1

e ) satisfies the rigid lid assumptions for wn+1 in z0
and z1, that is wn+1(z0) = wn+1(z1) = 0 for all n provided that the flow is initially incompressible (n = 1), 
and the hydrostatic pressure is given by

pn = −
z1∫
z

b(qnt , θne ;σ)dσ + p̄n(x, y, t),

where the pressure at the top surface p̄n(x, y, t) satisfies the Poisson equation

Δhp̄n(x, y, t)
z1 − z0

= −
z1∫

z0

∇h · ((un · ∇)un
h)dz +

z1∫
z0

⎛⎝ z∫
z0

Δhb(qnt , θne ;σ)dσ

⎞⎠ dz

−f0

z1∫
z0

(∂xvn − ∂yu
n)dz.

(13)

So, if the rigid-lid assumption is satisfied at step n, condition (13) provides the pressure expression for the 
rigid-lid assumption to be satisfied at step n + 1.

Proof. The condition w(z1) = 0 implies that

wn =
z1∫
z

∇h · un
h dz.

In order for the vertical velocity to vanish at the bottom boundary, we still need to show that

z1∫
z0

∇h · un
h dz = 0 ∀n.

Differentiating with respect to x and y, respectively the horizontal velocity components in equation (11a), 
we obtain

∂t∂xu
n+1 − ν1∂xΔhu

n+1 − ν2∂x∂
2
zu

n+1 = − ∂x ((un
h · ∇h)un + wn∂zu

n)

− ∂2
xpn − f0∂xv

n,

∂t∂yv
n+1 − ν1∂yΔhv

n+1 − ν2∂y∂
2
zv

n+1 = − ∂y((un
h · ∇h)vn + wn∂zv

n)

− ∂2
ypn + f0∂yu

n.

Then, by the incompresibility condition (8e), we get

∂t(−∂zw
n+1) − ν1Δh(−∂zw

n+1) − ν2∂
2
z (−∂zw

n+1)

= −∇h · ((un · ∇)un
h) − Δhpn − f0(∂xvn − ∂yu

n).
(14)

The pressure terms in the momentum equations ensure incompressibility. From (11d) and (11e), it follows 
that
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pn = −
z1∫
z

b(qnt , θne ;σ)dσ + p̄n(x, y, t), (15)

where p̄n(x, y, t) is a function that is independent of height. Replacing (15) into (14), is not difficult to see 
that

∂t

(∫ z1
z0

(∇h · un+1
h )dz

)
− ν1Δh

⎛⎝ z1∫
z0

(∇h · un+1
h )dz

⎞⎠− ν2∇h ·
(
∂zun+1

h

) ∣∣∣∣z1
z0

= −
z1∫

z0

∇h · (un · ∇un
h)dz +

z1∫
z0

Δh

⎛⎝ z1∫
z

b(qnt , θne ;σ)dσ + p̄n(x, y, t)

⎞⎠ dz

−f0

z1∫
z0

(∂xvn − ∂yu
n)dz.

(16)

We note that the right hand side vanishes if the pressure at the top surface p̄(x, y, t) is chosen according to 
equation (13). The horizontal Laplacian can be inverted for functions that do not depend on z. Integrating 
equation (14), and using the fact that w(z1) = 0 it follows from (16), that

∂tw
n+1(x, y, zo, t) − ν1Δhw

n+1(x, y, z0, t) − ν2∇h ·
(
∂zun+1

h

∣∣∣z1
z0

)
= 0.

Notice that, if we impose the following boundary condition

∂zun+1
h

∣∣∣z1
z0

= 0, (17)

we get

(∂t − ν1Δh)wn+1(x, y, z0, t) = 0.

Since the initial condition for the above heat equation is wn+1(x, t, z0, t = 0) = 0, we finally get 
wn+1(x, t, z0, t) = 0 for all t. �

Now that we have verified the rigid lid conditions at any time n, we are ready to apply Lemma 9, with 
details provided in Appendix A. We will first show that the right-hand side terms involved in system (11)
are bounded with the norm in L2(QT0), where QT0 := (0, T0) ×M for 0 < T0 ≤ 1. For the sake of simplicity, 
we define the spaces ZT0 := C([0, T0]; H2(M)).

In the following two results, we will denote by Sn
j the j-th component of the vector associated to the 

solution Sn = (un, vn, qnt , θ
n
e ) defined previously.

Bound for (un
h · ∇h)Sn

j : From Hölder’s inequality, it follows that

‖(un
h · ∇h)Sn

j ‖L2(QT0 ) =

⎛⎝ T0∫
0

‖(un
h · ∇h)Sn

j ‖2
L2(M)

⎞⎠1/2

≤

⎛⎝ T0∫ (
‖un

h‖L4(M)‖∇hS
n
j ‖L4(M)

)2

⎞⎠1/2
0
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≤

⎛⎝ T0∫
0

(
‖un

h‖L4(M)
)8

⎞⎠1/8 ⎛⎝ T0∫
0

(
‖∇hS

n
j ‖L4(M)

)8/3

⎞⎠3/8

≤

⎛⎝ T0∫
0

(
‖un

h‖L4(M)
)8

⎞⎠1/8 ⎛⎝ T0∫
0

‖∇hS
n
j ‖

2/3
L2(M)‖∇hS

n
j ‖2

L6(M)

⎞⎠3/8

.

Now, we use the continuous injection i4 of H1(Ω) into L4(Ω) (see [26, Theorem 1.3.4] to obtain

‖(un
h · ∇h)Sn

j ‖L2(QT0 )

≤ ‖un
h‖L8(0,T0,L4(M))‖∇hS

n
j ‖

1
4
L∞(0,T0,L2(M))‖∇hS

n
j ‖

3
4
L2(0,T0,L6(M))

≤ |T0|
1
8 ‖un

h‖L∞(0,T0,L4(M))‖∇hS
n
j ‖

1
4
L∞(0,T0,L2(M))‖∇hS

n
j ‖

1
4
L2(0,T0,L6(M))

≤ Csob|T0|
1
8 ‖un

h‖L∞(0,T0,H1(M))‖Sn
j ‖

1
4
L∞(0,T0,H1(M))‖S

n
j ‖

3
4
L2(0,T0,H2(M))

≤ Csob|T0|
5
8 ‖Sn‖L∞(0,T0,H1(M))‖Sn‖ZT0

,

where Csob is the Sobolev constant associated to i4. Thus,

‖(un
h · ∇h)Sn

j ‖L2(QT0 ) ≤ Csob|T0|
5
8 ‖Sn‖2

ZT0
. (18)

Bound for wn ·∂zSn
j : Under the same arguments as in the previous estimation, together with the Lemma 13

(see Appendix A), we arrive at

‖wn · ∂zSn
j ‖L2(QT0 )

≤ ‖wn‖L8(0,T0,L4(M))‖∂zSn
j ‖

1
4
L∞(0,T0,L2(M))‖∂zS

n
j ‖

3
4
L2(0,T0,L6(M))

≤ |T0|
1
8 ‖wn‖L∞(0,T0,L4(M))‖∂zSn

j ‖
1
4
L∞(0,T0,L2(M))‖∂zS

n
j ‖

1
4
L2(0,T0,L6(M))

≤ Csob|z1 − z0||T0|
1
8 ‖∇h · un

h‖L∞(0,T0,H1(M))‖Sn
j ‖

1
4
L∞(0,T0,H1(M))‖S

n
j ‖

3
4
L2(0,T0,H2(M))

≤ Csob|z1 − z0||T0|
5
8 ‖un

h‖L∞(0,T0,H2(M))‖Sn‖ZT0

≤ Csob|z1 − z0||T0|
5
8 ‖Sn‖L∞(0,T0,H2(M))‖Sn‖ZT0

,

which concludes that

‖wn · ∂zSn
j ‖L2(QT0 ) ≤ |z1 − z0|Csob|T0|

5
8 ‖Sn‖2

ZT0
. (19)

Remark 1. In [5], the velocity field is assumed to be given and they are assumed to be in the same space. 
In this work, the velocity field is evolving according to the equations of motion. The continuity constraint 
with appropriate boundary conditions gives us the vertical velocity in terms of the horizontal components. 
However, the vertical and horizontal components do not necessarily belong to the same space. This is 
reflected in the application of continuous inclusion ip of H1(·) → Lp(·), with p ∈ {4, 6} that we need to 
make for the terms (un

h · ∇h)Sn
j and wn · ∂zSn

j .

Bound for f0(ẑ × u)h: It is clear that

‖f0(ẑ × u)h‖L2(QT0 ) =

⎛⎝ T0∫
‖f0(−v, u)‖2

L2(M)

⎞⎠1/2

≤ |f0|
√

T0‖Sn‖ZT0
.

0
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As noted in Fig. 1, the transition function χε is introduced in order to smooth out the dependence of 
rainwater qr = χε(qt − qvs(z)) on total water qt and water vapor at saturation qvs(z). It is defined in a 
way that rainwater is absent (qr = 0) in unsaturated regions (qt < qvs(z)) while it consists of the excess of 
moisture from the water vapor at saturation (qr = qt − qvs(z)) in fully saturated regions (qt > qvs(z) + ε). 
It is required that the transition function is smooth with bounded derivative. The use of these conditions 
and the treatment of the function χε is reflected in the estimates of terms VT∂zχε(qnt − qvs(z)) and pn that 
are presented below.

Bound for VT∂zχε(qnt − qvs(z)): Differentiating the function χε together with the assumption (5), and 
applying Cauchy–Schwarz inequality, it is not difficult to see that

‖VT∂zχε(qnt − qvs(z))‖2
L2(M)

=
∫
M

|VT∂zχε(qnt − qvs(z))|2dM =
∫
M

|VTχ
′
ε(qnt − qvs(z))∂z(qnt − qvs(z))|2dM

≤ 2|VT |2c2ε
∫
M

(
|∂zqnt |2 + |∂zqvs(z)|2

)
dM

≤ 2|VT |2c2ε
(
‖qnt ‖2

H1(M) + ‖∂zqvs(z)‖2
L2(M)

)
.

Integrating over (0, T0), we deduce that

‖VT∂zχε(qnt − qvs(z))‖L2(QT0 ) =

⎛⎝ T0∫
0

‖VT∂zχε(qnt − qvs(z))‖2
L2(M)

⎞⎠1/2

≤
√

2|VT |cε
(
‖qnt ‖L2(0,T0,H1(M)) + ‖qvs(z)‖L2(0,T0,L2(M))

)
≤

√
2|VT |cε

(√
T0‖qnt ‖ZT0

+ ‖qvs(z)‖L2(0,T0,L2(M))

)
.

So,

‖VT∂zχε(qnt − qvs)‖L2(QT0 ) ≤
√

2|VT |cε
(√

T0‖Sn‖ZT0
+ ‖qvs(z)‖L2(0,T0,L2(M))

)
. (20)

Rain water is one of the solution variables in [5]. As a result, its estimate is equivalent to the direct 
estimate of qt. Since rain here is a function of the total water and a threshold, the estimate involves the 
L2 norm of that threshold. A similar situation occurs when estimating the pressure term. As we will see 
below in equation (24), an appropriate factorization combined with the Gronwall inequality directs us to 
the desired estimation.

Bound for ∇hpn: Thanks to the definition of the buoyancy force given in (3), it follows that

‖∇hpn‖2
L2(M) =

∫
M

|∇hpn|2dM

≤
∫
M

z1∫
z0

|∇hb(qnt , θne ; z)|2dzdM +
∫
M

|∇hp̄n|2dM

=
∫ z1∫

g

∣∣∣∣(∇hθ
n
e

θ0
−

(
L

cpθ0
− ε0

)
∇hq

n
t

M z0
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+
(

L

cpθ0
− ε0 − 1

)
∇hχε(qnt − qvs(z))

)∣∣∣∣2 dzdM + ‖∇hp̄n‖2
L2(M).

To bound the horizontal gradient of p̄(x, y, t), we apply Lemma 12 (see Appendix A), with which we obtain

‖∇hp̄n‖2
L2(M) =

∫
M′

z1∫
z0

|∇hp̄|2dzdM′

=
z1∫

z0

∫
M′

|∇hp̄|2dM′dz ≤ (z1 − z0)C̄2
p̄‖Sn‖2

H2(M).

(21)

Using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) and the condition imposed on the function χε given in 
(5) in combination with (21), we obtain

‖∇hpn‖2
L2(M) ≤ 3 |g|2

|θ0|2
(z1 − z0)2

⎛⎝∫
M

|∇hθe|2dM

⎞⎠
+ 3|g|2(z1 − z0)2

∣∣∣∣ L

cpθ0
− ε0

∣∣∣∣2 ∫
M

|∇hq
n
t |2dM

+ 3|g|2(z1 − z0)2
∣∣∣∣ L

cpθ0
− ε0 − 1

∣∣∣∣2∫
M

|∇hχε(qnt − qvs(z))|2dM

+ (z1 − z0)C̄2
p̄‖Sn‖2

H2(M)

≤ 3|g|2(z1 − z0)2C2
θ0,ε0

(
‖∇hθ

n
e ‖2

L2(M) + 2c2ε‖∇hq
n
t ‖2

L2(M)

)
+ (z1 − z0)C̄2

p̄‖Sn‖2
H2(M)

≤ (6|g|2(z1 − z0)2 max{1, c2ε}C2
θ0,ε0 + (z1 − z0)C̄2

p̄)‖Sn‖2
H2(M),

where

Cθ0,ε0 := max
{

1
θ0

,

∣∣∣∣ L

cpθ0
− ε0

∣∣∣∣ , cχ ∣∣∣∣ L

cpθ0
− ε0 − 1

∣∣∣∣} . (22)

Finally, calculating the norm in the whole space L2(QT0), we arrive at

‖∇hpn‖L2(QT0 )

≤
T0∫
0

((
6|g|2(z1 − z0)22 max{1, c2ε}C2

θ0,ε0 + (z1 − z0)C̄2
p̄
)
‖Sn‖2

H2(M)

)1/2

=
(√

6|g|(z1 − z0) max{1, cε}Cθ0,ε0 + (z1 − z0)1/2C̄p̄
)
‖Sn‖L2(0,T0,H2(M))

=
(√

6|g|(z1 − z0) max{1, cε}Cθ0,ε0 + (z1 − z0)1/2C̄p̄
)
|T0|1/2‖Sn‖ZT0

.

(23)

With the previous bounds, we are ready to apply Lemma 9 (see Appendix A), giving us

‖Sn+1‖ZT0
+ ‖∂tSn+1‖L2(QT0 )

≤ C

⎛⎝ 4∑(
‖(un

h · ∇h)Sn
J ‖L2(QT0 ) + ‖wn · ∂zSn

j ‖L2(QT0 )

)
+ ‖∇hpn‖L2(QT0 )
j=1
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+ ‖VT∂zχε(qnt − qvs(z))‖L2(QT0 ) + ‖f0(ẑ × u)h‖L2(QT0 ) + ‖(u0, v0, qt0, θe0‖L2(M)

)
≤ C∗(T 5/8

0 ‖Sn‖ZT0
+ 1).

Here C∗ is a positive constant that depends only on Csob, VT , cε, |f0|, Cθ0,ε0 , C̄p̄ and the initial data 
u0, v0, qt0, θe0. Then, taking T0 := min{1, K−5/16} for some K > 0, one can easily show by induction 
that

‖Sn+1‖ZT0
+ ‖∂tSn+1‖L2(QT0 ) ≤ K, n = 0, 1, · · · . (24)

Defining

γn(t) :=
4∑

j=1

(
‖Sn−1

j ‖2
L∞(M) + ‖Sn

j ‖2
L∞(M)

)
,

and applying the estimate (24) together with the Gagliardo—Nirenberg inequality (see [22] for more details), 
that is ‖f‖L∞ ≤ CGN‖f‖1/4

L2 ‖f‖3/4
H2 , we get

T0∫
0

γn(t)dt =
4∑

j=1

T0∫
0

(
‖Sn−1

j ‖2
L∞(M) + ‖Sn

j ‖2
L∞(M)

)
dt

≤
∫ T0
0

(
‖Sn−1‖2

L∞(M) + ‖Sn‖2
L∞(M)

)
dt

≤ CGN

T0∫
0

(
‖Sn−1‖1/2

L2(M)‖S
n−1‖3/2

H2(M) + ‖Sn‖1/2
L2(M)‖S

n‖3/2
H2(M)

)
dt

≤ CGN

1∑
m=0

⎛⎝ T0∫
0

‖Sn−m‖2
L2(M)

⎞⎠1/4 ⎛⎝ T0∫
0

‖Sn−m‖2
H2(M)

⎞⎠3/4

≤ CGN |T0|1/4K1/2
1∑

m=0

⎛⎝ T0∫
0

‖Sn−m‖2
H2(M)dt

⎞⎠3/4

≤ 2CGNK2|T0|1/4.

(25)

Next, we show that {Sn}∞n=1 is a Cauchy sequence in the space C([0, T0]; L2(M)). For this, let us define

Jn(t) := ‖un
h − un−1

h ‖2
L2(M) + ‖qnt − qn+1

t ‖2
L2(M) + ‖θne − θn+1

e ‖2
L2(M).

Using the same arguments presented in Section 3.2.3 but substituting the terms uh1, qt1, θe1 by un+1
h , qn+1

t ,

θn+1
e and uh2, qt2, θe2 by un

h, q
n
t , θ

n
e in the estimation (77), we arrive at

1
2
d

dt
Jn+1(t) + 1

2(min{μ1, μ2})‖∇Jn+1(t)‖2
L2(M) ≤ Ctot(t)‖Jn+1(t)‖2

L2(M).

Here, Ctot(t) is a positive constant depending on VT , L1, cε, cχ, μ1, μ2, ∂zqvs and the initial data qt0 (see 
Section 3.2.3 for more details). Thanks to the definitions of γn and Jn, it is not difficult to see that Jn+1(t) ≤
γn(t)Jn(t). Thus

d

dt
Jn+1(t) ≤ 2Ctot(t)γn(t)Jn(t),

Jn+1(t) ≤ 2
t∫
Ctot(s)γn(s)Jn(s)ds, ∀ t ∈ [0, T0], and
0
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sup
0<t<T0

Jn+1(t) ≤ 2‖Ctot(t)‖L∞([0,T0])

⎛⎝ T0∫
0

γn(t)dt

⎞⎠ sup
0<t<T0

Jn(t).

Recalling (25), and choosing T0 < 1
(8CGNK2‖Ctot(t)‖L∞([0,T0]))4 , we get

sup
0<t<T0

Jn+1(t) ≤ 1
2 sup

0<t<T0

Jn(t) ⇐⇒ sup
0<t<T0

Jn+1(t) ≤ 1
2n

n→∞−−−−→ 0,

which implies that {Sn}∞n=1 is a Cauchy sequence in the space C([0, T0]; L2(M)). Finally, by Aubin—Lions 
Lemma (see [27] in Appendix A), there is a vector S ∈ XT0 , with ∂tS ∈ L2(QT0) such that

Sn → S in C([0, T0];L2(M)) ∩ L2(0, T0, H
1(M)) and ∂tS

n → ∂tS in L2(QT0). �
3.2. Global well-posedness

In this section, we present the global existence and uniqueness of solutions to the HFARE model (8). We 
also guarantee the positivity of the equivalent potential temperature θe and the total water mixing ratio qt. 
The main result of this section is presented in the following theorem. The proof has been divided into three 
parts for better understanding: existence, uniqueness, and positivity.

Theorem 1. Assume that u0, v0, qt0, θe0 ∈ H2(M) ∩L∞(M), w0 ∈ H1(M) ∩L∞(M) with θe0, qt0 ≥ 0 in M. 
Then, system (8), subject to initial (9) and boundary conditions (10), has a unique global in time solution 
(u, θe, qt) satisfying

θe, qt ≥ 0, θe, qt ∈ L∞(0, T , L∞(M)),

uh, qt, θe ∈ L∞(0, T , H2(M)), w ∈ C([0, T ];H1(M)) and

∂uh, ∂tqt, ∂tθe ∈ L2(0, T , L2(M)).

3.2.1. Global existence
We will begin this section by finding the spaces where each of our unknowns uh, qt, θe will be estimated. 

In the following result we establish that qt belongs to the space C([0, T ]; L2(M)) ∩ L2(0, T , H1(M)).

Lemma 3. Assume that the initial data satisfies qt0 ∈ H1(M). Suppose also that the boundary conditions 
(10) and (8e) hold. Then there exists a function C1(T ), which depends on the initial and boundary data, 
continuous for all t ≥ 0, such that the estimate

max
0≤t≤T

‖qt‖L2(M) +
T∫

0

‖∇qt‖2
L2(M)dt ≤ C1(T ),

holds for any T ∈ (0, T ∗).

Proof. We have used arguments from Proposition 5 in [14]. Here, one requires to treat the nonlinear term 
associated to precipitation involving the function χε.
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We will begin multiplying equation (8c) by qt, and integrating over M. We then get∫
M

(∂tqt)qt dM +
∫
M(uh · ∇hqt + w∂zqt)qt dM

=
∫
M

(VT∂zχε(qt − qvs(z)))qt dM +
∫
M

(κ1Δhqt + κ2∂
2
zqt)qt dM.

(26)

It follows from Lemma 14 and Lemma 15 (see Appendix A) that∫
M (uh · ∇hqt + w∂zqt)qt dM = 0 and∫

M(κ1Δhqt + κ2∂
2
zqt)qt dM ≤ −κ1‖∇hqt‖2

L2(M) − κ2‖∂zqt‖2
L2(M).

(27)

Based on the definition of χε given by equation (4), the chain rule to derive ∂zχε(·), the condition (5)
and applying Young’s inequality (with constant δ), we can deduce that∫

M

(VT∂zχε(qt − qvs(z)))qt dM =
∫
M

(VTχ
′
ε(qt − qvs)∂z(qt − qvs(z))) qt dM

=
∫
M

(VTχ
′
ε(qt − qvs(z))∂zqt) qt dM−

∫
M

(VTχ
′
ε(qt − qvs(z))∂zqvs(z)) qt dM

≤ VT cε‖qt‖L2(M)‖∂zqt‖L2(M) + VT cε‖qt‖L2(M)‖∂zqvs(z)‖L2(M)

≤ 1
δ
V 2
T c

2
ε‖qt‖2

L2(M) + δ

2‖∂zqt‖
2
L2(M) + δ

2‖∂zqvs(z)‖
2
L2(M).

Due to the fact that δ is a free positive parameter, we can choose it as δ = κ2 > 0, from which one obtains∫
M

(VT∂zχε(qt − qvs(z)))qt dM ≤ 1
κ2

V 2
T c

2
ε‖qt‖2

L2(M) + κ2

2 ‖∂zqt‖2
L2(M) + κ2

2 ‖∂zqvs(z)‖2
L2(M). (28)

This choice of δ allows the coefficient of the term ‖∂zqt‖2
L2(M) to be less than μ2, which is necessary for the 

required estimate. So, replacing (27) and (28) into (26), we get

1
2
d

dt
‖qt‖2

L2(M) + κ1‖∇hqt‖2
L2(M) + κ2

2 ‖∂zqt‖2
L2(M) ≤ c1 + c2‖qt‖2

L2(M), (29)

where

c1 := κ2

2 ‖∂zqvs(z)‖2
L2(M) and c2 := 1

κ2
V 2
T c

2
ε.

From (29), it is deduced that

‖qt‖2
L2(M) ≤ ‖qt0‖2

L2(M) + 2c1t +
t∫

0

2c2‖qt(s, ·)‖2
L2(M)ds.

It follows from the above, by virtue the Gronwall inequality (see [2, Lemma 1.1, eq. 1.76]), that

‖qt‖2
L2(M) ≤ c1(t), (30)

where
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c1(t) : =‖qt0‖2
L2(M) + κ2t‖∂zqvs(z)‖2

L2(M)

+
t∫

0

2V 2
T c

2
ε

κ2

(
‖qt0‖2

L2(M) + κ2 s‖∂zqvs(z)‖2
L2(M)

)
e

2V 2
T c2ε
κ2

(t−s)ds.

Finally, combining (29) and (30) results in the inequality

T∫
0

‖∇qt‖2
L2(M) dt ≤

1
min{κ1,

κ2
2 }

T∫
0

(κ1‖∇hqt‖2
L2(M) + κ2

2 ‖∂zqt‖2
L2(M) dt

≤ 1
min{κ1,

κ2
2 }

T∫
0

(c1 + c2c1(t)) dt,

and from (30), we have

max
0≤t≤T

‖qt(t)‖L2(M) ≤ max
0≤t≤T

(c1(t))1/2.

The proof is concluded by choosing C1(T ) > 0 as;

C1(T ) = 1
min{κ1,

κ2
2 }

T∫
0

(c1 + c2c1(t))dt + max
0≤t≤T

(c1(t))1/2. �

In the following result we will show that θe ∈ C([0, T ]; L2(M)) ∩ L2(0, T , H1(M)).

Lemma 4. Assume that initial temperature satisfies θe0 ∈ H1(M). Suppose also that (8) and the boundary 
conditions (10) are satisfied. Then, for all t ≥ 0, the following estimate

max
0≤t≤T

‖θe‖L2(M) +
T∫

0

‖∇θe‖2
L2(M)dt ≤ ‖θe0‖L2(M),

holds for any T ∈ (0, T ∗).

Proof. Under the same arguments made for the proof of Lemma 3, one can arrive at

1
2
d

dt
‖θe‖2

L2(M) + μ1‖∇hθe‖2
L2(M) + μ2‖∂zθe‖2

L2(M) ≤ 0. (31)

From (31), it is clear that ‖θe‖2
L2(M) is a decreasing function for all t, and therefore

‖θe‖2
L2(M) ≤ ‖θe0‖2

L2(M). (32)

Finally, combining (31) and (32), we get

T∫
0

‖∇θe‖2
L2(M)dt ≤

1
min{μ1, μ2}

T∫
0

(μ1‖∇hθe‖2
L2(M) + μ2‖∂zθe‖2

L2(M)dt ≤ 0,

and from (32), we have
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max
0≤t≤T

‖θe(t)‖L2(M) ≤ max
0≤t≤T

‖θe0‖L2(M) = ‖θe0‖L2(M),

which concludes the proof. �
Lemma 5. Assume that the initial data satisfies uh0 ∈ H1(M). Suppose also that the boundary condi-
tions (10) and (8) hold. Then there exists a function C2(T ), which depends continuously on the initial and 
boundary data, such that the estimate

max
0≤t≤T

‖uh‖L2(M) +
T∫

0

‖∇huh‖2
L2(M)dt ≤ C2(T )

holds for any T ∈ (0, T ∗).

Proof. We will start by multiplying equation (8a) by uh, and integrating over M, getting∫
M

(∂tuh) · uhdM +
∫
M

((uh · ∇h)uh + w∂zuh) · uhdM +
∫
M

f0(ẑ × u)h · uhdM

= −
∫
M

∇hp · uhdM +
∫
M

(ν1Δhuh + ν2∂
2
zuh) · uhdM.

Due to the fact that f0(ẑ × u)h · uh = f0(−v, u) · (u, v) = 0 and Lemma 14 (see Appendix A), the second 
and third integrals on the left hand side vanish, and therefore the above expression reduces to∫

M

(∂tuh) · uhdM = −
∫
M

∇hp · uhdM +
∫
M

(ν1Δhuh + ν2∂
2
zuh) · uhdM. (33)

As a direct consequence of Lemma 15 (see Appendix A), we have that∫
M

(ν1Δhuh + ν2∂
2
zuh) · uhdM ≤ −ν1‖∇huh‖2

L2(M) − ν2‖∂2
zuh‖2

L2(M). (34)

It follows by integrating by parts, and using the boundary conditions ∂nu = 0 and (8e), that

−
∫
M

∇hp · uhdM =
∫
M

p(∇h · uh)dM−
∫
Γs

p ∂nuhdΓs =
∫
M

p(∇h · uh)dM

= −
∫
M

p ∂zwdM =
∫
M

w∂zpdM−
∫
M′

pw
∣∣∣z1
z0
dM′.

The vertical velocity vanishes at the top and bottom boundaries: w = 0 at z = z0 and z = z1. Together 
with equation (8b), we get

−
∫
M

∇hp · uhdM =
∫
M

w∂zpdM =
∫
M

wb(qt, θe; z)dM.

Now, using the definition of buoyancy b (see (3)) and applying Young’s inequality together with the fact 
that |χε(ζ)| ≤ cχ|ζ| (see (5)), we have that



18 N.A. Sánchez-Goycochea, G. Hernández-Dueñas / J. Math. Anal. Appl. 535 (2024) 128132
∫
M

wb(qt, θe; z)dM

=
∫
M

g

θ0
θewdM−

∫
M

g

(
L

cpθ0
− ε0

)
qtwdM

+
∫
M

g

(
L

cpθ0
− ε0 − 1

)
χε(qt − qvs(z))wdM

≤ g

θ0
‖θe‖L2(M)‖w‖L2(M) + g

∣∣∣∣ L

cpθ0
− ε0

∣∣∣∣ ‖qt‖L2(M)‖w‖L2(M)

+ gcχ

∣∣∣∣ L

cpθ0
− ε0 − 1

∣∣∣∣ (‖qt‖L2(M) + ‖qvs(z)‖L2(M)
)
‖w‖L2(M)

≤ gCθ0,ε0

(
‖θe‖L2(M) + 2‖qt‖L2(M) + ‖qvs(z)‖L2(M)

)
‖w‖L2(M)

≤ 1
2δ g

2C2
θ0,ε0

(
‖θe‖L2(M) + 2‖qt‖L2(M) + ‖qvs(z)‖L2(M)

)2 + δ

2‖w‖
2
L2(M),

where Cθ0,ε0 was defined in (22). Then, thanks to the fact that (a + 2b + c)2 ≤ 4a2 + 8b2 + 4c2 is fulfilled, 
and using the estimates for ‖qt‖L2(M) (see (30)) and ‖θe‖L2(M) (see (32)), we obtain

∫
M

b(qt, θe; z)wdM ≤ 1
δ
g2C2

θ0,ε0

(
2‖θe‖2

L2(M) + 4‖qt‖2
L2(M) + 2‖qvs(z)‖2

L2(M)

)
+ δ

2‖w‖
2
L2(M)

≤ 1
δ
g2C2

θ0,ε0

(
2‖θe0‖2

L2(M) + 4c1(t) + 2‖qvs(z)‖2
L2(M)

)
+ δ

2‖w‖
2
L2(M).

We note that in the case where qr is known to be bounded, the transition function can be assumed of 
compact support. In such case, the energy estimate for the horizontal velocity uh in equation (36) is 
uniformly bounded in time.

Taking δ := ν1
(z1−z0)2 , and applying Lemma 13 with r1 = 2 (see Appendix A), it is deduced that

−
∫
M

∇hp · uhdM =
∫
M

b(qt, θe; z)wdM ≤ c2(t) + ν1

2 ‖∇huh‖2
L2(M), (35)

where

c2(t) := (z1 − z0)2

μ1
g2C2

θ0,ε0

(
2‖θe0‖2

L2(M) + 4c1(t) + 2‖qvs(z)‖2
L2(M)

)
.

Substituting (35) and (34) into (33), one arrives at

1
2
d

dt
‖uh‖2

L2(M) + ν1

2 ‖∇huh‖2
L2(M) + ν2‖∂zuh‖2

L2(M) ≤ c2(t). (36)

By the above arguments, we have that

‖uh‖2
L2(M) ≤ ‖uh0‖2

L2(M) +
t∫

0

2c2(s)ds. (37)

It is easy to see that due to the estimates (36) and (37), we obtain
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T∫
0

‖∇uh‖2
L2(M)dt ≤

1
min{ν1

2 , ν2}

T∫
0

(ν1

2 ‖∇huh‖2
L2(M) + ν2‖∂zuh‖2

L2(M)

)
dt

≤ 1
min{ν1

2 , ν2}

T∫
0

c2(t)dt,

and

max
0≤t≤T

‖uh(t)‖L2(M) ≤ max
0≤t≤T

⎛⎝‖uh0‖2
L2(M) +

t∫
0

2c2(s)ds

⎞⎠1/2

.

The proof is concluded by choosing C2(T ) > 0 as;

C2(T ) = 1
min{ν1

2 , ν2}

T∫
0

c2(t)dt + max
0≤t≤T

⎛⎝‖uh0‖2
L2(M) +

t∫
0

2c2(s)ds

⎞⎠1/2

. �

The next result is necessary to guarantee uniqueness in our system (8). The proof is based on [14] but 
we do not decompose the velocity onto its baroclinic and adiabatic components. Instead, we employ the 
logarithmic type anisotropic Sobolev embedding inequality used in [4] to control ‖u‖L∞(M).

Lemma 6. Assume that the initial data satisfies (u0, v0, qt0, θe0) ∈ H2(M). Suppose also that the boundary 
conditions (10) and (8e) hold. Then there exist functions c3(t) and c4(t), which depend on the initial and 
boundary data, and are continuous for all t ≥ 0, such that the following estimates hold

‖∇h(∂zqt)‖2
L2(M) + ‖∂2

zqt‖2
L2(M) ≤ c3(t), (38a)

‖∇h(∂zθe)‖2
L2(M) + ‖∂2

zθe‖2
L2(M) ≤ 0, (38b)

and

‖∇h(∂zuh)‖2
L2(M) + ‖∂2

zuh‖2
L2(M) ≤ c4(t). (38c)

Proof. We will begin the proof by analyzing the estimation involving the water mixing ratio qt. For this, 
we multiply (8c) by −∂2

zqt and we integrate over M to obtain

−
∫
M

(∂tqt)∂2
zqtdM +

∫
M(κ1Δhqt + κ2∂

2
zqt)∂2

zqtdM

=
∫
M

(uh · ∇hqt + w∂zqt)∂2
zqtdM−

∫
M

(VT∂zχε(qt − qvs(z)))∂2
zqtdM.

(39)

It follows from integration by parts and the boundary conditions (10) that

−
∫
M

(∂tqt)∂2
zqtdM =

∫
M

∂z(∂tqt)∂zqtdM−
∫
M′

(∂tqt∂zqt)

∣∣∣∣∣
z1

z0

dM′

=
∫

∂t(∂zqt)∂zqtdM + αq1

∫
(∂tqt)qt

∣∣∣∣∣ dM′ + αq0

∫
(∂tqt)qt

∣∣∣∣∣ dM′
M M′ z=z1 M′ z=z0
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= 1
2
d

dt
‖∂zqt‖2

L2(M) + αq1

∫
M′

1
2
d

dt
(q2

t )

∣∣∣∣∣
z=z1

dM′ + αq0

∫
M′

1
2
d

dt
(q2

t )

∣∣∣∣∣
z=z0

dM′.

Since αqj > 0, j ∈ {0, 1}, the second integral on the right hand side is nonnegative, and thus

−
∫
M

(∂tqt)∂2
zqtdM ≥ 1

2
d

dt
‖∂zqt‖2

L2(M). (40)

Now, using integration by parts and the boundary conditions for qt (see (10)), we get∫
M

(κ1Δhqt + κ2∂
2
zqt)∂2

zqtdM

= −κ1

∫
M

∂zΔhqt∂zqtdM + κ1

∫
M′

Δhqt∂zqt

∣∣∣∣z1
z0

dM′ + κ2‖∂2
zqt‖2

L2(M)

= −κ1

∫
M

Δh(∂zqt)∂zqtdM− αq1κ1

∫
M′

(Δhqt)qt
∣∣∣∣
z=z1

dM′

− αq0κ1

∫
M′

(Δhqt)qt
∣∣∣∣
z=z0

dM′ + κ2‖∂2
zqt‖2

L2(M)

= κ1

∫
M

∇h(∂zqt) · ∇h(∂zqt)dM− κ1

∫
Γs

∂n(∂zqt)∂zqt dΓs

+ αq1κ1

∫
M′

∇hqt · ∇hqt

∣∣∣∣
z=z1

dM′ − αq1κ1

∫
∂M′

(∂nqt)qt
∣∣∣∣
z=z1

d(∂M′)

+ αq0μ1

∫
M′

∇hqt · ∇hqt

∣∣∣∣
z=z0

dM′

− αq0κ1

∫
∂M′

(∂nqt)qt
∣∣∣∣
z=z0

d(∂M′) + κ2‖∂2
zqt‖2

L2(M)

= κ1‖∇h(∂zqt)‖2
L2(M) − κ1

∫
Γs

∂z(∂nqt)∂zqtdΓs + αq1κ1‖(∇hqt)
∣∣
z=z1

‖2
L2(M′)

− αq1κ1

∫
∂M′

(∂nqt)qt
∣∣∣∣
z=z1

d(∂M′) + αq0κ1‖(∇hqt)
∣∣
z=z0

‖2
L2(M′)

− αq0κ1

∫
∂M′

(∂nqt)qt
∣∣∣∣
z=z0

d(∂M′) + κ2‖∂2
zqt‖2

L2(M).

Note that, the boundary conditions on Γs are still fulfilled on ∂M′, then ∂nqt = −αqsqt on ∂M′, and∫
M

(κ1Δhqt + κ2∂
2
zqt)∂2

zqtdM

= κ1‖∇h(∂zqt)‖2
L2(M) + αqsκ1‖∂zqt‖2

L2(Γs)

+ αq1κ1‖(∇hqt)
∣∣
z=z1

‖2
L2(M′) + αq1αqsκ1‖ qt

∣∣
z=z1

‖2
L2(∂M′)

+ αq0κ1‖(∇hqt)
∣∣
z=z0

‖2
L2(M′) + αq0αqsκ1‖ qt

∣∣
z=z0

‖2
L2(∂M′) + κ2‖∂2

zqt‖2
L2(M).
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Due to the nonnegativity of scalars κ1, αq0, αq1, αqs we deduce that∫
M

(κ1Δhqt + κ2∂
2
zqt)∂2

zqtdM ≥ κ1‖∇h(∂zqt)‖2
L2(M) + κ2‖∂2

zqt‖2
L2(M)

≥ min{κ1, κ2}
(
‖∇h(∂zqt)‖2

L2(M) + ‖∂2
zqt‖2

L2(M)

)
.

(41)

For the term involving advection, we add and subtract the term∫
M

(uh · ∇h∂zqt)∂zqtdM.

Then, conveniently combining terms in order to be able to apply the Lemma 14, we arrive at∫
M

(uh · ∇hqt + w∂zqt)∂2
zqtdM =

∫
M

(uh · ∇hqt)∂2
zqtdM

−
∫
M

(uh · ∇h∂zqt)∂zqtdM +
∫
M

(uh · ∇h∂zqt + w∂z(∂zqt))∂zqtdM.

The third integral on the right hand side vanishes thanks to Lemma 14, while for the first two integrals we 
apply the Cauchy-Schwarz inequality using the norm of uh on L∞(M). That is∫

M

(uh · ∇hqt + w∂zqt)∂2
zqtdM

≤ ‖uh‖L∞(M)
(
‖∇hqt‖L2(M)‖∂2

zqt‖L2(M) + ‖∇h∂zqt‖L2(M)‖∂zqt‖L2(M)
)

≤ 1
δ1

‖uh‖2
L∞(M)

(
‖∇hqt‖2

L2(M) + ‖∂zqt‖2
L2(M)

)
+δ1

2

(
‖∂2

zqt‖2
L2(M) + ‖∇h∂zqt‖2

L2(M)

)
.

(42)

In the last step, we have used Young’s inequality with constant δ1. Note that, in the above inequality we 
need to control ‖uh‖L∞(M). For this, we apply the logarithmic type embedding inequality for anisotropic 
Sobolev spaces (see Lemma 18 in Appendix A)

‖uh‖L∞(M) ≤ 3Ĉλ logλ
(
(‖uh‖L2(M) + ‖∇uh‖L2(M) + e

)
, (43)

where Ĉλ is a constant that depends only on Cλ and the term max{1, sup(·)} that appears in Lemma 18. 
Note that the norms involved on the right-hand side are bounded by Lemma 5 (see estimates (36) and (37)), 
so that estimate (43) reduces to

‖uh‖L∞(M)

≤ 3Ĉλ logλ

⎛⎜⎝‖uh0‖L2(M) +

⎛⎝ t∫
0

2c2(s)ds

⎞⎠1/2

+
(

c2(t)
min

{
ν1
2 , ν2

})1/2

+ e

⎞⎟⎠ = cu,∞(t). (44)

This way, thanks to estimate (44) and Lemma 3, which allows us to find a bound for qt in H1 (see estimates 
(29) and (30)), we rewrite (42) as
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∫
M

(uh · ∇hqt + w∂zqt)∂2
zqtdM ≤ 1

δ1

(c1 + c2c1(t))c2u,∞(t)
min{κ1,

κ2
2 }

+ δ1
2

(
‖∇h∂zqt‖2

L2(M) + ‖∂2
zqt‖2

L2(M)

)
.

(45)

Next, we will proceed to bound the last integral involved in (39). To do this, we use the chain rule and 
Young’s inequality

−
∫
M

(VT∂zχε(qt − qvs(z)))∂2
zqtdM

= −
∫
M

[VTχ
′
ε(qt − qvs(z))∂z(qt − qvs(z))] ∂2

zqtdM

≤ VT cε‖∂z(qt − qvs(z))‖L2(M)‖∂2
zqt‖L2(M)

≤
√

2VT cε
(
‖∂zqt‖L2(M) + ‖∂zqvs(z)‖L2(M)

)
‖∂2

zqt‖L2(M)

≤ 1
2δ2

(√
2VT cε

(
‖∂zqt‖L2(M) + ‖∂zqvs(z)‖L2(M)

))2
+ δ2

2 ‖∂2
zqt‖2

L2(M).

Using the bound found for ‖∂zqt‖L2(M) in the estimation (29) of Lemma 3, the above can be rewritten as

−
∫
M

(VT∂zχε(qt − qvs(z)))∂2
zqtdM

≤ 2V 2
T c

2
ε

δ2

(
c1 + c2c1(t)
min{κ1,

κ2
2 } + ‖∂zqvs(z)‖2

L2(M)

)
+ δ2

2 ‖∂2
zqt‖2

L2(M).

(46)

Finally, substituting (40), (41), (45) and (46) into (39), one arrives to

1
2
d

dt
‖∂zqt‖2

L2(M) +
(

min{κ1, κ2} −
(δ1 + δ2)

2

)(
‖∇h(∂zqt)‖2

L2(M) + ‖∂2
zqt‖2

L2(M)

)
≤ 2V 2

T c
2
ε

δ2
‖∂zqvs(z)‖2

L2(M) + c1 + c2c1(t)
min{κ1,

κ2
2 }

(
c2u,∞(t)

δ1
+ 2V 2

T c
2
ε

δ2

)
,

and taking δ1 = δ2 = min{κ1,κ2}
2 > 0, it turns out that

min{κ1,κ2}
2

(
‖∇h(∂zqt)‖2

L2(M) + ‖∂2
zqt‖2

L2(M)

)
≤ 8V 2

T c2ε
min{κ1,κ2}‖∂zqvs(z)‖

2
L2(M)

+4(c1+c2c1(t))(c2u,∞(t)+2V 2
T c2ε)

min{κ1,
κ2
2 }min{κ1,κ2} .

(47)

The estimate (38a) is concluded, choosing

c3(t) := 16V 2
T c

2
ε

(min{κ1, κ2})2
‖∂zqvs(z)‖2

L2(M) +
8(c1 + c2c1(t))(c2u,∞(t) + 2V 2

T c
2
ε)

min{κ1,
κ2
2 }(min{κ1, κ2})2

.

For the estimate (38b), we multiply (8d) by −∂2
zθe, and integrating over M, we get

−
∫
M

(∂tθe)∂2
zθedM +

∫
M

(μ1Δhθe + μ2∂
2
zθe)∂2

zθedM

=
∫

(uh · ∇hθe + w∂zθe)∂2
zθedM.

(48)
M
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Following the same arguments made for estimation (38a), all the integrals involved in the previous equality 
are controlled in the same way as (40), (41) and (45). That is,

−
∫
M

(∂tθe)∂2
zθedM ≥ 1

2
d

dt
‖∂zθe‖2

L2(M),∫
M

(μ1Δhθe + μ2∂
2
zθe)∂2

zθedM ≥ μ1‖∇h(∂zθe)‖2
L2(M) + μ2‖∂2

zθe‖2
L2(M),∫

M

(uh · ∇hθe + w∂zθe)∂2
zθedM ≤ 0.

(49)

Substituting (49) in (48), we arrive at the required estimate (38b).
Finally, for the estimation of the velocity, we multiply (8a) by −∂2

zuh, and integrating over M, we obtain

−
∫
M

(∂tuh) · ∂2
zuhdM +

∫
M

(ν1Δhuh + ν2∂
2
zuh) · ∂2

zuhdM

=
∫
M

((uh · ∇h)uh + w∂zuh) · ∂2
zuhdM

+
∫
M

f0(ẑ × u)h · ∂2
zuhdM +

∫
M

∇hp · ∂2
zuhdM.

(50)

Repeating again the steps we did for (38a) and (38b), we can infer that

−
∫
M

(∂tuh)∂2
zuhdM ≥ 1

2
d

dt
‖∂zuh‖2

L2(M),∫
M

(ν1Δhuh + ν2∂
2
zuh)∂2

zuhdM ≥ min{ν1, ν2}
(
‖∇h(∂zuh)‖2

L2(M) + ‖∂2
zuh‖2

L2(M)

)
,∫

M

((uh · ∇h)uh + w∂zuh)∂2
zuhdM ≤ 1

δ3

c2(t)c2u,∞(t)
min{ν2

2 , ν2}

+ δ3
2

(
‖∇h∂zuh‖2

L2(M) + ‖∂2
zuh‖2

L2(M)

)
.

(51)

For the term that contains the Coriolis parameter f0, we apply Young’s inequality and the identity (ẑ×u)h =
(−v, u). So ∫

M

f0(ẑ × u)h · ∂2
zuhdM =

∫
M

f0(−v, u) · (∂2
zu, ∂

2
zv)dM

≤ |f0|‖uh‖L2(M)‖∂2
zuh‖L2(M)

≤ 1
δ4

|f0|2‖uh‖2
L2(M) + δ4

2 ‖∂2
zuh‖2

L2(M).

Substituting the bound for uh given in (37), it follows that

∫
M

f0(ẑ × u)h · ∂2
zuhdM ≤ 1

δ4
|f0|2

⎛⎝‖uh0‖2
L2(M) +

t∫
0

2c2(s)ds

⎞⎠ + δ4
2 ‖∂2

zuh‖2
L2(M). (52)

For the last integral of (50), we apply integration by parts and we utilize the equation (8b) together with 
condition ∂zuh = 0 in both z0 and z1 (see (10))
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∫
M

∇hp · ∂2
zuhdM = −

∫
M

∂z(∇hp) · ∂zuhdM +
∫
M′

∇hp · ∂zuh

∣∣z1
z0
dM′

= −
∫
M

∇h(∂zp) · ∂zuhdM = −
∫
M

∇hb(qt, θe; z) · ∂zuhdM.

Now, using the definition of buoyancy b (see (3)) and applying Young’s inequality together with the chain 
rule to derive ∇hχε(·) we have that

−
∫
M

∇hb(qt, θe; z) · ∂2
zuhdM

= −
∫
M

g

θ0
∇hθe · ∂2

zuhdM +
∫
M

g

(
L

cpθ0
− ε0

)
∇hqt · ∂2

zuhdM

−
∫
M

g

(
L

cpθ0
− ε0 − 1

)
∇hχε(qt − qvs(z)) · ∂2

zuhdM

≤ g

θ0
‖∇hθe‖L2(M)‖∂2

zuh‖L2(M) + g

∣∣∣∣ L

cpθ0
− ε0

∣∣∣∣ ‖∇hqt‖L2(M)‖∂2
zuh‖L2(M)

+ gcε

∣∣∣∣ L

cpθ0
− ε0 − 1

∣∣∣∣ ‖∇hqt‖L2(M)‖∂2
zuh‖L2(M)

≤ gCθ0,ε0

(
‖∇hθe‖L2(M) + 2‖∇hqt‖L2(M)

)
‖∂2

zuh‖L2(M)

≤ 1
2δ5

g2C2
θ0,ε0

(
‖∇hθe‖L2(M) + 2‖∇hqt‖L2(M)

)2 + δ5
2 ‖∂2

zuh‖2
L2(M),

where Cθ0,ε0 was defined in (22). Then, thanks the estimates (29), (30)) and (31), we can control the terms 
‖∇hqt‖L2(M) and ‖∇hθe‖L2(M) respectively. Thus,

−
∫
M

∇hb(qt, θe; z) · ∂2
zuhdM ≤ 2

δ5
g2C2

θ0,ε0

(
c1 + c2c1(t)
min{κ1,

κ2
2 }

)
+ δ5

2 ‖∂2
zuh‖2

L2(M). (53)

Substituting (51), (52) and (53) in (50), it results in

1
2
d

dt
‖∂zuh‖2

L2(M)

+
(

min{ν1, ν2} −
(δ3 + δ4 + δ5)

2

)(
‖∇h(∂zuh)‖2

L2(M) + ‖∂2
zuh‖2

L2(M)

)

≤ 1
δ3

c2(t)c2u,∞(t)
min{ν2

2 , ν2}
+ 1

δ4
|f0|2

⎛⎝‖uh0‖2
L2(M) +

t∫
0

2c2(s)ds

⎞⎠
+ 2

δ5
g2C2

θ0,ε0

(
c1 + c2c1(t)
min{κ1,

κ2
2 }

)
.

Taking δ3 = δ4 = δ5 = min{ν1,ν2}
3 > 0, it turns out that

min{ν1,ν2}
2

(
‖∇h(∂zuh)‖2

L2(M) + ‖∂2
zqt‖2

L2(M)

)
≤ c4(t), (54)

where
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c4(t) := 6c2(t)c2u,∞(t)
(min{ν1,ν2})2 min{ ν2

2 ,ν2} + 6|f0|2
(min{ν1,ν2})2

⎛⎝‖uh0‖2
L2(M) +

t∫
0

2c2(s)ds

⎞⎠
+ 12g2C2

θ0,ε0
(min{ν1,ν2})2

(
c1+c2c1(t)
min{κ1,

κ2
2 }

)
. �

3.2.2. Positivity
Since the estimations that will be presented in this subsection imply time derivatives of functions that 

involve maxima, we will first show that the positivity of θe and qt is possible in a subspace of M, called M0
and defined as M0 := {(x, y, z) ∈ M : qt(x, y, z, t) �= 0}, then by additivity we will cover the entire space 
of M. Now we define f := f+ − f−, where f+ := max{f, 0} and f− := max{−f, 0} are the positive and 
negative parts, respectively. Under this definition it is easy to see that

(f+)(f−) = 0 (∂∗f−)f+ = 0 (∂∗f+)f− = 0, (55)

where ∂∗ refers to the time or space derivative.
The following lemma shows the positivity of qt.

Lemma 7. Assume that the initial data qt0 > 0 is positive with qt0 ∈ H1(M). Suppose also that the boundary 
conditions (10) and (8e) are satisfied. Then qt > 0 is always positive.

Proof. As in [13], we also decompose into positive and negative parts. Due to our FARE assumptions, we 
do not deal with extra source terms. On the other hand, we need to define the above space M0 in order for 
the derivatives inside some of the integrals to exist.

Let us multiply (8c) by −q−t . Integrating over M, we get

−
∫
M

(∂tqt)q−t dM +
∫
M

(uh · ∇hqt + w∂zqt)q−t dM

= −
∫
M

(VT∂zχε(qt − qvs(z))q−t dM−
∫
M

(κ1Δhqt + κ2∂
2
zqt)q−t dM.

(56)

By (55), we have that

−
∫
M

(∂tqt)q−t dM = −
∫

M0

[∂t(q+
t − q−t )]q−t dM0 =

∫
M0

(∂tq−t )q−t dM0

= 1
2
d

dt
‖q−t ‖2

L2(M0) = 1
2
d

dt
‖q−t ‖2

L2(M).

(57)

It follows from Lemma 14 (see Appendix A) and the identity (55), that

−
∫
M

(uh · ∇hqt + w∂zqt)q−t dM

= −
∫

M0

(uh · ∇hq
+
t + w∂zq

+
t )q−t dM0

+
∫
M0

(uh · ∇hq
−
t + w∂zq

−
t )q−t dM0

=
∫

M0

(uh · ∇hq
−
t + w∂zq

−
t )q−t dM0 = 0.

(58)

As a consequence of Lemma 15 (see Appendix A) and (55), we also obtain
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∫
M

(κ1Δhqt + κ2∂
2
zqt)q−t dM = −

∫
M0

(κ1Δhq
−
t + κ2∂

2
zq

−
t )q−t dM0

≥ κ1‖∇hq
−
t ‖2

L2(M0) + κ2‖∂zq−t ‖2
L2(M0).

(59)

Notice that, due to the fact that ∂zqvs ≤ 0, we get

−∂z(qt − qvs(z)) = −∂zqt + ∂zqvs(z) ≤ −∂zqt. (60)

Then, using the chain rule to derive ∂zχε(·) and the inequality in (60), we deduce that

−
∫
M

(VT∂zχε(qt − qvs(z)))q−t dM

= −
∫
M

(VTχ
′
ε(qt − qvs(z))∂z(qt − qvs(z))) q−t dM

= −
∫
M

(VTχ
′
ε(qt − qvs(z))∂zqt) q−t dM

= −
∫

M0

(
VTχ

′
ε(qt − qvs(z))∂zq+

t

)
q−t dM0

+
∫

M0

(
VTχ

′
ε(qt − qvs(z))∂zq−t

)
q−t dM0

=
∫

M0

(
VTχ

′
ε(qt − qvs(z))∂zq−t

)
q−t dM0.

From condition (5), and after applying Young’s inequality, we deduce that

−
∫
M

(VT∂zχε(qt − qvs(z)))q−t dM ≤ VT cε‖∂zq−t ‖L2(M0)‖q−t ‖L2(M0)

≤ 1
2δ V

2
T c

2
ε‖q−t ‖2

L2(M) + δ

2‖∂zq
−
t ‖2

L2(M0).

Taking δ = κ2, we get

−
∫
M

(VT∂zχε(qt − qvs)(z))q−t dM ≤ 1
2κ2

V 2
T c

2
ε‖q−t ‖2

L2(M) + κ2

2 ‖∂zq−t ‖2
L2(M0). (61)

Now, substituting (57), (58), (59) and (61) into (56), the result is

1
2
d

dt
‖q−t ‖2

L2(M) + κ1‖∇hq
−
t ‖2

L2(M0) + κ2

2 ‖∂zq−t ‖2
L2(M0) ≤

1
2κ2

V 2
T c

2
ε‖q−t ‖2

L2(M), (62)

which implies

‖q−t ‖2
L2(M) ≤ ‖q−t (0)‖2

L2(M) +
t∫

0

1
κ2

V 2
T c

2
ε‖q−t (s)‖2

L2(M)ds.

Finally, by virtue of the Gronwall inequality (see [2, Lemma 1.1, eq. (1.77)]), one arrives at
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‖q−t ‖2
L2(M) ≤ ‖q−t (0)‖2

L2(M) exp

⎛⎝ t∫
0

1
κ2

V 2
T c

2
εds

⎞⎠ .

Thanks to the fact that qt(0) = qt0 > 0, then q−t (0) = max{−qt(0), 0} = 0 and therefore q−t ≡ 0, or 
equivalently qt > 0. �
Lemma 8. Assume that the initial data satisfies θe0 > 0 with θe0 ∈ H1(M). Furthermore, let us assume that 
the boundary conditions in equations (10) and (8e) hold. Then θe > 0 is always positive.

Proof. For the proof of this Lemma, we use the same arguments made in the proof of the positivity of qt in 
the Lemma 7, for which we will omit details. �
3.2.3. Uniqueness

Let (uhi, θei, qti); i = 1, 2, be two solutions of system (1). That is

∂tuhi + (ui · ∇h)uhi + wi∂zui + f0(ẑ × ui)h = −∇hpi + ν1Δhuhi + ν2∂
2
zuhi, (63a)

∂zpi = b(qti, θei; z), (63b)

∂tqti + uhi · ∇hqti + wi∂zqti = VT∂zχε(qti − qvs(z)) + κ1Δhqti (63c)

+ κ2∂
2
zqti, (63d)

∂tθei + uhi · ∇hθei + wi∂zθei = μ1Δhθei + μ2∂
2
zθei, (63e)

∇h · uhi + ∂zwi = 0. (63f)

We denote the total error as:

‖εtot‖2
L2(M) := ‖εuh‖2

L2(M) + ‖εqt‖2
L2(M) + ‖εθe‖2

L2(M), (64)

where

εθe := θe1 − θe2, εqt := qt1 − qt2 and εuh := uh1 − uh2.

Let us multiply equation (63d) for the difference qt1 − qt2 by the error εqt and integrate over M. It gives us 
the following identity:∫

M

(∂tεqt)εqtdM +
∫
M

(uh1 · ∇hqt1 + w1∂zqt1 − (uh2 · ∇hqt2 + w2∂zqt2)εqtdM

=
∫
M

(κ1Δhε
qt + κ2∂

2
zε

qt)εqtdM +
∫
M

VT (∂zχε(qt1 − qvs)

−∂zχε(qt2 − qvs)(z))εqtdM.

(65)

Note that the boundary conditions are still fulfilled for the error of qt. That is,

Γ0 : ∂zε
qt = (∂zqt1 − ∂zqt2) = αq0qt1 − αq0qt2 = αq0, ε

qt

Γ1 : ∂zε
qt = (∂zqt1 − ∂zqt2) = −αq1qt1 + αq1qt2 = −αq1, ε

qt

Γs : ∂nε
qt = ∂nqt1 − ∂nqt2 = −αqsqt1 + αqsqt2 = −αqsε

qt .

Then, we can apply Lemmas 15 and 19, obtaining, respectively
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∫
M

(μ1Δhε
qt + ∂2

zε
qt)εqtdM ≤ −κ1‖∇hε

qt‖2
L2(M) − κ2‖∂zεqt‖2

L2(M), (66)

and ∫
M

[(uh1 · ∇hqt1 + w1∂zqt1) − (uh2 · ∇hqt2 + w2∂zqt2)] εqtdM

≤
[
C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
]
‖εqt‖2

L2(M)

+C̃1

(
1 + C̃1

4δ̃1

)
‖εuh‖2

L2(M)

+
[
δ̃1 + δ̃2

2
4δ̃3

]
‖∇hε

qt‖2
L2(M) +

[
δ̃1 + C̃2

2
2 δ̃3

]
‖∇hε

uh‖2
L2(M).

(67)

In order to estimate the last integral of (65), we first note that

∂zχε(qt1 − qvs(z)) − ∂zχε(qt2 − qvs(z))

= χ′
ε(qt1 − qvs(z))∂z(qt1 − qvs(z)) − χ′

ε(qt2 − qvs(z))∂z(qt2 − qvs(z))

± χ′
ε(qt1 − qvs(z))∂z(qt2 − qvs(z))

= χ′
ε(qt1 − qvs(z)) ∂zεqt + [χ′

ε(qt1 − qvs(z)) − χ′
ε(qt2 − qvs(z))]∂z(qt2 − qvs(z)).

By Hölder’s inequality and Lipschitz continuity assumption (6), we have

∫
M

VT (∂zχε(qt1 − qvs(z)) − ∂zχε(qt2 − qvs(z)))εqtdM

=
∫
M

VTχ
′
ε(qt1 − qvs(z))(∂zεqt)εqtdM

+
∫
M

VT [χ′
ε(qt1 − qvs(z)) − χ′

ε(qt2 − qvs(z))](∂zqt2)εqtdM

−
∫
M

VT [χ′
ε(qt1 − qvs(z)) − χ′

ε(qt2 − qvs(z))](∂zqvs(z))εqtdM

≤ VT cε‖∂zεqt‖L2(M)‖εqt‖L2(M)

+ VTL2

∫
M

|(qt1 − qvs(z)) − (qt2 − qvs(z))||∂zqt2||εqt |dM

+ VTL2

∫
M

|(qt1 − qvs(z)) − (qt2 − qvs(z))||∂zqvs(z)||εqt |dM

≤ VT cε‖εqt‖H1(M)‖εqt‖L2(M) + VTL2‖∂zqt2‖L4(M)‖εqt‖L4(M)‖εqt‖L2(M)

+ VTL2‖∂zqvs(z)‖L4(M)‖εqt‖L4(M)‖εqt‖L2(M).

Then, applying the continuous injection i4 of H1(·) into L4(·) (see, e.g., [26, Theorem 1.3.4]), we deduce 
that
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∫
M

VT (∂zχε(qt1 − qvs(z)) − ∂zχε(qt2 − qvs(z)))εqtdM

≤ VT cε‖εqt‖H1(M)‖εqt‖L2(M)

+ VTL2‖i4‖2 (
‖∂zqt2‖H1(M) + ‖∂zqvs(z)‖H1(M)

)
‖εqt‖H1(M)‖εqt‖L2(M)

≤ VT

[
cε + L2‖i4‖2 (

‖∂zqt2‖H1(M) + ‖∂zqvs(z)‖H1(M)
)]

‖εqt‖2
L2(M)

+ VT

[
cε + L2‖i4‖2 (

‖∂zqt2‖H1(M) + ‖∂zqvs(z)‖H1(M)
)]

‖εqt‖L2(M)‖∇εqt‖L2(M).

Thanks to estimate of the Lemma 6 and Young’s inequality, we get∫
M

VT (∂zχε(qt1 −qvs(z)) − ∂zχε(qt2 − qvs(z)))εqtdM

≤ cqt(t)
(
1 + cqt (t)

2δ̃4

)
‖εqt‖2

L2(M) + δ̃4
2 ‖∇εqt‖2

L2(M),

(68)

where

cqt(t) := VT

[
cε + L2‖i4‖2

((
C̃qt + 2

μ2
(c1 + c2c1(t))

)1/2

+ ‖∂zqvs(z)‖H1(M)

)]
.

Substituting (66), (67) and (68) into (65), it yields

1
2
d

dt
‖εqt‖2

L2(M) + (min{κ1, κ2})‖∇εqt‖2
L2(M)

≤
[
C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
+ cqt(t)

(
1 + κqt (t)

2δ̃4

)]
‖εqt‖2

L2(M)

+C̃1

(
1 + C̃1

4δ̃1

)
‖εuh‖2

L2(M) +
[
δ̃1 + δ̃2

2
4δ̃3

+ δ̃4
2

]
‖∇εqt‖2

L2(M)

+
[
δ̃1 + C̃2

2
2 δ̃3

]
‖∇εuh‖2

L2(M).

(69)

For the uniqueness of θe, we proceed in a similar way as for qt in (65), getting

1
2

d
dt‖εθe‖2

L2(M) + (min{μ1, μ2})‖∇εθe‖2
L2(M)

≤
[
C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
]
‖εθe‖2

L2(M) + C̃1

(
1 + C̃1

4δ̃1

)
‖εuh‖2

L2(M)

+
[
δ̃1 + δ̃2

2
4δ̃3

]
‖∇εθe‖2

L2(M) +
[
δ̃1 + C̃2

2
2 δ̃3

]
‖∇εuh‖2

L2(M).

(70)

Finally, for the uniqueness of uh, we multiply equation (63a) for the difference uh1 − uh2 by the error εuh . 
Integrating over M, we get∫

M

(∂tεuh)εuhdM

+
∫
M

((uh1 · ∇h)uh1 + w1∂zuh1 − ((uh2 · ∇h)uh2 + w2∂zuh2))εuhdM

= −
∫

(∇hε
p)εuh +

∫
(ν1Δhε

uh + ν2∂
2
zε

uh)εuhdM.

(71)
M M
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Here, the term that involves the Coriolis parameter vanishes since

f0(ẑ × u1 − ẑ × u2)h · εuh = f0(v2 − v1, u1 − u2) · (u1 − u2, v1 − v2) = 0,

and εp = p1 − p2. As a consequence of Lemma 15 (see Appendix A), we deduce that

∫
M

(ν1Δhε
uh + ν2∂

2
zε

uh)εuh dM ≤ −ν1‖∇hε
uh‖2

L2(M) − ν2‖∂zεuh‖2
L2(M). (72)

Then, we can apply Lemma 19 (see Appendix A), obtaining

∫
M

[((uh1 · ∇h)uh1 + w1∂zuh1) − ((uh2 · ∇h)uh2 + w2∂zuh2)] εuhdM

≤
[
2C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
]
‖εuh‖2

L2(M)

+
[
2δ̃1 + δ̃2

2
4δ̃3

+ C̃2
2
2 δ̃3

]
‖∇εuh‖2

L2(M).

(73)

Integration by parts gives us the boundary conditions ∂nεuh = 0 and (8e). We obtain

−
∫
M

∇hε
p · εuhdM =

∫
M

εp(∇h · εuh)dM−
∫
Γs

εp ∂nε
uhdΓs =

∫
M

εp(∇h · εuh)dM

= −
∫
M

εp ∂zε
wdM =

∫
M

εw∂zε
pdM−

∫
M′

εpεw
∣∣∣z1
z0
dM′.

Since εw := w1 − w2 = 0 at z = z0 and z = z1, together with equation (8b), we get

−
∫
M

∇hε
p · εuhdM =

∫
M

εw∂zε
pdM =

∫
M

εw(b(qt1, θe1; z) − b(qt2, θe2; z))dM.

Also,

∫
M

εw(b(qt1, θe1; z) − b(qt2, θe2; z))dM =
∫
M

g

θ0
εθeεwdM−

∫
M

g

(
L

cpθ0
− ε0

)
εqtεwdM

+
∫
M

g

(
L

cpθ0
− ε0 − 1

)
(χε(qt1 − qvs(z)) − χε(qt2 − qvs(z)))εwdM

≤ gCθ0,ε0 max{1, L1}
(
‖εθe‖L2(M) + ‖εqt‖L2(M)

)
‖εw‖L2(M)

≤ 1
2δ̃5

g2C2
θ0,ε0 (max{1, L1})2

(
‖εθe‖L2(M) + 2‖εqt‖L2(M)

)2 + δ̃5
2 ‖εw‖2

L2(M).

In the case where rain is known to be bounded and so the transition function χε can be assumed of compact 
support, the Lipschitz continuity condition is not longer necessary. Furthermore, the involved coefficients 
greatly simplify as the term ‖εqt‖ does not show up anymore.
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Since (a + 2b)2 ≤ 3(a2 + 2b2) for a, b > 0, we obtain

−
∫
M

∇hε
p · εuhdM ≤ 3g2C2

θ0,ε0 (max{1,L1})2

2δ̃5

(
‖εθe‖2

L2(M) + ‖εqt‖2
L2(M)

)
+ (z1−z0)2)δ̃5

2 ‖∇hε
uh‖2

L2(M).

(74)

Substituting (72), (73) and (74) into (71), it yields

1
2
d

dt
‖εuh‖2

L2(M) +(min{ν1, ν2})‖∇εuh‖2
L2(M)

≤ 3g2C2
θ0,ε0 (max{1,L1})2

2δ̃5

(
‖εθe‖2

L2(M) + ‖εqt‖2
L2(M)

)
+

[
2C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
]
‖εuh‖2

L2(M)

+
[
2δ̃1 + δ̃2

2
4δ̃3

+ C̃2
2
2 δ̃3 + δ̃5

2 (z1 − z0)2
]
‖∇εuh‖2

L2(M).

(75)

Finally, the total energy estimate is obtained. Combining the estimates (69), (70) and (75) together with 
the definition of the total error given in (64), we get

1
2
d

dt
‖εtot‖2

L2(M) + min
j∈{1,2}

{νj , μj , κj}‖∇εtot‖2
L2(M) ≤ C1,δ(t)‖εtot‖2

L2(M) + C2,δ‖∇εtot‖2
L2(M), (76)

where,

C1,δ(t) := 3C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2

+ cqt(t)
(

1 + cqt(t)
2δ̃4

)
+

3g2C2
θ0,ε0

(max{1, L1})2

2δ̃5
,

C2,δ := 4δ̃1 + δ̃2
2

4δ̃3
+ 3C̃2

2
2 δ̃3 + δ̃4

2 + δ̃5
2 (z1 − z0)2.

For simplicity, we choose the parameters δ̃j , j ∈ {1, 2, 3, 4, 5}, as follows

δ̃1 := 1
40 min

j∈{1,2}
{νj , μj , κj}, δ̃2 := 2

5
√

6C̃2
min

j∈{1,2}
{νj , μj , κj},

δ̃3 := 1
15C̃2

2
min

j∈{1,2}
{νj , μj , κj},

δ̃4 := 1
5 min

j∈{1,2}
{νj , μj , κj}, δ̃5 := 1

5(z1 − z0)2
min

j∈{1,2}
{νj , μj , κj}.

This choice of the parameters δ̃j allows the coefficients for the term ‖∇εtot‖2
L2(M) to be combined and 

appear on the left. This way, the inequality (76) reduces to

1
2
d

dt
‖εtot‖2

L2(M) + 1
2 min

j∈{1,2}
{νj , μj , κj}‖∇εtot‖2

L2(M) ≤ Ctot(t)‖εtot‖2
L2(M), (77)

with

Ctot(t) := 3C̃1

⎛⎝1 + 10C̃1

min {νj , μj , κj}

⎞⎠ + 15C̃2
2

min {νj , μj , κj}

⎛⎝1 + 5
√

6C̃2

4 min {νj , μj , κj}

⎞⎠2
j∈{1,2} j∈{1,2} j∈{1,2}
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+ cqt(t)

⎛⎝1 + 5cqt(t)
2 min
j∈{1,2}

{νj , μj , κj}

⎞⎠ +
15(z1 − z0)2g2C2

θ0,ε0
(max{1, L1})2

min
j∈{1,2}

{νj , μj , κj}
.

Integrating (77) over [0, t], we get

‖εtot(t)‖2
L2(M) ≤ ‖εtot(0)‖2

L2(M) +
t∫

0

2Ctot(s)‖εtot(s)‖2
L2(M)ds.

Finally, by virtue the Gronwall inequality (see [2, Lemma 1.1, eq. (1.77)]), we get

‖εtot(t)‖2
L2(M) ≤ ‖εtot(0)‖2

L2(M) exp

⎛⎝ t∫
0

2Ctot(s)ds

⎞⎠ = 0,

implying εtot ≡ 0, and thus (uh1, qt1, θe1) ≡ (uh2, qt2, θe2).

We now proceed to prove the global regularity of the solution.

Proof of Theorem 1. The uniqueness is a direct consequence of the subsection 3.2.3. On the order hand, in 
Lemma 1 we have demonstrated that there is a unique local strong solution (u, qt, θe), satisfying

u, v, qt, θe,∈ C([0, T0];H2(M)), w ∈ C([0, T0];H1(M))

We extend the unique strong solution (u, qt, θe) to the maximal time of existence Tmax. To obtain a global 
strong solution we need to prove Tmax = +∞. Suppose, by contradiction, that Tmax < +∞, then

lim
T →T −

max

‖(uh, qt, θe)‖L∞(0,T0,H2(M)) = +∞.

From the above it can be deduced that

lim sup
T →T −

max

‖(uh, qt, θe)‖H2(M) = +∞. (78)

By Lemmas 3-5, we have that for some T ∈ (0, T0) ⊂ (0, Tmax)

sup
0<t≤T

‖(uh, qt, θe)‖H2(M) ≤ K, (79)

where K is a positive constant independent of T . i.e. depending only on initial and boundary data. The 
corresponding limits for the vertical velocity are analogous. Applying limits to (79) when T → T −

max, we 
arrive at a contradiction of (78). Thus, Tmax = +∞. �
Acknowledgments

This research was supported, in part, by grants UNAM-DGAPA-PAPIIT IN112222 and Conahcyt A1-
S-17634. The co-author N. S-G would like to thank Conahcyt for its financial support with a postdoctoral
fellowship through the project A1-S-17634. We would like to thank Prof. Leslie M. Smith for all the helpful 
comments.



N.A. Sánchez-Goycochea, G. Hernández-Dueñas / J. Math. Anal. Appl. 535 (2024) 128132 33
Appendix A

In this Appendix, several lemmas needed for the existence and uniqueness proofs are proved. Lemmas 
that do not include a proof have been demonstrated in [5,14].

Linear Parabolic equations: Given a positive time T , set QT := Ω ×(0, T ). Consider the parabolic problem⎧⎪⎨⎪⎩
∂t + Lu = F in QT ,

Bu = G on Γ × (0, T ),
u(·, 0) = u0,

where L is a elliptic operator. The boundary operator B and the boundary function G are given by

Bu :=
{

∂nu + αu = 0 on Γs,

∂nu + βu = 0 on Γ0 ∪ Γ1.
and G :=

{
φ on Γs,

ψ on Γ0 ∪ Γ1.

Lemma 9. [5] Consider a positive time T ∈ (0, ∞) and the initial data u0 ∈ L2(Ω). We assume that

0 ≤ α, β ∈ W 1,∞(Ω), φ ∈ L2(0, T,H1/2(Γs)),

ψ ∈ L2(0, T,H1/2(Γ0 ∪ Γ1)), ∂tB ∈ L2(∂Ω × (0, T ))

hold, and that F ∈ L2(QT ). Then, there is a unique weak solution to (8), satisfying

‖u‖L∞(0,T,L2(Ω)) + ‖u‖L2(0,T,H1(Ω))

≤ C
(
‖F‖L2(QT ) + ‖u0‖L2(Ω) + ‖φ‖L2(0,T,H1/2(Γs)) + ‖ψ‖L2(0,T,H1/2(Γ0∪Γ1)) + ‖∂tG‖L2(0,T,L2(∂Ω))

)
.

Moreover, if we assume that u0 ∈ H1(Ω), then the unique weak solution is a strong one, and satisfies

‖u‖L∞(0,T ;H1(Ω)) + ‖u‖L2(0,T,H2(Ω)) + ‖∂tu‖L2(QT

≤ C
(
‖F‖L2(QT ) + ‖u0‖H1(Ω) + ‖φ‖L2(0,T,H1/2(Γs)) + ‖ψ‖L2(0,T,H1/2(Γ0∪Γ1)) + ‖∂tG‖L2(0,T,L2(∂Ω))

)
.

Proof. See [5, Corollary A.1] �
Lemma 10. [27] Let T ∈ (0, +∞) and let us consider X, Y and B three Banach spaces with X ⊂ B ⊂ Y

and compact embedding X → B. Then,

• If L is a bounded subset of Lp(0, T , X), with 1 ≤ p < +∞ and ∂f
dt is bounded in L1(0, T , Y ), for all 

f ∈ L. Then, L is relatively compact in Lp(0, T ; B).
• If L is bounded in L∞(0, T , X) and ∂fdt is bounded in Lr(0, T , Y ), for all f ∈ L and r > 1. Then, L is 

relatively compact in C([0, T ]; B)

Proof. See [27, Corollary 4] �
Lemma 11. Let M′ be a bounded domain of Rn, n ∈ {2, 3}, with Lipchitz continuous boundary ∂M′. Then, 
given f ∈ L2(M′), there exists a unique p̄ ∈ H1

0 (M′) := {v ∈ H1(M′) : v = 0 on ∂M′} satisfying the 
Poisson problem

Δp̄ = f in M′ p̄ = 0 on ∂M′.
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Moreover, there exists a constant Cp > 0 such that

‖∇p̄‖L2(M′) ≤ Cp‖f‖L2(M′).

Proof. Using one of the Green identities (cf [8, Corollary 1.2 or Theorem 1.8]) we can derive the following 
variational formulation of the Poisson problem∫

M′

∇p̄ · ∇v = −
∫
M′

fv, ∀ v ∈ H1
0 (M′). (A.1)

A direct application of Lax–Milgram’s Lemma (cf [8, Theorem 1.1] or [9, Theorem 4.1]) on the bilinear form 
B(p̄, v) :=

∫
M′ ∇p̄ · ∇v and the functional F (v) = − 

∫
M′ fv, leads us to the existence and uniqueness of 

the solution. Furthermore, taking v = p̄ in (A.1) together with the Friedrichs–Poincaré inequality (cf [9, 
Lemma 4.1]), we arrive at

‖∇p̄‖L2(M′) ≤ ‖f‖L2(M′)‖p̄‖L2(M′) ≤ Cp‖f‖L2(M′)‖∇p̄‖L2(M′),

where Cp is the constant from the Friedrichs–Poincaré inequality. Finally by Young’s inequality, we get

‖∇p̄‖L2(M′) ≤
1
2δC

2
p‖f‖2

L2(M′) + δ

2‖∇p̄‖2
L2(M′).

The proof is concluded by choosing δ small enough. �
Lemma 12. Let p̄ be the pressure at the top surface, satisfying the Poisson equation (13). Then, given 
S0 = (u0, v0, qt0, θe0) ∈ H2(M), there exists a constant C̄p̄ > 0 independent of the solution vector such that

‖∇p̄‖L2(M′) ≤ C̄p̄‖Sn‖H2(M).

Proof. We will start the proof by rewriting (13) as

Δp̄ = (z1 − z0)
z1∫

z0

Fdz, (A.2)

where

F = ∇h · ((un · ∇)un
h) +

z∫
z0

Δhb(qnt , θne ;σ)dσ − f0(∂xvn − ∂yu
n). (A.3)

To avoid proliferation of unimportant constants, we will use the terminology a � b whenever a ≤ Cb and C
is a positive constant independent of the solution. In what follows, we will prove that F ∈ L2(M). To do 
this, note that due to the fact that (u0, v0, qt0, θe0) ∈ H2(M), and that the buoyancy force term involves 
the Laplacian of qt, and θe, then we have∥∥∥∥∥∥

z∫
z0

Δhb(qnt , θne ;σ)dσ

∥∥∥∥∥∥
L2(M)

�
√

6|g|(z1 − z0)2Cθ0,ε0‖Sn‖H2(M).

‖f (∂ vn − ∂ un)‖ 2 ≤ 2|f |‖Sn‖ 2 .

(A.4)
0 x y L (M) 0 H (M)



N.A. Sánchez-Goycochea, G. Hernández-Dueñas / J. Math. Anal. Appl. 535 (2024) 128132 35
In order to estimate the first term of F , defined in (A.3), we use the incompressibility condition (11e) to 
get

∇h · ((un · ∇)un
h) = 2(∂xun)2 + 2(∂yvn)2 + 2un(∂xxun + ∂xyv

n) + 2vn(∂yyvn + ∂xyu
n)

+2∂xvn∂yun + 2∂xun∂yv
n + ∂x∂z(uw) + ∂y∂z(vw).

The first few terms on the right hand side of the above identity can be estimated thanks to the continu-
ous injection i4 of H1(Ω) into L4(Ω) with Sobolev constant CSob (see [26, Theorem 1.3.4]). For instance, 
‖(∂xun)2‖L2(M) = ‖∂xun‖2

L4(M) ≤ C2
sob‖∂xun‖2

H1(M) ≤ C2
sob‖Sn‖2

H2(M) (the same estimate holds for 
(∂yvn)2). For other terms, we use the logarithmic type embedding inequality for anisotropic Sobolev spaces 
(see Lemma 18). That is, ‖un∂xyv

n‖L2(M) ≤ ‖un‖L∞(M)‖∂xyvn‖L2(M) � cu,∞(t)‖Sn‖H2(M). The terms 
un∂xxu

n, vn(∂yyvn + ∂xyu
n), 2∂xvn∂yun and 2∂xun∂yv

n are estimated in a manner analogous to the above. 
Then, due to the fact that wn vanishes in z0 and z1 (see Lemma 2), the last terms involved in the decom-
position of ∇h · ((un ·∇)un

h) vanish when integrating with respect to z, (so they no longer appear in (A.2)), 
that is, 

∫ z1
z0

(∂x∂z(uw) + ∂y∂z(vw))dz = ∂x

(
(uw)

∣∣z1
z0

)
+ ∂y

(
(vw)

∣∣z1
z0

)
= 0. Thus,

‖∇h · ((un · ∇)un
h)‖L2(M) � ‖Sn‖H2(M (A.5)

According to the estimates of (A.4) and (A.5), and the definition of F in (A.3), we have shown that 
F ∈ L2(M). Thanks to the above fact, it is not difficult to see that the right side of (A.2) belongs to 
L2(M′). Indeed, ∥∥∥∥∥∥(z1 − z0)

z1∫
z0

Fdz

∥∥∥∥∥∥
2

L2(M′)

=
∫
M′

(z1 − z0)2
⎛⎝ z1∫

z0

Fdz

⎞⎠2

dM′

≤
∫
M′

(z1 − z0)4
z1∫

z0

F 2dzdM

= (z1 − z0)4
∫
M

F 2dM � ‖Sn‖2
H2(M).

Finally applying Lemma 12 to the identity (A.2), we conclude ‖∇hp̄‖L2(M′) ≤ C̄p̄‖Sn‖2
H2(M), where C̄p̄ is 

a positive constant that depends only on Cp, Csob, |f0|, Cθ0,ε0 , g, cu,∞ and of some power of (z1 − z0). �
Lemma 13. Suppose that w satisfies the incompresibility condition (8e). Then

‖w‖Lr1 (M) ≤ |z1 − z0|‖∇h · uh‖Lr1 (M) = |z1 − z0|‖∂zw‖Lr1 (M).

Proof. Let Ω be any standard domain in Rn with n ∈ N. By Hölder’s inequality, it is known that

∫
Ω

|f | ≤

⎛⎝∫
Ω

|f |r1
⎞⎠1/r1 ⎛⎝∫

Ω

1r2
⎞⎠1/r2

= |Ω|1/r2‖f‖Lr1 (Ω) ∀ f ∈ Lr1(Ω),

where r1, r2 ∈ (0, +∞) satisfying 1
r1

+ 1
r2

= 1. So,⎛⎝∫
Ω

|f |

⎞⎠r1

≤ |Ω|r1/r2‖f‖r1Lr1 (Ω), ∀ f ∈ Lr1(Ω). (A.6)
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On the other hand, from the incompressibility condition (8e), we get for z ∈ (z0, z1)

w(x, y, z, t) =
z1∫
z

∇h · uh(x, y, s, t)ds,

from which it follows that

‖w‖r1Lr1 (M) =
∫
M

|w|r1dM ≤
∫
M′

z1∫
z0

⎛⎝ z1∫
z

|∇h · uh|ds

⎞⎠r1

dzdM′

≤
∫
M′

z1∫
z0

⎛⎝ z1∫
z0

|∇h · uh|ds

⎞⎠r1

dzdM′.

Applying (A.6) for Ω = [z0, z1], we get

‖w‖r1Lr1 (M) ≤
∫
M′

z1∫
z0

|z1 − z0|r1/r2‖∇h · uh‖r1Lr1 ([z0,z1])dzdM
′

≤ |z1 − z0|r1/r2
∫
M′

⎛⎝‖∇h · uh‖r1Lr1 ([z0,z1])

z1∫
z0

dz

⎞⎠ dM′

= |z1 − z0|
r1+r2

r2

∫
M′

z1∫
z0

|∇h · uh|r1dzdM

= |z1 − z0|
r1+r2

r2 ‖∇h · uh‖r1Lr1 (M).

The proof is concluded by combining the relationship between r1 and r2 and the previous estimate. �
Lemma 14. Suppose that (8e) and the boundary conditions (10) are satisfied. Then, for any measurable 
function f ∈ H1(M), the following identify holds∫

M

(uh · ∇hf + w∂zf)fdM = 0.

Proof. It follows from integration by parts and the identity (∂xi
f)f = 1

2∂xi
(f2), that∫

M

(uh · ∇hf + w∂zf)fdM

=
∫
M

(uh · ∇hf)fdM +
∫
M

(w∂zf)fdM = 1
2

∫
M

uh · ∇h(f2)dM + 1
2

∫
M

w∂z(f2)dM

= 1
2

⎛⎝−
∫
M

(∇h · uh)f2dM +
∫

∂M

(uh · n)f2d(∂M) −
∫
M

(∂zw)f2dM +
∫
M′

(wf2)
∣∣∣z1
z0
dM′

⎞⎠ .

By the boundary conditions (10), the second and fourth integrals vanish, since u · n = ∂nu = 0 over ∂M
and w = 0 at z = z0 and z = z1. Then
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∫
M

(uh · ∇hf + w∂zf)fdM = −1
2

⎛⎝∫
M

(∇h · uh + ∂zw)f2dM

⎞⎠ = 0,

where in the last step we have used the incompressibility condition given in (8e). �
Lemma 15. Suppose that (8e) is satisfied. Let f be one of the solution variables u, v, qt or θe satisfying the 
boundary conditions (10). Then, the following estimate holds∫

M

(λ1Δhf + λ2∂
2
zf)fdM ≤ −λ1‖∇hf‖2

L2(M) − λ2‖∂zf‖2
L2(M),

with λ1 and λ2 are positive constants.

Proof. It follows from integration by parts that∫
M

(λ1Δhf + λ2∂
2
zf)fdM = λ1

∫
M

(Δhf)f dM + λ2

∫
M

(∂2
zf)f dM

= −λ1

∫
M

(∇hf · ∇hf) dM + λ1

∫
Γs

(∂nf)f dΓs − λ2

∫
M

(∂zf)(∂zf) dM

+ λ2

∫
M′

(∂zf)f
∣∣∣z1
z0
dM′.

Then, using the boundary conditions (10) for f ∈ {u, qt, θe}, we deduce that∫
M

(λ1Δhf + λ2∂
2
zf)f dM = −λ1‖∇hf‖2

L2(M) − λ2‖∂zf‖2
L2(M) − α
sλ1

∫
Γs

f2dΓs

− α�1λ2

∫
M′

f2
∣∣∣
z=z1

dM′ − α�0λ2

∫
M′

f2
∣∣∣
z=z0

dM′.

The proof is concluded, thanks to the fact that the last three integrals are non-negative since the scalars 
λj , α�0, α�1, αs
 ≥ 0 for all j ∈ {1, 2}, � ∈ {qt, θe}, � ∈ {qt, θe}. �
Lemma 16. [14] For any measurable function f satisfying f, ∂zf ∈ L1(M) the following estimates hold

sup
z0≤z≤z1

‖f‖L1(M′) ≤
1

z1 − z0
‖f‖L1(M) + ‖∂zf‖L1(M).

Proof. See [14, Lemma 1-Appendix] �
Lemma 17. [5] Let f1, f2 ∈ L2(M) be such that ∇hf1, ∇hf2 ∈ L2(M). Then, the following inequalities hold

∫
M′

⎛⎝ z1∫
z0

|f1|dz

⎞⎠⎛⎝ z1∫
z0

|f2f3|dz

⎞⎠ dM′

≤ c̃1 ‖f1‖L2(M)‖f2‖1/2
L2(M)

(
‖f2‖1/2

L2(M) + ‖∇hf2‖1/2
L2(M)

)
‖f3‖1/2

L2(M)

(
‖f3‖1/2

L2(M) + ‖∇hf3‖1/2
L2(M)

)
,

and
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∫
M′

⎛⎝ z1∫
z0

|f1|dz

⎞⎠⎛⎝ z1∫
z0

|f2f3|dz

⎞⎠ dM′

≤ c̃2 ‖f1‖1/2
L2(M)

(
‖f1‖1/2

L2(M) + ‖∇hf1‖1/2
L2(M)

)
‖f2‖1/2

L2(M)

(
‖f2‖1/2

L2(M) + ‖∇hf2‖1/2
L2(M)

)
‖f3‖L2(M).

Proof. See [5, Lemma 2.1]. �
Lemma 18. [4] Let r = (r1, r2, r3) with ri ∈ (1, +∞) such that 

∑3
i=1

1
ri

< 1. Then, for any function f on 
Ω ⊆ R3, we have for any λ > 0 that

‖f‖L∞(Ω) ≤ Cλ max
{

1, sup
s≥2

‖f‖Ls(Ω)

sλ

}
logλ

( 3∑
i=1

(‖f‖Lri (Ω) + ‖∂if‖Lri (Ω)) + e

)

Proof. See [4, Lemma 2.4]. �
Lemma 19. Suppose that (8e) is satisfied. Consider measurable functions fj ∈ H1(M) with j ∈ {1, 2}
satisfying the boundary conditions (10) and

‖∇h∂zfj‖L2(M) ≤ constant.

Then, there are positive constants C̃j, j ∈ {1, 2} and δ̃j j ∈ {1, 2, 3}, such that the following estimate holds∫
M

[(uh1 · ∇hf1 + w1∂zf1) − (uh2 · ∇hf2 + w2∂zf2)] εfdM

≤
[
C̃1

(
1 + C̃1

4δ̃1

)
+ 1

δ̃3

(
1 + 1

2δ̃2

)2
]
‖εf‖2

L2(M) + C̃1

(
1 + C̃1

4δ̃1

)
‖εuh‖2

L2(M)

+
[
δ̃1 + δ̃2

2

4δ̃3

]
‖∇hε

f‖2
L2(M) +

[
δ̃1 + C̃2

2
2 δ̃3

]
‖∇hε

uh‖2
L2(M),

where εf = f1 − f2.

Proof. We first note that

(uh1 · ∇hf1 + w1∂zf1) − (uh2 · ∇hf2 + w2∂zf2)

= (uh1 · ∇hf1 + w1∂zf1) − (uh2 · ∇hf2 + w2∂zf2) ± (uh1 · ∇hf2 + w1∂zf2)

= uh1 · ∇hε
f + w1∂zε

f + εuh · ∇hf2 + εw∂zf2.

Multiplying by εf and integrating over M, we get∫
M

[(uh1 · ∇hf1 + w1∂zf1) − (uh2 · ∇hf2 + w2∂zf2)] εfdM

=
∫
M

[uh1 · ∇hε
f + w1∂zε

f + εuh · ∇hf2 + εw∂zf2]εfdM

=
∫
M

[uh1 · ∇hε
f + w1∂zε

f ]εfdM +
∫
M

[εuh · ∇hf2 + εw∂zf2]εfdM.
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The first integral on the right hand side vanishes thanks to Lemma 14. Thus,∫
M

[(uh1 · ∇hf1 + w1∂zf1) − (uh2 · ∇hf2 + w2∂zf2)] εfdM

=
∫
M

εuh · ∇hf2dM +
∫
M

εw∂zf2]εfdM.
(A.7)

In order to bound the second integral, we decompose it into two parts∫
M

(εuh · ∇hf2)εfdM

≤
∫
M′

⎡⎣ 1
z1 − z0

z1∫
z0

|∇hf2|dz +
z1∫

z0

|∇h∂zf2|dz

⎤⎦ z1∫
z0

|εuh ||εf |dzdM′

≤ c̃1

(
1

z1 − z0
+ 1

)
(‖∇hf2‖L2(M) + ‖∂z∇hf2‖L2(M)) × ‖εf‖1/2

L2(M)

(
‖εf‖1/2

L2(M) + ‖∇hε
f‖1/2

L2(M)

)
×

×‖εuh‖1/2
L2(M)

(
‖εuh‖1/2

L2(M) + ‖∇hε
uh‖1/2

L2(M)

)
.

Owing to the fact that f2 ∈ H1(M) and the term ‖∂z∇hf2‖L2(M) is bounded, then there exists a constant 
C̃1 > 0 such that

c̃1

(
1

z1 − z0
+ 1

)
(‖∇hf2‖L2(M) + ‖∂z∇hf2‖L2(M)) ≤ C̃1.

Therefore, combining the above together with the fact that (a1/2 + b1/2)(c1/2 + d1/2) ≤ a + b + c + d, we 
arrive at∫

M

(εuh · ∇hf2)εfdM

≤ C̃1‖εf‖1/2
L2(M) ‖ε

uh‖1/2
L2(M)

(
‖εf‖L2(M) + ‖∇hε

f‖L2(M) + ‖εuh‖L2(M) + ‖∇hε
uh‖L2(M)

)
≤ C̃1

2
(
‖εf‖L2(M) + ‖εuh‖L2(M)

) (
‖εf‖L2(M) + ‖∇hε

f‖L2(M) + ‖εuh‖L2(M) + ‖∇hε
uh‖L2(M)

)
≤ C̃1

2
(
‖εf‖L2(M) + ‖εuh‖L2(M)

)2 + C̃1

2
(
‖εf‖L2(M) + ‖εuh‖L2(M)

) (
‖∇hε

f‖L2(M) + ‖∇hε
uh‖L2(M)

)
.

Now, by Young’s inequality, one arrives at

∫
M

(εuh · ∇hf2)εfdM ≤ C̃1

(
‖εf‖2

L2(M) + ‖εuh‖2
L2(M)

)
+ C̃2

1

4δ̃1

(
‖εf‖2

L2(M) + ‖εuh‖2
L2(M)

)
+ δ̃1

(
‖∇hε

f‖2
L2(M) + ‖∇hε

uh‖2
L2(M)

)
.

Equivalently, ∫
M

(εuh · ∇hf2)εfdM ≤ C̃1

(
1 + C̃1

4δ̃1

)(
‖εf‖2

L2(M)+‖εuh‖2
L2(M)

)
+δ̃1

(
‖∇hε

f‖2
2 + ‖∇hε

uh‖2
2

)
.

(A.8)
L (M) L (M)
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Analogously, we can deduce that

∫
M

(εw∂zf2)εfdM ≤
∫
M′

z1∫
z0

|∇hε
uh |dz

z1∫
z0

|∂zf2||εf |dz

≤ C̃2‖∇hε
uh‖L2(M)‖εf‖1/2

L2(M)

(
‖εf‖1/2

L2(M) + ‖∇hε
f‖1/2

L2(M)

)
,

where C̃2 is a positive constant satisfying

c̃1‖∂zf2‖1/2
L2(M)

(
‖∂zf2‖1/2

L2(M) + ‖∇h∂zf2‖1/2
L2(M)

)
≤ C̃2.

Applying Young’s inequality and algebraic arrangements, it turns out that

∫
M

(εw∂zf2)εfdM ≤ C̃2‖∇hε
uh‖L2(M)

((
1 + 1

2δ̃2

)
‖εf‖L2(M) + δ̃2

2 ‖∇hε
f‖L2(M)

)

≤ 1
2δ̃3

((
1 + 1

2δ̃2

)
‖εf‖L2(M) + δ̃2

2 ‖∇hε
f‖L2(M)

)2

+ C̃2
2

2 δ̃3‖∇hε
uh‖2

L2(M).

This fact together with the inequality (a + b)2 ≤ 2(a2 + b2) for all a, b > 0, it implies that

∫
M

(εw∂zf2)εfdM ≤ 1
δ̃3

(
1 + 1

2δ̃2

)2

‖εf‖2
L2(M) + δ̃2

2

4δ̃3
‖∇hε

f‖2
L2(M) + C̃2

2
2 δ̃3‖∇hε

uh‖2
L2(M). (A.9)

The proof is concluded by replacing the inequalities (A.8) and (A.9) into (A.7). �
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