A QUICK PROOF OF SINGHOF'S THEOREM \(\text{CAT}(M \times S^1) = \text{CAT}(M) + 1 \)

Luis Montejano

For a topological space \(X \), the Lusternik-Schnirelmann category, \(\text{cat}(X) \), is the smallest number \(N \) such that \(X \) can be covered by \(N \) open subsets each of which is contractible in \(X \). W. Singhof [6] proved that the minimal number of \(n \)-balls which suffice to cover a closed PL \(n \)-manifold \(M \) coincides with the Lusternik-Schnirelmann category if the latter is not too small compared with the dimension of \(M \). As a consequence, one obtains in this case that \(\text{cat}(M \times S^1) = \text{cat}(M) + 1 \), thus establishing a special case of a long-standing conjecture. The purpose of this paper is to give a quick proof of Singhof's results by exploiting the linear structure between the \(k \)-skeleton of a polyhedron and its dual skeleton.

MAIN LEMMA. Let \(M \) be a closed \(p \)-connected PL \(n \)-manifold. Let \(\{P_1, \ldots, P_N\} \) be a polyhedral cover of \(M \). Then for every \(0 \leq q < p \) there exists a polyhedral cover \(\{R_1, \ldots, R_N\} \) of \(M \) such that:

- a) \(R_i \) can be deformed in \(M \) into \(P_i \), \(1 \leq i \leq N \), and
- b) \(R_i \) is a regular neighborhood of \(N_i \), where \(\dim N_i \leq \text{Max} \{n-(N-1)(q+1), q\} \), \(1 \leq i \leq N \).

PROOF. We start the proof by proving the following fact: Let \(X, Y \) be subpolyhedra of \(M \), \(\{P_1, \ldots, P_N\} \) be a polyhedral cover of \(X \) in \(M \), and \(\dim Y < N(q+1) \). Then there exists a polyhedral cover \(\{R_1, \ldots, R_N\} \) of \(X \cup Y \) in \(M \) such that \(R_i \) is a regular neighborhood of \(P_i \cup N_i \) where \(\dim N_i \leq q \), \(1 \leq i \leq N \). The proof is by induction on \(N \). If \(N=1 \) then there is nothing to prove. We will suppose it is true for \(N-1 \), and prove it for \(N \). Let \(T \) be a triangulation of \(M \) such that \(K, L, T_1, \ldots, T_N \) are subcomplexes of \(T \) which triangulate \(X, Y, P_1, \ldots, P_N \) respectively.
Without loss of generality, we may assume that \(L \cap K \) is a subcomplex of dimension at most \(N(q+1)-2 \). Let \(L' \) be the \((N-1)(q+1)-1\)-skeleton of \(L \) and let \(L'' \) be its dual skeleton. Note that \(\dim L'' \leq q \). Let \(Q = X \cap(N-1)(\cup_i P_i) \). By induction, since \(\dim L' < (N-1)(q+1) \), there is a polyhedral cover \(\{J_1', \ldots, J_{N-1}'\} \) of \(Q \cup \mid L' \mid \) in \(M \) such that \(J_i' \) is a regular neighborhood of \(P_i \cup N_i \), where \(\dim N_i \leq q \), \(1 \leq i \leq N-1 \). Let \(J_i'' \) be a regular neighborhood of \(J_i' \), \(1 \leq i \leq N-1 \), and let \(H \) be a subpolyhedron of \(T_N \cup L \) such that \(H \) collapses to \(T_N \cup L'' \) and \(X \cup Y \subset H \cup (\cup_i J_i') \). Let \(J_i'' \) be a regular neighborhood of \(H \). Hence \(\{J_1', \ldots, J_{N-1}'\} \) is our desired polyhedral cover. This completes the inductive step.

We now return to the proof of the Main Lemma. Let \(T \) be a triangulation of \(M \) such that there are subcomplexes \(T_1', \ldots, T_N' \) which triangulate \(P_1', \ldots, P_N \) respectively. Let \(T_N'' \) be the \((n-(N-1)(q+1))\)-skeleton of \(T_N \) and let \(T_N'' \) be its dual skeleton. Note that \(\dim T_N'' < (N-1)(q+1) \). By the first part of the proof, there is a polyhedral cover \(\{R_1'', \ldots, R_{N-1}''\} \) of \((\cup_i P_i) \cup T_N'' \) in \(M \) such that \(R_i'' \) is a regular neighborhood of \(P_i \cup N_i \), where \(\dim N_i \leq q \), \(1 \leq i \leq N-1 \). Let \(R_1'', \ldots, R_{N-1}'' \) be regular neighborhoods of \(R_1'', \ldots, R_{N-1}'' \) respectively and let \(R_N'' \) be a regular neighborhood of \(T_N'' \) such that \(\cup_i R_i'' = M \). Since \(M \) is \(p \)-connected, \(R_i'' \) can be deformed in \(M \) into \(P_i' \), \(1 \leq i \leq N \). Furthermore, \(R_N'' \) is a regular neighborhood of \(T_N'' \) where \(\dim T_N'' < n-(N-1)(q+1) \). By repeating this process, and using Lemma 1.63 of [5] in order to preserve property b) in the process, we obtain our desired polyhedral cover.

ZEEMAN'S ENGULFING THEOREM. Let \(M \) be a closed \(p \)-connected PL \(n \)-manifold and let \(X \) be a compact subpolyhedron of dimension \(q \), \(q \leq n-3 \) and \(2q \leq n+p-2 \). Then \(X \) is contractible in \(M \) if and only if there exists an \(n \)-ball \(B \) with \(X \subset B \subset M \).
THEOREM 1. (Singhof). Let M be a closed p-connected PL n-manifold. Either $N := \text{cat}(M) \geq 2$ and $n \geq 5$, or $N \geq 3$ and $n \geq 4$. If $N \geq \frac{(n+p+4)\sqrt{p+1}}{2}$, then there are N n-balls which cover M. (see Theorem 6.1 of [6]).

PROOF. Let $\{P_1, \ldots, P_N\}$ be a polyhedral cover of M such that each P_i is contractible in M. By the Main Lemma, we may assume without loss of generality that P_i is a regular neighborhood of N_i, where $\dim N_i \leq \max\{n-(N-1)(q+1), q\}$ with $q = \min\{p, n-3\}$, $1 \leq i \leq N$. Since $\dim N_i \leq n-3$ and $2 \dim N_i \leq n+p-2$, by the Zeeman Engulfing Theorem there are n-balls B_1, \ldots, B_N such that $N_i \subset B_i$. Since P_i collapses to N_i, $1 \leq i \leq N$, we may assume without loss of generality that $P_i \subset B_i$, $1 \leq i \leq N$. This concludes the proof of the theorem.

REMARK. Since the category of any homotopy sphere is two, Theorem 1 for $N=2$, $n \geq 5$, implies the Generalized Poincaré Theorem. In fact, it is possible to work in Theorem 1 with $\text{cat}_M(X)$ (see [1]) instead of $\text{cat}(M)$, thus obtaining a theorem which includes Zeeman's Engulfing Theorem for $N=1$, the Generalized Poincaré Theorem for $N=2$, and Singhof's Theorem for $N \geq 3$.

THEOREM 2. (Singhof [6]). Let M be a closed PL n-manifold. If $\text{cat}(M) \geq \frac{(n+5)}{2}$, then $\text{cat}(M \times S^1) = \text{cat}(M) + 1$.

PROOF. It is a classical result (see [4] for a survey) that $\text{cat}(M) + 1 \geq \text{cat}(M \times S^1)$. Suppose $\text{cat}(M) = \text{cat}(M \times S^1) = N \geq \frac{(n+5)}{2}$. By Theorem 1, there exists a cover $\{B_1, \ldots, B_N\}$ of $M \times S^1$ where each B_i is an $(n+1)$-ball. By means of a homeomorphism, we can assume B_1 is so small that $B_1 \cap (M \times \{a\}) = \emptyset$ for some $a \in S^1$. Then $\{B_2 \cap (M \times \{a\}), \ldots, B_N \cap (M \times \{a\})\}$ is a categorical covering of $M \times \{a\}$, which is impossible.

REMARK. Since the proof of the Main Lemma can be easily adapted for manifolds with boundary, we may use Stalling's Embedding Theorem (Theorem 1.2 of [3]) to obtain a sufficient condition for the equality
of \text{cat}(X)$ and the strong category of a polyhedron X. This condition, compared with the one given by Ganea in Theorem 3.1 of [2], is slightly stronger.

REFERENCES

Luis Montejano
Instituto de Matemáticas
Universidad Nacional A. de México
04510 México D. F.
México

(Received November 11, 1982)