Coloquio Oaxaqueño
Maite Fernández Unzueta, CIMAT
Resumen: En su tesis doctoral presentada en 1920, Stefan Banach introdujo los que conocemos hoy como espacios de Banach: espacios vectoriales dotados de una norma que determina una topología métrica completa. En palabras suyas (traducidas libremente):
El presente trabajo tiene como objetivo establecer algunos teoremas válidos para diferentes campos funcionales, que especifico a continuación. Sin embargo, para no verme obligado a demostrarlos aisladamente para cada campo particular, lo que sería muy difícil, he elegido una vía diferente: considero de forma general conjuntos de elementos de los que postulo ciertas propiedades, de ellas deduzco teoremas y luego demuestro para cada campo funcional particular que los postulados adoptados son verdaderos para él. (Banach S., Fund. Math. 3 (1922), p. 134).
En esta plática trataremos de mostrar la riqueza que se da en la confluencia de estas dos estructuras básicas (la vectorial y la métrica). Veremos ejemplos de "campos funcionales" y mostraremos algunos de los métodos desarrollados para su estudio a lo largo de estos cien años. En particular hablaremos de teoría local de los espacios de Banach, de geometría de los cuerpos convexos, así como de la relación de dualidad existente entre ideales de operadores lineales y normas tensoriales.
Mencionaremos, por último, ejemplos de cómo el desarrollo de esta disciplina acompaña al de otras, como es el caso del análisis asintótico geométrico, los espacios de operadores (una categoría entre los espacios de Banach y las álgebras C*) o la teoría Lipschitz, mediante el llamado programa de Ribe.
https://www.matem.unam.mx/~lara/coloquio.html
Dr. Bruno Cisneros y Dr. Francisco Delgado Jueves 13:00 hrs. (Horario de la CDMX) El objetivo del coloquio es generar un espacio en donde se planteen temas de investigación actuales en distintas áreas de las matemáticas, de preferencia que se desarrollen en Oaxaca de tal manera que sean asequibles a estudiantes de los últimos semestres de la licenciatura, posgrado y a todos los investigadores en matemáticas. Es por ello que recomendamos a los expositores que las pláticas sean mucho más básicas que las pláticas de un seminario. Si tiene alguna duda recomendamos la página Cómo dar una plática de coloquio de Mónica Clapp y Michael Barot.
Coloquio Oaxaqueño
Hay 133 invitados y ningún miembro en línea