Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Hipersuperficies invariantes de foliaciones Newton no degeneradas
Jueves 23 Septiembre 2021, 01:00pm
Accesos : 496
Contacto Lara Bossinger y Raquel Perales

Coloquio Oaxaqueño

Beatriz Molina Samper, IM-UNAM CU.

Resumen: En esta charla trataremos sobre el problema de existencia de hipersuperficies invariantes para foliaciones holomorfas de codimensión uno; es decir, hipersuperficies que en su parte regular son hojas de la foliación. El célebre teorema de la separatriz de Camacho-Sad da una respuesta afirmativa en dimensión ambiente dos. En dimensión superior y en la situación no dicrítica, se tienen los resultados de Cano-Cerveau y Cano-Mattei que dan una respuesta también positiva; por el contrario, en la situación dicrítica, los conocidos ejemplos de Jouanolou proporcionan gérmenes de foliaciones en dimensión tres sin superficie invariante. Discutiremos en esta charla sobre una familia de foliaciones para las que también tenemos un resultado positivo en esta dirección: la foliaciones Newton no degeneradas.

Web: https://www.matem.unam.mx/~lara/coloquio.html

Coloquio oaxaqueño virtual

Organizadoras: Raquel Perales y Lara Bossinger

Jueves 13:00 (horario de la CDMX) en zoom (por favor contacta a las organizadoras para obtener el accesso al menos una hora antes de la reunión)

 

Para oradores: nuestro coloquio es dirigido a un público de matemáticos amplios como profesores de varias áreas, estudiantes del doctorado, de la maestría y de la licenciatura. Para que todos pueden aprovechar lo más posible queremos que las platicas sean mucho más básicos que platicas de un seminario. Si tiene alguna duda recomendamos la página Cómo dar una plática de coloquio de Mónica Clapp y Michael Barot.

 

Go to top

Hay 76 invitados y ningún miembro en línea