López de Medrano realizó sus estudios de licenciatura en matemáticas en la Facultad de Ciencias, recibiéndose en 1964, escribiendo su tesis bajo la dirección del Dr. Roberto Vázquez, sobre los teoremas de Hurewicz y de Whitehead. Cursó sus estudios de maestría y doctorado en Princeton y, en 1967, conversa con Bill Browder, quien le propone como proyecto de tesis doctoral, realizar el invariante de Browder-Livesay.
Su trabajo de tesis consistió en dar toda una familia de casos donde este índice era distinto de cero y que además admitían estructuras inusuales. Más precisamente, demostró que había una infinidad de involuciones diferentes en la esfera de dimensión 4n + 3, con la propiedad de que no había puntos fijos.
A su regreso a México en 1968, se incorpora al Instituto de Matemáticas y a su trabajo como investigador y profesor en la Facultad de Ciencias.
Santiago empieza en México a trabajar sobre el problema de encontrar nudos invariantes para involuciones, sin puntos fijos, de esferas de dimensión 4k, con k mayor que uno. Uno de los resultados principales que obtiene, consiste en probar que para una involución dada en una esfera de dimensión 4k, ésta admite un nudo invariante simple. Santiago presentó este trabajo en el congreso internacional de matemáticas, que se realizó en la ciudad de Niza, Francia, en 1970.
En esos mismos años, al surgimiento de los Colegios de Ciencias y Humanidades de la UNAM, Santiago es invitado a participar y es él quien desarrolla los programas de matemáticas y escribe diversos folletos que son distribuidos entre los profesores y estudiantes.
Santiago es miembro de la Sociedad Matemática Mexicana y dirigió la presidencia de la Sociedad en el periodo 1969-1973 y, en 2013, fue nombrado miembro de la American Mathematical Society.