Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
El complejo de conjuntos afinmente conmutativos
Viernes 11 Octubre 2019, 01:00pm
Accesos : 248
Contacto Carlos Segovia

Seminario de Álgebra y Topología

 

Expositor: Omar Antolín Camarena

 

Procedencia: Instituto de Matemáticas UNAM-CDMX.

 

Resumen: Adem, Cohen y Torres-Giese definieron en el 2012 una variante del espacio clasificante de un grupo topólogico G llamado el espacio clasificante para conmutatividad de G, denotado por B_com G. La fibra homotópica de la inclusión de ese espacio en BG se denota por E_com G y de alguna manera mide que tan lejos está G de ser abeliano. Presentaré un nuevo modelo que encontramos Bernardo Villarreal y yo para E_com G y definiré un mapeo interesante de ahí a B[G,G] que podemos usar para probar que si $G$ es un grupo de Lie compacto, conexo y no abeliano, entonces E_com G no es contraíble. Esta plática es sobre el mismo trabajo que la que daré esta misma semana en el Coloquio Oaxaqueño, pero será autocontenida y su intersección con aquella será pequeña.

 

 

Localización Aula de seminarios, IM-UNAM unidad Oaxaca.
Go to top