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into play several cloud microphysical processes. Mesoscale convective systems, appearing as individual cloud
systems in horizontal scales of roughly 100 km and 1 h to 1 day, form an important aspect of organized
tropical convection [15]. Theoretical understanding of the physical processes involved can improve their
numerical modeling and predictions [31,23,10]. Instead of modeling the detailed cloud microphysics involving
individual droplets, bulk cloud physics with closures involving mixing ratios is often a favorable alternative.
See for instance [11,16,17,30] and references therein. Moist convection can be modeled via the anelastic
equations [1,19,25] but its implementation could be computationally expensive due to its complexity, and
simplifications resulting in reduced models are often a more attractive path. The thermodynamic component
of the model can, for instance, follow the Boussinesq approximations valid for flows in which the depth of
the fluid motion is small compared to the density scale height [29,32], or the primitive equations where the
pressure follows the hydrostatic approximation [24]. Regardless of the approximation, those models are aimed
at understanding the formation and evolution of different natural geophysical phenomena. For instance,
cloud resolving models have shown to be very useful in providing details for convective organizations that
are often not available from observational data.

The above approaches are some examples of different techniques and approximations, resulting in math-
ematical PDE-based models that can be used to study geophysical flows. Many of those models consider a
dry atmosphere or treat moisture in an implicit fashion. Nevertheless, the impact of moisture in atmospheric
dynamics is crucial. Some models are more comprehensive than others and can provide more detailed infor-
mation to improve their predictions. Such needed complexity can sometimes result in less accessible systems
that are computationally expensive but also difficult to be treated theoretically. Models with a good balance
between complexity and precision can provide useful insight into the mechanisms behind different physical
processes. A variety of phenomena can be replicated with simplified models by focusing on specific physical
processes while still being able to be examined conceptually. Well-posedness and regularity are fundamental
theoretical aspects of any mathematical model that one must assess when possible. Mathematical analysis
of some of those models involving moisture dynamics explicitly can be found in [3,18,20,33-35]. Global
well-posedness can be proved for a model that couples the primitive equations to moisture dynamics where
phase changes are allowed between water vapor, cloud water and rain. First, it was done in [13] for passively
transported nonlinear dynamics, where the velocity field is known. Later, in [14], the proof was extended to
the case where the velocity field evolves as part of the solution.

A minimal model for precipitating turbulent convection was derived and numerically analyzed in [12]. The
model was able to capture different cloud regimes in response to different background wind shear profiles.
It was shown to be able to reproduce squall lines in the presence of strong wind shear at low altitudes
and scattered convection in the absence of it. The model agreed with qualitative observations made in
nature when squall lines are formed, such as their tilted profile, speed and direction of propagation and the
formation of cold pools right beneath it. Despite limitations needed for a minimal and idealized model, the
numerical results showed that the above squall line features observed in nature were also reproduced by the
model. The minimal model used a Boussinesq system together with a moisture dynamics. One assumption in
this model is fast auto-conversion, where rainwater forms instantaneously when the atmosphere saturates.
Fast auto-conversion was also used in [21,6] where squall lines and cyclogenesis were investigated. The
minimal model in [12] further assumes fast rain evaporation, where rainwater evaporates when it falls to
unsaturated regions at a timescale faster than the dynamical scales of interest. As a result, cloud water is
ignored and one only retains water vapor and rainwater. The minimal model, which is known as FARE for
its Fast Autoconversion and Rain Evaporation assumptions, is written in terms of conservation laws for
momentum, energy, moist entropy and total water.

In this work, we present a mathematical analysis of a model that assumes the same moisture dynamics
based on fast auto-conversion and rain evaporation from [12]. Instead of a Boussinesq approximation, we
use the primitive equations where a hydrostatic balance occurs between the vertical pressure gradient and
the buoyancy force of the system. Our main contribution consists of proving the local and global existence

Please cite this article in press as: N.A. Sadnchez-Goycochea, G. Herndndez-Duenas, Global well-posedness of a model for
precipitating convection with hydrostatic pressure under fast autoconversion and rain evaporation conditions, J. Math. Anal.
Appl. (2024), https://doi.org/10.1016/j.jmaa.2024.128132

© 0 N o O A~ W N =

A A D DM D D D D DWW W WWWWWWWN DN DNDNDNDNDNDNDNNDN 2R
o N o o0 b~ W N H O © 00 N o0 g b~ W NN R O ©W 00 N o a2 W NN FEF O VW 0 N o M W NN = O


Original text:
Inserted Text:
modelling

Original text:
Inserted Text:
modelling

Original text:
Inserted Text:
modelled

Original text:
Inserted Text:
models is often


© 0 N o o b~ W N =

A A D D D D B B D OWWWWWW W W WWN N DNDNNDNDNDDNDNDN R 2 R R R
0 N o a s~ W N H O © 00 N O g P~ W N FH O LV 0 N P W N H O VU 0NN W N+ O

JID:YJMAA AID:128132 /FLA [m3L; v1.349] P.3(1-41)
N.A. Sdnchez-Goycochea, G. Herndndez-Duefias / J. Math. Anal. Appl. ees (sese) seeeee 3

of solutions of the PDE that dictates the time evolution in our model. We also guarantee global uniqueness
and positivity of solution variables such as total water and equivalent potential temperature. For local
existence, we follow ideas found in [13], where velocity is known (passive transport) but water vapor and
rainwater evolve in time according to their own equations of motion where condensation and evaporation
processes are parameterized using piece-wise defined stiff terms that activate when the total water exceeds
a threshold (water vapor at saturation). On the contrary, in the present work only the total water evolves in
time while the water vapor and rainwater are computed diagnostically from it. In a nonlinear manner, it is
done via a transition smooth function, which avoids stiff terms and possible theoretical complications. See
for instance, the work in [35], where the Authors deal with nonlinear and discontinuous terms coming from
phase changes when water vapor reaches saturation, making the well-posedness proofs more challenging. In
particular, a variational inequality is included in order to represent the Heaviside graph as a subdifferential
of a convex functional.

The use of a smooth transition function requires certain bounding assumptions and the application
of known results from Bochner spaces. In order to guarantee existence and global uniqueness, we also
need to introduce Lipschitz continuity conditions on the transition function. This is a property that our
transition function satisfies, but it could be easily generalized to other Lipschitz continuous functions. For
well-posedness, we also follow ideas of [14], which considers time evolving velocities to be solved as part
of the solution. Under the FARE assumptions, some care is required with the estimations that involve the
buoyant force. This is because the estimations of the errors depend on the velocity, for which it is necessary
to redefine a total error and the choice of certain appropriate parameters coming from Young’s inequality.
In this paper, we present a detailed analysis for the local and global existence and uniqueness, keeping
track of the coefficients involved in the bounds required in the proofs. One has to solve for the horizontal
velocity in a smaller space and the vertical velocity obtained via the continuity constraint is shown to belong
into a bigger one. Likewise, the positivity of total water and equivalent potential temperature requires the
incorporation of a new integration space where the time derivative of the transition function makes sense.
Careful estimations are also needed for the hydrostatic pressure, buoyancy and precipitation terms in order
to show local and global existence, positivity and global uniqueness. All the constants involved in our analysis
are presented explicitly for both local and global existence, which may allow for a better understanding of
the behavior of the estimates. In order to make it more clear, technical results in Appendix A that are
shown in references [13,14] do not include the proofs and are clearly identified. Throughout the text, we also
specify when we follow the techniques in [13,14] and highlight the main differences. For instance, here we do
not use pressure coordinates and the uniqueness proof does not decompose the velocity into its baroclinic
and barotropic components. Instead, logarithmic type anisotropic Sobolev embedding inequalities from [4]
are employed. In the proof for existence, the hydrostatic pressure is integrated in a special way to guarantee
the rigid lid assumptions. The pressure estimates require additional steps that are explained in Lemmas 11
and 12 in Appendix A.

Although the techniques in this work heavily rely on the works found in [13,14], the PDE-based model
in this paper has fundamental differences. Our FARE assumptions remove one of the phases (cloud water)
and rain forms according to a transition function as soon as the moisture exceeds a saturation threshold.
Such threshold appears in the estimates and requires a special treatment. Although we impose a specific
structure for the transition function to be consistent with the FARE assumptions, in general one only
requires certain mild conditions. In a case where rain is bounded (which is physically consistent), one can
assume a transition function of compact support with important implications in the proofs, and one can
show that the square of the L? norm of the velocity field grows at most linearly in time. The rest of this
work is organized as follows. Section 2 contains information about the variables involved and explains the
corresponding physical interpretations. Section 3 starts with the local and global well-posedness, followed
by uniqueness. Some estimates are left to Appendix A.
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2. The hydrostatic-FARE model

The Fast Auto-conversion and Rain Evaporation (FARE) model presented in [12] has demonstrated to be
able to capture observations made in nature such as the response to scattered convection versus squall line
formation in the absence or presence of strong windshear near the bottom surface in the troposphere [12].
The model was minimal in the sense that it considers bulk cloud physics in a simplified way, assuming that
any excess of water from saturation levels is instantaneously converted into rain. Moisture dynamics is then
dictated by one evolution equation for total water from which yapor and rain can be computed. In deriving
such a simplified model that captures qualitative features of turbulent convection, one can achieve the goal
of analyzing the model in a more theoretical way. The purpose of this work is to go in that direction for a
model with similar assumptions to that in the FARE model but adopting hydrostatic pressure conditions.
This section shows details of the model and introduces notation.

The model is given by the following system of PDEs:

D
_l;lth + f0(2 X u)h = —Vip +11QAruy + Vzagllh, (13)
0.0 = b(qr,0e; 2), (1b)
Do,
D = k1RO + k2020, (1c)
D
D—qtt — Vr0.qr = p1 Apge + p202q1, (1d)
Vi -up +0,w=0. (le)

In the above description and throughout the paper, V; and Aj are the horizontal gradient and horizontal
Laplacian respectively. The material derivative is defined as

%:at+uh-vh+waz. (2)
Furthermore, the velocity field is denoted as u = (u,v,w) = (up,w) and is separated into horizontal and
vertical component; fy is the Coriolis parameter (set to be a constant); p is the rescaled pressure; 1 and vy
are the horizontal and vertical kinematic viscosity coefficients respectively; and k1, k2, 1 and po are diffusion
coefficients. The total water mixing ratio ¢;: = ¢, + ¢, accounts for the water vapor ¢, (gas phase) and rain
g¢r (liquid phase) components of water in warm clouds. As mixing ratios, those quantities are measured in
units of density of the phase by density of the total fluid’s parcel. The equivalent potential temperature 6,
describes the temperature that a parcel of air would reach if all the water vapor in the parcel is condensed
and the parcel was brought adiabatically to a reference pressure. This quantity is conserved under adiabatic
processes even if water condenses, releasing its latent heat. The ordinary potential temperature 6 is related to
the equivalent potential temperature through a thermodynamic linearized relation given by 6, = 6 + éqv,
where L = 2.5 x 106 J kg™! is the latent heat release, and cp =103 ] kg~! K™! is the specific heat at
constant pressure. The rainfall speed is denoted by Vr, and it is assumed to be constant for simplicity [12].
Equation (1a) describes conservation of horizontal momentum. Equation (1b) corresponds to the hydro-
static pressure assumption, where b(g, 6.; z) is the buoyancy force given by

b(gi,0c;2) =g (% - (CPLQO - eo) Qv — qr> : (3)

Here 6 is a reference value for the potential temperature, g is the gravitational constant, and R,/Rq = €p+1
is the ratio of gas constants. Conservation of equivalent potential temperature is dictated by equation (1¢),
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Fig. 1. Schematic graphs of x. (left) and x. (right).

indicating that it is a material invariant in the absence of viscosity. Equation (1d) describes conservation
of total moisture plus precipitation of rainwater. Finally, the last equation (le) corresponds to the incom-
pressibility condition. We will call the above model HFARE, where H stands for the hydrostatic pressure
condition.

The evolution of water vapor and rainwater usually involves parameterizations of condensation and evap-
oration processes [21]. Such parameterizations activate when the atmosphere saturates, typically inserting
stiff terms. In [12], the fast autoconversion and rain evaporation constraints led to a phase change process in
which the excess of water from a threshold (water vapor at saturation g,s) will automatically be considered
rain. As a consequence, one evolution equation for the total water dictates the moisture dynamics while the
water vapor and rain components are obtained diagnostically. However, ¢, and ¢, are smooth functions of
q: and ¢, in a phase transition from vapor to liquid. This is in contrasts to what it was done in [12], where
such dependence consists of piece-wise defined expressions. Our approach avoids dealing with stiff terms
that might not be differentiable and allows for a progressive transition from water vapor to rain. Specifically,
rain is computed as

@ = Xe(@t — qus(2)),
where ¢,5(2) is the water vapor at saturation which is in turn a given decreasing function of height, € is

a small positive parameter, and y. € C*°(R) is a smooth transition function with bounded derivative,
satisfying

)0 if ¢<0,
Xe(€) = { ¢ if (>e. (4)

Since the derivative of x. is bounded and x.(0) = 0, then there exist positive constants ¢, and c. such that

(Ol <exl¢]  and  XL(Q)] < ece. (5)

Moreover, due to the mean value theorem, y. and its derivative are Lipschitz—continuous, i.e., there exists
Ly and Lo, such that

Ixe(q1) — X<(q2)| < Lilg1 — gz and IXt(q1) — XL(g2)] < Lalgr — qal- (6)

See Fig. 1 for an schematic of x. and its derivative.
We note that the buoyancy can be explicitly computed as

b(ge,0e;2) =g <Z—; - (cpieo - 60) q + (c,,Leo — € — 1) Xe (gt — qu(Z))> « (7)
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2.1. Domain, initial and boundary conditions

We seek for solutions to system (1) with spatial domain of cylindrical type: M = M’ X |29, 1], where
M’ is a smooth bounded domain in R? and zg < z;. The boundary is given by

To:={(z,y,2) € M : 2= 2},
Iy :={(z,y,2) e M : 2= 2},
Do ={(z,y,2) e M: (w,y) €OM', 2 <z<m}

Under the definition of the material derivative (see equation (2)), we can rewrite the HFARE model (1) as:

Apup + (up - Vi)wy, +wdoup + fo(2 X u)y = =Vip + viApuy, + v207uy, (
9:p = b(qt, be; ), (8b

O + - Vi + w0.qe = Vr0oxe (@ — Qus) + K1 8nqe + K201, (
il +uy - Vibe + w000 = 1 Apbe + 112070, (8d
Vi -up + 0w =0, (8e

with initial data

uy(-,0) =upo, w(-,0)=wo, ¢(0)=qo, and O.(-,0) = b0, 9)

subject to boundary conditions

I—‘O : azuh = 07 w = 0; azoe = 04909@ ath = Qq04t, (10&)
I'y: O,u,= 0, w =0, 0.0, = —ag1be, ath = —Qq14t, (IOb)
I's: Opup = 0, Onbe = —apsbe- ath = —0gsqt, (10C)

where a0, a1 and a,s with x € {q,0}, are non—negatives scalars. That is, we require Robin boundary
conditions for the equivalent potential temperature and total water. The normal velocity at the lateral
boundaries vanishes. Zero Neumann boundary conditions are required for the horizontal velocity at the top
and bottom. This will be particularly helpful in guaranteeing that the vertical velocity vanishes at those
boundaries, under rigid lid assumptions. More details will be provided in Section 3.

2.2. Spaces of functions

We introduce the following spaces of functions using standard notation and terminology from Sobolev
space theory. In particular, if @ ¢ R? is a domain with d € IN, I is an open or closed Lipschitz curve, and
s € R. We define H*(Q) = [H*(Q)]? and H*(') := [H*(I')]%, whereas for the case s = 0 we will simply
write H(Q) := L*(Q) and H°(T') := L*(T"). The associated norms will be denoted by || - ||gr=(), || -
sy, |-1lz2(o) and |- ||z2(ry- In addition, X will denote a Banach space with norm || -||x. We also define
the Bochner space LP(0,7T, X ) := {f: [0,7] — X : [[f|[z»(0,7,x) < +00}, with its corresponding norm

1/p

T
Il o) == / IElEdr ]
0

for 1 < p < oo and
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€]l Lo (0,7, x) := esssup [|f]|x.
0<t<T

Similarly, C'([0,77]; X) denotes the Banach’s space that includes all continuous functions f : [0, 7] — X with
associated norm

HfHC([O,T];X) = orgntang Il x < +o0.

3. Well-posedness

Our main goal in this work is to prove the local and global existence of the hydrostatic-FARE model
described in (8) subject to boundary conditions (10). The details are provided in this section.

3.1. Local well-posedness

The local existence is proved based on the following known results for linear parabolic equations, subject
to the Robin boundary conditions on cylindrical-type domains.

Lemma 1. Let the initial data (ug,vo,qro,0c0) € H?*(M), wg € H' (M) be such that the total water and
equivalent potential temperature are non negative; the initial velocity field is divergence-free; and satisfy the
boundary conditions (10). Then there exists a unique local solution (u,v,w,q,0.), which depends continu-
ously on the initial data, in some short time interval (0, To), to system (8) subject to the boundary conditions
(10), satisfying

u, 0,41, 0e, € C([0, Tol; H* (M), w € C([0, ToJ; H' (M)
atuv atvy atqt» 8teeu € L2(07 767 L2(M))

Proof. The proof consists of constructing a sequence of vector fields given by {(u™,v™,q}',07)}52, that
converges to the strong solution. We will denote the solution vector by S := (u,v, g, f.) and let S"T! :=

(u”“, pntl qt"H, 92“), with n = 0,1,--- be the unique strong solution to the linear parabolic system
o — i Apultt — 102U = —(uf - V)ul — w"duf — Vip™ — fo(2 x u)y, (11a)
Oap ™ — mAngp T — Ra02q ! = —uf - Viag! — w"0.q7 + Vrdax=(qf — qus(2)), (11b)
QOITE — i AROITY — 120207 = —ul - VR0 — w007, (11c)
9:p" = blqt', 07 2), (11d)
o,w" = -V, -uy. (11e)

We note that w is not an element in the sequence S. It is computed via the continuity equation and we can
only show that it belongs to C([0, To]; H!(M)) instead of C ([0, To]; H2(M)). In addition, we consider the
initial data

Sn+1|t:0 = (un+1a/Un+1aq1?+170:‘+1)’t:0 = (u07UOaQt07060) = SO' (12)

The incompressibility condition allows us to write the vertical velocity as in integral that can easily
satisfy one zero Dirichlet boundary condition either at the top or at the bottom boundaries. However, it
is not clear that such integral will satisfy the same boundary condition on the other side. The hydrostatic
pressure needs to be integrated in a specific way in order to guarantee the rigid lid conditions in system
(11) for the sequence S™ for n = 0,1, --. This is shown on the following lemma.
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We note that the condition fzzol Vi -updz = 0, consistent with the incompressibility of the fluid, is

n

P .-y = 0. We directly compute w™ according to equation (11e) and

related to the boundary condition w
the integral condition is proved in the next lemma.

Lemma 2. The sequence 8™ = (w1 o™t ¢ 97+ satisfies the rigid lid assumptions for w™ ! in zg
and 21, that is w1 (29) = w1 (21) = 0 for all n provided that the flow is initially incompressible (n = 1),
and the hydrostatic pressure is given by

21

p" = _/b(q?,GZ;U)dUJrf)"(%yvt)’

z

where the pressure at the top surface p™(x,y,t) satisfies the Poisson equation

W = 7/Vh ~((u™ - V)uZ)der/ /Ahb(qf,ﬂg;o)da dz
1= 20
b oo (13)

—fo /(830’1}" — Oyu")dz.

20

So, if the rigid-lid assumption is satisfied at step n, condition (13) provides the pressure expression for the
rigid-lid assumption to be satisfied at step n + 1.

Proof. The condition w(z;) = 0 implies that

Z1

w":/Vh~uZdz.

z

In order for the vertical velocity to vanish at the bottom boundary, we still need to show that
/ Vi-up dz = Vn.

Differentiating with respect to = and y, respectively the horizontal velocity components in equation (11a),

we obtain
040, u™ T — 110, Apu™ T — 130,07 = — 0, (W) - Vi )u™ + w0, u™)
— O2p" — foOzv™,
atayu”“ — VlayAhv”'H — uzayafv"“ =—0y((up, - Vp)v" +w"0,0")

— 8§p” + fodyu™.
Then, by the incompresibility condition (8¢), we get

O (=0, w" ) — vy Ap (=0, w" ) — 1 F% (=0, w" )

(14)
==V - ((u"-V)u}) — App™ — fo(Orv™ — Oyu™).

The pressure terms in the momentum equations ensure incompressibility. From (11d) and (11e), it follows
that
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21

p" = _/b(Q?ﬂ?;a)do— +p"(2,y,1), (15)

z

where p"(x,y,t) is a function that is independent of height. Replacing (15) into (14), is not difficult to see
that

21

Oy (fj;(vh . uZH)dz) — 1Ay /(Vh . uZ“)dz — 1V, - (8Zuz+1)

Z0

21

20

= —/Vh -(u" - Vuy)dz + /Ah /b(qt”,ﬁg;a)da +p"(x,y,t) | dz (16)
20 20 z

21

—fo /(&Ev” — Oyu")dz.

Z0

We note that the right hand side vanishes if the pressure at the top surface p(z,y,t) is chosen according to
equation (13). The horizontal Laplacian can be inverted for functions that do not depend on z. Integrating
equation (14), and using the fact that w(z1) = 0 it follows from (16), that
z1
) 0.
Z0

6twn+1('ra Y, 2o, t) - VlAhwn+1('r7 Y, 20, t) - VQVh y <8zu2+1
Notice that, if we impose the following boundary condition

zZ1
o.up =0, (17)

Z0

we get
(&5 — VIA}L)wn+1(I7ya 207t) = 0.

Since the initial condition for the above heat equation is w"!(z,t,29,t = 0) = 0, we finally get
w (. t, 20,t) =0 forall t. O

Now that we have verified the rigid lid conditions at any time n, we are ready to apply Lemma 9, with
details provided in Appendix A. We will first show that the right-hand side terms involved in system (11)
are bounded with the norm in L?(Q7;), where Q7. := (0,7) x M for 0 < Ty < 1. For the sake of simplicity,
we define the spaces Z7, := C([0, To]; H2(M)).

In the following two results, we will denote by S7' the j-th component of the vector associated to the
solution 8™ = (u™,v", ¢}, 07) defined previously.

Bound for (uj, - V;,)S7 : From Hélder’s inequality, it follows that

T 1/2
I V)7 lismy = | [ 1005 V)87 s
0
T 1/2
2
< | [ bl 19687 Tzcan)
0
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- s 3/8
8 8/3

<\ [ Guieno)® ) { ] 019087 asan)
0 0
T s 3/8

n 8 n 2/3 n |2

< | [ Guilzecn)® ) {19712 00 V887 e

0 0

Now, we use the continuous injection i, of H'(Q) into L*(Q) (see [26, Theorem 1.3.4] to obtain
[(uh - Vi) S 2 @ry)
1 3
< ||uZ|‘L8(0,%,L4(M))HV}LS_;:LHEOO(Q,%,LQ(M))||vh5j ”22(0,7'0,L6(M))
i n n| i n|i
< ‘76‘8 ||uh||L°°(0,T0,L4(M))||vth ||zoo(o,7'0,L2(M))||vth ”22(07737[,6(/\/1))
i n n||i n| 3
< C’sobltﬁJI8 ||uh||L°°(0,7?),H1(M))HSj ||Eoo(o,7—0,H1(M))”Sj H}i?(O,TO,H?(M))
5 n n
< Csob|Tol = 18" (| Lo (0,79, 1 (M) 1S | 21, »
where Cyop, is the Sobolev constant associated to 24. Thus,
n n 5 n
1} - V1)S} ll22(@7) < Csobl Tol 318112, - (18)

Bound for w™- 9,57 : Under the same arguments as in the previous estimation, together with the Lemma 13
(see Appendix A), we arrive at

|w™ - 0257 | L2 (@)
< ||wnHL8(0,767L4(M))HaZSJnH%m(O,%,LQ(M))HazSJT'l”%%O,%,LG(M))
< 1T ™ e 0,75, L4 927 N e 07515 0y 1057 N 070 2000
< Cuoblzr = 20l To AV - W oo 0,710 00 1S5 U e 0,75 150 07 120000
< Cuanl21 — 20| To ¥ 13t e 0,70, 122 (00 1™ N 21,
< Cuanlz1 — 20| To |2 18" | = 0,70, 212 (1) 18 | 21y -
which concludes that
" - 0.57 2@ < 121 — 20l Cranl Tol F18™ . (19)

Remark 1. In [5], the velocity field is assumed to be given and they are assumed to be in the same space.
In this work, the velocity field is evolving according to the equations of motion. The continuity constraint
with appropriate boundary conditions gives us the vertical velocity in terms of the horizontal components.
However, the vertical and horizontal components do not necessarily belong to the same. This is reflected in
the application of continuous inclusion 4, of H'(-) — L*(-), with p € {4,6} that we need to make for the
terms (uj! - Vh)S’;L and w" - 0,5}.

Bound for fo(2 x u)p: It is clear that
T 1/2
1fo(2 x Wllz@r) = /l\fO(—v7u)||2L2(M> <1 folVToll 5" (| 27, -
0
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As noted in Fig. 1, the transition function y. is introduced in order to smooth out the dependence of
rainwater ¢, = X.(¢ — qus(2)) on total water ¢; and water vapor at saturation g,s(z). It is defined in a
way that rainwater is absent (¢, = 0) in unsaturated regions (¢ < ¢us(%)) while it consists of the excess of
moisture from the water vapor at saturation (¢, = ¢: — gus(2)) in fully saturated regions (q; > qus(z) + €).
It is required that the transition function is smooth with bounded derivative. The use of these conditions
and the treatment of the function x. is reflected in the estimates of terms V5, x:(q}* — qvs(2)) and p™ that
are presented below.

Bound for Vpd,x:(q} — gus(z)): Differentiating the function x. together with the assumption (5), and
applying Cauchy—Schwarz inequality, it is not difficult to see that

V0 xe (@ — qus(2)2arn
- / Virdaxe () — qos(2))PdM = / Ve (@ — os (2))0: (a0 — Gus(2))[2dM
M M

< ofVr[2e / (10,402 + 190 (2)[2) dM
M

< 20V 22 (167 I oy + 10500 (2) 2y -

Integrating over (0, Tp), we deduce that

T 1/2
||VT3sz(qu - qvS(z))HLZ(QTU) = /”VTaZXS(QZI - qvS(Z))”%?(M)
0
< V2|Vrles (la] | 220,70, (M) + 10w ()| 220,75, 12 (M)
< V2WVrle: (VTN 122, + lus(2) 20,73, ) -
So,
Vrdx=(at' = qws)l 127y < V2|Vr|c. (\/76||Sn||ZTO + ||qu(z)||L2(o,%,L2(M))) : (20)

Rain water is one of the solution variables in [5]. As a result, its estimate is equivalent to the direct
estimate of ¢;. Since rain here is a function of the total water and a threshold, the estimate involves the
L? norm of that threshold. A similar situation occurs when estimating the pressure term. As we will see
below in equation (24), an appropriate factorization combined with the Gronwall inequality directs us to
the desired estimation.

Bound for Vp™: Thanks to the definition of the buoyancy force given in (3), it follows that

IVep" I3 = [ 90" P
M

§//|Vhb(qf,92;z)|2dzd/\/l+/|Vhf)"\2d/\/l
M 2z M

o/ vaer L .
//QK bo <Cp9o 60) Vg
M zo
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2

L —n
+ (— — € — 1) Vixe(q — st(z))> dzdM + [|V1,p ||2L2(M)-

To bound the horizontal gradient of p(z, y,t), we apply Lemma 12 (see Appendix A), with which we obtain

z1
Vo5 e = [ [ 19pPdzdre
M’z

— / / [Vip|2dM'dz < (21 = 20)C3[1S™ 1Rz 0
zo M’

Using the inequality (a + b+ ¢)? < 3(a? + b* + ¢?) and the condition imposed on the function y. given in
(4) in combination with (21), we obtain

905" e ian < 3o — o) | [ 1920, P
2
319 (1 — 20)* |~ — €0 / Vhg? M
cpbo

431201 — 20)” |- / VX (@ — s (2))[2dM

+ (21 — ZO)C’gHSnHH%/\A)
<3lgl*(21 — 20)C3, (||Vh9”HL2<M) +2¢2(|V gy ||L2(M))

+ (21 — zO)C_‘SHS"H?p(M)
< (6]g*(21 — 20)* max{1, 2}CF, . + (21 = 20) CHIS™ 32 aa

where
1 L L
o= ol | —eo—1| b, 22

Coy.eo max{eo Cpeo €0, Cy e €0 '} (22)

Finally, calculating the norm in the whole space L?(Q7;), we arrive at

[Vrp"lL2(@r)
T

_ 1/2
< / ((6|g|2(21 — 20)%2 max{l,cg}Cgo,eo + (21 — 20) 1—3) ||SnH%12(M)) (23)

0 _
= (\/6\9\(21 — 2z0) max{1,c. }Cpy ¢, + (21 — Zo)l/Zij:) ||Sn||L2(O,To,H2(M))
= (V6lgl(z1 — 20) max{1, c-}Cay o + (21 = 20)'/2Cp) | To| /218" || 2, -

With the previous bounds, we are ready to apply Lemma 9 (see Appendix A), giving us
18" 27, + 108" | L2 (@)
4
< | 2 (k- Va)STleei@m) + 0" - 0.8 120 ) + VD" 20,
j=1
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V0 xe (@~ s 2y + 102 X Willza(@ry) + (0, 0, 0, Bl )

< CH (1Y% 118" 1 25, + 1)

Here C* is a positive constant that depends only on C’sob,VT,cg,|f0\,090,€0,éf) and the initial data

o, Vo, Gi0, Beo- Then, taking To := min{1, K5/16} for some K > 0, one can easily show by induction
that

18"z, +110:8™ H L2(0ry) <K, n=0,1,---. (24)
Defining

7 (®) = 3 (157 i caay + 1S3 1)) -

j=1

and applying the estimate (24) together with the Gagliardo—Nirenberg inequality (see [22] for more details),
. 1/4) 0 3/4
that is || fllz < CanllFI5"1F13:, we get

To 4 To
[ =3 [ (187 Bgan + 15 B o)
0 =19

To - 7
< S (18" I 187 e 00y )
To

n—1,1/2 n—1113/2 nnl/2 n3/2
< Can [ (18" I anlIS™ b2y + 187 1500y 172 ) -
25
0

LT /a4, . 3/4
<Con Y, /||Sn7m||iz(/v1) /||Sn7m”§12(/\4)
m=0 \0 0
LT 3/4
< Con|To|'* K2 /\lS"’mIIEz(M)dt < 20N K?|To| 2.
m=0 \J

Next, we show that {S"}°° ; is a Cauchy sequence in the space C([0,7o]; L?(M)). For this, let us define

J*() = flaf — i o + laf = a2 oy + 107 — 027122 00

Using the same arguments presented in Section 3.2.3 but substituting the terms up1, g1, 01 by uZ+17 qf“,

671 and upg, g2, Oe2 by ull, ¢, 07 in the estimation (77), we arrive at

1d 1, . n n
§Ejn+l(t) + §(m1n{u1,,u2})||VJ 720 < Crot ONTTHONT2 a0y
Here, Ciot(t) is a positive constant depending on Vr, Ly, cc, ¢y, pi1, 12, 02qvs and the initial data g0 (see
Section 3.2.3 for more details). Thanks to the definitions of ~y,, and J,, it is not difficult to see that J, 1 (t) <
Y () I (t). Thus

4

G < 2Cha 07 (a0,

t
T < 2 / Cron()7n(5)n(s)ds, Wt e[0,7), and
0
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To
sup_J"1(t) < 2Cui (Do | [0t sup (o)
0<t<To 5 0<t<To
. . . 1
Recalling (25), and choosing Tp < ECan K Cror DT o )®* Ve get
n+1 1 n n+1 I nooo
sup J"TH(t) < 5 sup J'(t) <= sup J"T(t) < - 0,
0<t<To 2 0<t<To 0<t<To 2

which implies that {8}, is a Cauchy sequence in the space C([0, 7g); L*(M)). Finally, by Aubin—Lions
Lemma (see [28] in Appendix A), there is a vector S € X7;, with 9;S € L?(Q7,) such that

S™ — 8 in C([0, To]; L*(M)) N L*(0, Ty, H*(M)) and 9,8™ — 9;S in L*(Qr,). O
3.2. Global well-posedness

In this section, we present the global existence and uniqueness of solutions to the HFARE model (8). We
also guarantee the positivity of the equivalent potential temperature 6. and the total water mixing ratio ¢;.
The main result of this section is presented in the following theorem. The proof has been divided into three
parts for better understanding: existence, uniqueness, and positivity.

Theorem 1. Assume that ug, vo, gio, 0o € H?(M)NL® (M), wy € H(M)NL®(M) with 0eo, g0 > 0 in M.
Then, system (8), subject to initial (9) and boundary conditions (10), has a unique global in time solution

(W, 0,,qr) satisfying

967Qt 2 07 9€7qt c LOO(OaTa LOO(M))7
up, g, 0. € L°(0, T, H*(M)),w € C([0,T); H'(M)) and
Oun, Oyqi, 010 € L*(0, T, L*(M)).
3.2.1. Global existence

We will begin this section by finding the spaces where each of our unknowns uy, ¢;, . will be estimated.
In the following result we establish that ¢; belongs to the space C([0,T]; L?(M)) N L2(0, T, H*(M)).

Lemma 3. Assume that the initial data satisfies q0 € H'(M). Suppose also that the boundary conditions

(10) and (8e) hold. Then there exists a function C1(T), which depends on the initial and boundary data,
and is continuous for all t > 0, such that the estimate

i

2

sz + [ 1903 undt < C1(T),
0

holds for any T € (0, T%).

Proof. We have used arguments from Proposition 5 in [14]. Here, one requires to treat the nonlinear term
associated to precipitation involving the function ..
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We will begin multiplying equation (8c) by ¢, and integrating over M. We then get

/ (0ear)qr AM + [, (an - Vige + wd.q1)q: AM

(26)
= /(VTazXE(Qt — qs(2)))q AM + /(HlAth + K20201)qr AM.
M M
It follows from Lemma 14 and Lemma 15 (see Appendix A) that
Jox (Wh - Vige + w0.q1)q dM = 0 and @7)

fM(/ﬁAth + 6233%)% dM < —H1||Vth||2Lz(M) - 52\|3zqt||2L2(M)~

Based on the definition of x. given by equation (4), the chain rule to derive 9, x.(-), the condition (5)
and applying Young’s inequality (with constant ), we can deduce that

/(VTazXS(qt - qu(z)))qt dM == / (VTX/s(qt - qu)az(qt - qUS(Z))) Qt dM
M M

= /(VTX/5<Qt = qvs(2))02q1) e AM — / (VTX/E(Qt — Qvs(2))02qus(2)) gt AM
M M

< Vrec|lgel L2 l10-6ell L2 (m) + Vrcellgell 2 () 192qvs (2) [ 22 ()
1 ) )
< SV%C§\|%H%2(M) + §\|3th||2L2(M) + §||3zqu(2)||2L2(M)~
Due to the fact that § is a free positive parameter, we can choose it as § = ko > 0, from which one obtains

1 K9 R2
/(VTasz(Qt — qus(2)))qr dM < H—QVQ%C§||%||2L2(M) + 7”@%”%2(/\4) + 7||3z%s(2)||2L2(M)~ (28)
M

This choice of ¢ allows the coefficient of the term ||8th||%2( ) to be less than yip, which is necessary for the
required estimate. So, replacing (27) and (28) into (26), we get

1d K2
5%”6175”%2("") + K11 Vagell72 oy + 7H3th||2L2(M) <1+ collgil T2 mys (29)
where
. ka2 2 R T
€ = 7||82qu(z)|\Lz(M) and e 1= Ve

From (29), it is deduced that

t

el Z2 ) < llioll7e ey + 2e1t + /202||Qt(87')||%2(/\4)d5'
0

It follows from the above, by virtue the Gronwall inequality (see [2, Lemma 1.1, eq. 1.76]), that

lgel|Z2 a0y < ea(t), (30)

where
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c1(t) : :queo||2L2 M) T m2t||8zqu(z)||%2(M)
2V2c2 vae?
Jr/ Ko (”qw”LQ(M) + 2 8[[02qus (2 )||2L2(M)) e 2 s,
0

Finally, combining (29) and (30) results in the inequality

e / 1981 v + S 1051 )

min{x

J IVl e <
0

)) dt,
- mln{nl, }/cl +eae(t

and from (30), we have

< /2
Ogagér”%( Mz 0%22(7’( 1(1))

The proof is concluded by choosing C;(7T) > 0 as;

T
_ 1/2
Cl(T) o mln{ﬁl’ P} } / “ +C2Cl dt+ maX’T( ( )) - 0
0

In the following result we will show that . € C([0, T]; L?(M)) N L%(0, T, H*(M)).
Lemma 4. Assume that initial temperature 0.9 € H*(M). Suppose also that (8) and the boundary conditions

(10) are satisfied. Then, for all t > 0, the following estimate

s [0 + / 198el3s uay < Weollzzney

holds for any T € (0, T%).
Proof. Under the same arguments made for the proof of Lemma 3, one can arrive at

1d

5 10l By + 11 V40elEaany + 2 0:6cl 220y < 0. (31)

From (31), it is clear that ||06H2Lg( M s a decreasing function for all ¢, and therefore

10ell72 ) < 180l 2(an)- (32)

Finally, combining (31) and (32), we get

JSC AT = / 900ty + 120-60 syt < 0,
0

mln{ul,

and from (32), we have
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onax [[fe(t)llz2m) < max [leollz2m) = [1feollz2a),

which concludes the proof. O

Lemma 5. Assume that the initial data satisfies upy € Hl(/\/l) Suppose also that the boundary condi-
tions (10) and (8) hold. Then there exists a function Co(T), which depends continuously on the initial and
boundary data, such that the estimate

;
sl ooy + [ 1 nlaede < Ca(T)
0

holds for any T € (0, T%).

Proof. We will start by multiplying equation (8a) by uy, and integrating over M, getting

/(8tuh) . uhd./\/l + /((uh . Vh)uh + wé)zuh) . uhd/\/l + /f0(2 X u)h . llhdM
M M M

= —/Vhp -updM + /(V1Ahuh - Vgaiuh) -updM.
M M

Due to the fact that fo(2 x u)p - up = fo(—v,u) - (u,v) = 0 and Lemma 14 (see Appendix A), the second
and third integrals on the left hand side vanish, and therefore the above expression reduces to
/(Gtuh) -updM = — / Vip - updM + /(VlAhuh + z/gﬁfuh) -updM. (33)
M M M
As a direct consequence of Lemma 15 (see Appendix A), we have that
/(Vlﬁhuh + 12up) - wpdM < = [|Vaug |72 — vallOZun]F2 - (34)
M

It follows by integrating by parts, and using the boundary conditions d,u = 0 and (8e¢), that

—/Vhp -updM = /p(Vh ~up)dM — /p@nuhdFs = /p(Vh ~uy)dM
M M T, M

= —/p@zwd/\/l z/w(?zpd/\/l— /pw

M M M

“am'

The vertical velocity vanishes at the top and bottom boundaries: w = 0 at z = zg and z = z;. Together
with equation (8b), we get

—/Vhp-uhd/\/l = /w@zpd./\/l = /wb(qtﬁe;z)d/\/l.
M M M

Now, using the definition of buoyancy b (see (3)) and applying Young’s inequality together with the fact
that |x-(¢)] < ¢y [¢| (see (5)), we have that
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/ wb(qy, be; 2)dM

M
9 wdM — / ( — 60) qwdM
o
M

+A[g <CPL90 ) Xe (Gt — qus(2))wdM

g L
< =16, -
< 90|| ,||L2(M)||w||L2(M)+g‘cp90 €0

© 0 N o o b~ W N =

||QtHL2(M)HwHL2(M)

=
=)

+ gcy

—
N

L
o= = 1| (allzzean + o (ENaan) lulzcnn
Cplo

—
w

< 9Co0.co (10cll2r) + 2llaell 2oy + s (2 L2 a)) 10l 22 g

==
(S

2 0
< 2592090,60 (10l 2y + 2l gell L2y + lgos (2) | L2a) ™ + 5”“’”%2(/\4)»

=
~N O

where Cp, ., was defined in (22). Then, thanks to the fact that (a + 2b + ¢)? < 4a® + 8b* + 4¢? is fulfilled,

' and using the estimates for [|g:||z2(aq) (see (30)) and [|6c||r2(aq) (see (32)), we obtain

19

20 1 5

21 /b(qt,ee;z)WdM < 5920920,60 (2||9e|\%2(/\4) + 4lgell 72 pn) + 2\\%(2)”%2(/\4)) + §||w||iz(M)
22 M
2 L6203, ey (208e0llZ rny 41 (8) + 22 Facnny) + S0l Zaary
24 — 5 0,€0 e0llL vs L2(M) 9 L2(M)
25

26

27
uniformly bounded in time.

28
2008 Taking 0 := W’ and applying Lemma 13 with r; = 2 (see Appendix A), it is deduced that

30

v
31 —/Vhp ~updM = /b(qt, 96; Z)U)dM < CQ(t) + §||thh||2Lz(M), (35)
32

33
34 Where

We note that in the case where ¢, is known to be bounded, the transition function can be assumed of
compact support. In such case, the energy estimate for the horizontal velocity uy in equation (36) is

35

36 C2 (t) =
37

38 Substituting (35) and (34) into (33), one arrives at
39

40 1d 141
i 2dt||uh||L2(M 5|\thh||%2(M) + val|Oup [T ) < c2(t). (36)

(21 — 20)?

M1 920020760 (2”030”%2@\/1) + 461(t) + 2Hq7’3(z)”2L2(M)) ’

42
43
44 t

- anliacne < larollacun + [ 2ea(s)ds. 7
0

By the above arguments, we have that

47
48 Tt is easy to see that due to the estimates (36) and (37), we obtain
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_
1 11

J 1Tt < / (L1913 ) + 200 )

0

e

and
. 1/2

2
s ()] c2cae) < s { lnollZagun + [ 2ea(5)ds

0
The proof is concluded by choosing Co(7) > 0 as;

‘ 1/2

1 2
Co(T) = m/@(lﬁ)dt—korgsz lanollz2 ) +/202(s)ds . O

0

The next result is necessary to guarantee uniqueness in our system (8). The proof is based on [14] but
we do not decompose the velocity onto its baroclinic and adiabatic components. Instead, we employ the
logarithmic type anisotropic Sobolev embedding inequality used in [4] to control ||u| e (aq).-

Lemma 6. Assume that the initial data satisfies (uo,vo, Gro,0e0) € H? (M). Suppose also that the boundary
conditions (10) and (8¢) hold. Then there exist functions cs(t) and c4(t), which depend on the initial and
boundary data, and are continuous for all t > 0, such that the following estimates hold

V(8200172 0y + 1102017200y < €3(D), (38a)
V(820172 01y + 1020172 a0y <O, (38b)

and
IV (B-n) 172 pay + 1070172 gy < calt). (38¢c)

Proof. We will begin the proof by analyzing the estimation involving the water mixing ratio ¢;. For this,
we multiply (8c) by —92¢; and we integrate over M to obtain

—/ (9¢q1)02qrd M + [ (k1 ARgs + K202q)02qrd M

_ / (- Vags + w0 q0)0%qdM — / (VD (e — dus(2)))P2aqrd M.
M

It follows from integration by parts and the boundary conditions (10) that

—/(@%)af%d/\/l :/82(6tqt)azqth_ /(atQtaZQt) dm’
M M

M

Z0

/@ . q) 02 dM + a1 /(&e%) dM' + ag /(&s%)% am’

M! z=2z1 M!

Z=Z0
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1d 1d 1d
§d—|\5’ZQt||L2 ) T g1 / szl dM +ag / g la)|  dM

M z=z1 M/ z=z0

Since g > 0, j € {0,1}, the second integral on the right hand side is nonnegative, and thus

- [@aaEadrm > 3 H10.ali (10)
M

Now, using integration by parts and the boundary conditions for ¢; (see (10)), we get

/("ﬁAth + 5283%)83%61/\/1
M

21

dM’ + H2|I3§Qt||2L2(M)

20

*Hl/azAthazqth+f€1/Athazqt

am’

zZ=Zz1

—m/Ah(az(Jt)azqth — 1K1 /(Ath)Qt
M M

— Qq0Kk1 /(Ath)Qt
M/
= K1 / vh(az%) : vh(az(Jt)dM — k1 /8n(8ZQt)ath dr,

M T

dM' = ag1k1 /(871%)%
= oM

AM' + K202l 7 2 )

Z=Zz0

d(OM’)

zZ=z1

+ ag1R1 / Vira - Vg

am’

Z=Zz0

+ Qqoft1 /Vth'tht

d(OM') + ko 02172

zZ=Zz0

— Oqok1 /(&L%)Qt

oM’

= "fl||vh(8z‘Jt)H2L2(M) — K1 /82(3th)8zCItdFs + Oéq1/‘€1||(tht)‘zzz1 H?’ﬂ(/w)
Fs

— Qq1K1 /(ath)Qt

oM’

d(OM') + agora[[(Vaae)|,_ 172y

zZ=2z1

d(OM') + k| 02qel|72(ppy-

zZ=Zz0

— Qqok1 /(871%)(]16
OM'’

Note that, the boundary conditions on I'y are still fulfilled on OM’, then 0,q; = —agsq: on OM’, and

/(mAhqt + fﬁgafqt)ﬁfqtd/\/l
M

= 61[Vr(0:00) 1720y + gstin 0202172,
+ Oéq1l‘€1||(Vh(]t)‘z=21 Hi%M’) + agragshi | qt|z=z1 ”%2(3/\/1/)

+ aqO“l”(Vth)‘z:zO H%%M/) + agocgskin | Qt’ ||2L2(6M/) + K2||8§Qt||2L2(M)~

Z=Zz0
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Due to the nonnegativity of scalars x1, aq0, 0q1, aqs We deduce that

/ (K1Apg: + H283Qt)8§(Jth > HlHVh(azqt)H%?(M) + "92||83%H%2(M)
M (41)
> min{r1, k2} (IV@:001135 ) + 10200122 01)) -

For the term involving advection, we add and subtract the term

/(uh - V30,q:)0qidM.
M

Then, conveniently combining terms in order to be able to apply the Lemma 14, we arrive at

/ (W - Vs + 00.q)02qdM — / (tn - Vag)02qidM
M M

— /(uh - V10:q:)0.q:dM + /(uh -V30.qt + w0,(0.q4))0.q:dM.
M M

The third integral on the right hand side vanishes thanks to Lemma 14, while for the first two integrals we
apply the Cauchy-Schwarz inequality using the norm of uy on L (M). That is

/(uh “Vha + wath)aEQth
M

< Nl vy (IVRaell 2o 102ael 2oy + 1V RO2ae || 2 10-¢l L2 (1)) )
2

1
< sl (1980052000 + 1000132000

o1
t5 (||3,§CIt||2L2(M) + ||Vh3zCIt||2L2(M)> .

In the last step, we have used Young’s inequality with constant d;. Note that, in the above inequality we
need to control [[up||e(rq). For this, we apply the logarithmic type embedding inequality for anisotropic
Sobolev spaces (see Lemma 18 in Appendix A)

lun | o () < 3C) log* ((anllz2r) + IVasllzom) +€) (43)

where C) is a constant that depends only on C and the term max{1,sup(-)} that appears in Lemma 18.
Note that the norms involved on the right-hand side are bounded by Lemma 5 (see estimates (36) and (37)),
so that estimate (43) reduces to

[an | oo (M)
1/2

t . 1/2 14)
< 3Cxlog™ [ [[wnollz2(ae) + /202(8)618 + 0275) +e | = cul(t) (
mln{717ug}
0

This way, thanks to estimate (44) and Lemma 3, which allows us to find a bound for ¢; in H' (see estimates
(29) and (30)), we rewrite (42) as
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1 (e1 + e2e1 (b)) oo ()
01 min{xq, %} (45)

%5 (190003 rgy + 10200132 0)) -

/(Uh - Vhae + w0,q:)02qd M <
M

Next, we will proceed to bound the last integral involved in (39). To do this, we use the chain rule and
Young’s inequality

- /(VTazXE(Qt — qus(2)))02qrd M
M

= - / [VTX;(Qt - QUS(Z))az(Qt - st(z))] 8§Qth
M
< Vree|0: (g — qus(2) |l L2 102Gl L2 (a0
< V2Vree ([10:-ael 2y + 11000 (2) || L200)) 1026l L2

1 o s
< E (\/§VTC€ (”azthLz(M) + Hazqu(Z)HLZ(M))) + 52“83%”%2(/\4)'

Using the bound found for [|0.¢¢|[z2(rq) in the estimation (29) of Lemma 3, the above can be rewritten as

- /(VTazXE(Qt - (Ivs(z)))aZQQth
M (46)

2VEE2 (1 + cacr(t) 9 02 159 112
e o LG B P e
Finally, substituting (40), (41), (45) and (46) into (39), one arrives to
1d X (51 + 52)
5@”@%”%2(/\4) + (mlﬂ{fﬁ,@} AT (th(az%)H%%M) + ||8§Qt||2L2(M)>
2VEc2 c1 + cae (t) A () 222
< € 2 u,0 T™e
a5 (52 ||az(va(Z)HL2(M) + min{f@l, %} (51 + 52 )

and taking 1 = 0o = %1”2} > 0, it turns out that

min{ki,k 8V2c2
minlnnad (19,0003 ) + 1020130 ) ) < srimecisy 10:00s (2) 2000

(47)
+4(01+0201(t))(Ci,oo(t)+2V1%C§)
min{x1,”# } min{k1,K2}
The estimate (38a) is concluded, choosing
16V2c2 8(cy + cacr (1))(c2 (1) + 2Vi2c?)
e3(t) 1= s [|02qus (2) 132 n) + : USTHS 1<
(min{k1, ko }) min{r, %2 }(min{ry, k2 })
For the estimate (38b), we multiply (8d) by —82%0., and integrating over M, we get
—/(atGS)BEGSdM +/(M1Ah9e + 112026,)020.dM
M M (48)
_ / (W - VB + 00.0,)9%60,dM.
M
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Following the same arguments made for estimation (38a), all the integrals involved in the previous equality
are controlled in the same way as (40), (41) and (45). That is,

—/(at )020.dM > ——Ha )12 o
/MlAhe +M282 )ageedM 2u1||Vh(8z95)||%2(M)+u2||8§96|\%2(M), (49)
M

/ uy, - Vil + w0.0.)0%0.dM < 0.

Substituting (49) in (48), we arrive at the required estimate (38b).
Finally, for the estimation of the velocity, we multiply (8a) by —0%uy, and integrating over M, we obtain

— /(&uh) . (fuhd/\/l + /(I/lAhuh —+ Vgafuh) . 83uhd./\/l
M M
= /((uh -Vi)uy +wd.uy) - 02 updM (50)

M
+/f0(2 x u)y - 0%updM +/vhp~a§uhd/\4.
M

Repeating again the steps we did for (38a) and (38b), we can infer that

1d
—/(8tUh)azuhdM > §E||azuh”%2(/\/l)
M
/(ylAhuh + v207up,)02udM > min{vy, ve} <||Vh(az“h)”2L2(M) + ”aguh”;(/‘/‘))
M (t)e o (1) !
1 ca(t)c t
_ 2 < 2 20,00l
/((uh Vaun + wd,upd; ugd e 03 min{ %2, vo}

M
5 (19001250 + 192001201y ) -

For the term that contains the Coriolis parameter fy, we apply Young’s inequality and the identity (2xu);, =
(—v,u). So

/f0(2 xu), - 0%updM = /fo(—v,u) (8%u, 9*v)dM
M M

< | folllunll 22 l|02an] 2 (A
1 04
< a|f0‘2”uh”%2(/\4) + 5||3§uh||2L2(M)~

Substituting the bound for uy, given in (37), it follows that

t
s 1 J
[ ol x - 2undat < AP (Iwnalliann + [ 2a(ehds | + FloPwlege (52
0

For the last integral of (50), we apply integration by parts and we utilize the equation (8b) together with
condition d,u; = 0 in both 2y and z; (see (10))
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/Vhp 8 up,dM = — /5‘ (Vip) - 0 uhdMJr/Vhp 0, uh| tamM’
M M

= —/Vh(azp) . 8Zuhd/\/( = —/Vhb(qt,ee;z) . 8zuhd/\/l.

Now, using the definition of buoyancy b (see (3)) and applying Young’s inequality together with the chain
rule to derive Vi x.(-) we have that

— /Vhb(qt,ﬁe;z) . 32uhd/\/l
M

L
= — / givhee . 83uhd./\/l + /g <—9 - 60) Vg - aiuhd/\/l
o o

L
— /g < — €9 — 1) VhXe(Qt - qq)s(z)) aguhdM
Cp90
M

IV haell L2 102un] 2 )

g 2 L
< =||Vhbe 10) —_— -
< IVl |02l o+ | g~ o

L
+gce | — €0 — 1’ IV naell 2 1020 | 2 ()
Cpeo
< 9000,60 (IVhbell 2y + 20 Viaell 2 () 11070l 22 (04
2 55
< 25 92090 o (IVaOellzag + 2 Vgl L2a) ™ + 5\\3§uh\|%2(m)7
where Cy, , was defined in (22). Then, thanks the estimates (29), (30)) and (31), we can control the terms
IVraell L2y and || V4| L2(aq) Tespectively. Thus,
2 c1 + cac (t) ]
. 2 2 2 1+ 2 511920 |12
_/Vhb(qt,ee,z) . azllhd./\/l < Eg 090,60 <m) + 5||8Zuh||Lz(M). (53)
Substituting (51), (52) and (53) in (50), it results in
d
§E||azuh||2L2(M)
: 03+ 384+ 6
+ (mln{m,l/g} - %) (th(azuh”l%?(/\d) + ||3§uh||2L2(M)>

t

Sl { Tl + [ 2ea(s)as
0

ER0E MO
~ 03 min{ %, }

2 5.9 c1 + e (t)
—g°C
+ 559 B0,€0 (mm{m, 221

Taking 03 = §4 = 05 = M > 0, it turns out that

min s} (19 (0.100) 3y + 102113 ) < 400, (54

where

Please cite this article in press as: N.A. Sadnchez-Goycochea, G. Herndndez-Duenas, Global well-posedness of a model for
precipitating convection with hydrostatic pressure under fast autoconversion and rain evaporation conditions, J. Math. Anal.
Appl. (2024), https://doi.org/10.1016/j.jmaa.2024.128132

© 0 N o o b~ W N =

A A B DA B DB B DDA WWWWWWWWWWN N DNDNNDNDNDNDNDNRER B R PR R R R R
o N o o0 b W N H O © 00 N o0 g b~ W NN R O ©VW 0o N o g b W NN FEF O VW oo N O M W NN =R O



© 0 N o O b~ W N =

A A D D D D B B D WWWWWW W W WWN N DNNNDNDNDDNDNDDN R B 2o R
0 N o a A W N H O © 00 N OO g P W N FEF O VW 0O N P W N H O VU N N WN = O

JID:YJMAA  AID:128132 /FLA [m3L; v1.349] P.25 (1-41)

N.A. Sdnchez-Goycochea, G. Herndndez-Duefias / J. Math. Anal. Appl. ees (seee) seeees 25
t
o 6ca(t)cs o (1) 6|fol? 2
ca(t) == (min{v1,v2})2 min{ 22 12} + (min{vy,vs})? ||UhOHL2(M) T | 2eale)ds
0

1292030,60 ( c1+eacy(t) ) O

+ (min{vy,v2})? \ min{x1, 2}

3.2.2. Positivity

Since the estimations that will be presented in this subsection imply time derivatives of functions that
involve maxima, we will first show that the positivity of 6. and ¢; is possible in a subspace of M, called M,
and defined as Mg := {(z,y,2) € M : ¢ (x,y, z,t) # 0}, then by additivity we will cover the entire space
of M. Now we define f := f+ — f~, where f* := max{f,0} and f~ := max{—f, 0} are the positive and
negative parts, respectively. Under this definition it is easy to see that

(fOf)=0 @f7)fF =0 @) =0, (55)

where 0, refers to the time or space derivative.
The following lemma shows the positivity of ¢;.

Lemma 7. Assume that the initial data qyo > 0 is positive with g0 € H'(M). Suppose also that the boundary
conditions (10) and (8¢) are satisfied. Then g, > 0 is always positive.

Proof. As in [13], we also decompose into positive and negative parts. Due to our FARE assumptions, we
do not deal with extra source terms. On the other hand, we need to define the above space My in order for
the derivatives inside some of the integrals to exist.

Let us multiply (8¢) by —¢; . Integrating over M, we get

- / (Brar)agr dM + / (wn - Vs + wge)g dM
M

M (56)
= - /(Vz@xe(qt — qus(2))q; dM — /(mAhqt + Ko02q:)q; AM.
M M
By (55), we have that
_/(6tQt)Qt_ AM = — /[@(Qj —a )lg; dMo = /(315%_)%_61/\40
M Mo Mo (57)
= 55”% ||L2(Mo) = QEHqt HL?(M)-
It follows from Lemma 14 (see Appendix A) and the identity (55), that
_/(uh Vgt + w0.qt)q, dM
M
= - /(uh Vg +wd.q )a; dMo
(58)

Mo
+ Jan, (Un - Vg +w0.q; gy dMo

= /(uh -Vha + ’wazqt_)qt_d/\/lo =0.

Mo

As a consequence of Lemma 15 (see Appendix A) and (55), we also obtain
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/(mAhqt + k202q)q; AM = — /(HlAhqt_ + K202q; )g; dM

M Mo (59)
> k1l Viay 1 720m0) + F2ll 0207 172 (010)-
Notice that, due to the fact that 0,q,s < 0, we get
_82((]15 - qu(’z)) = —0zQqy + azqu(z) S _azqt' (60)
Then, using the chain rule to derive 9, x.(-) and the inequality in (60), we deduce that
—/(VTasz(Qt - qu(z)))q; dM
M
= - / (VTXIE(Qt - QUS(Z))GZ(LR - QUS(Z))) qr dM
M
- [Vl 2000 4 M
M
=- / (Vex(qe — qus(2))02q) ai dM
Mo
+ / (VexL(qe — qus(2))02q7 ) q; d Mo
Mo
= / (Voxtlar — qus(2))024;) ¢ d M.
Mo
From condition (5), and after applying Young’s inequality, we deduce that
*/(VTasz(Qt - QUS(Z)))Qt_ dM < VTCEHant_||L2(MO)||qt_||L2(MO)
M
Loy 2 g -2
< %VTCEH% Z20m) + §H5sz 122 (M)
Taking § = ka, we get
_ 1 _ K9 _
_/(VTasz(Qt = qus)(2))gy AM < %V:/%CEH% T2 ) + 7”5& 172 (o) (61)
M
Now, substituting (57), (58), (59) and (61) into (56), the result is
1 d _ _ %) _ ]. _
5@”% 12000y + Rl Viar (172 o) + 3”@% H%Z(Mo) < T@V%CEH% ||2L2(M)a (62)

which implies

t

. _ 1 -
o acan < llar Oz + [ VA (0) 2 unds:
0

Finally, by virtue of the Gronwall inequality (see [2, Lemma 1.1, eq. (1.77)]), one arrives at
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¢
_ _ 1
a7 scany <l Oz exp | [ = victas
0
Thanks to the fact that ¢;(0) = g0 > 0, then ¢; (0) = max{—¢(0),0} = 0 and therefore ¢, = 0, or
equivalently ¢, > 0. O

Lemma 8. Assume that the initial data satisfies 0.9 > 0 with 0.0 € H'(M). Furthermore, let us assume that
the boundary conditions in equations (10) and (8¢) hold. Then 0. > 0 is always positive.

Proof. For the proof of this Lemma, we use the same arguments made in the proof of the positivity of ¢; in
the Lemma 7, for which we will omit details. O

3.2.3. Uniqueness
Let (upi, beiy qri); @ = 1,2, be two solutions of system (1). That is

Orup; + (W - Vi)up + wi0,0; + fo(2 X W) = —Vipp; + v1Apup; + 12020, (63a)
8Zpi = b(th eei; Z)a (63b>
Oqei + Upi - Viqe +wi0.q1 = Vrduxe(qti — qus(2)) + k1 Anq (63c)
+ K202 qui, (63d)
atgei + Up; - vhaei + wiazeei - ,UllAheei + /14283961'7 (636)
Vi, -up; + 0,w; = 0. (63f)
We denote the total error as:
e 172y == NE™ T2y + % T2 0y + 1E%° N2 (00 (64)
where
€% =0 — 02, €M i=qu—q2 and €™ :=up — upo.

Let us multiply equation (63d) for the difference g;1 — ¢i2 by the error €% and integrate over M. It gives us
the following identity:

/(3t€qt)€qtd/\/l + /(uhl “Vhqu +w10:qi1 — (Un2 - Vagee + w20.q42)e* dM
M M
= /(Hlﬁhfq‘ + k021t dM + /VT(azXE(qtl — Qus) (65)
M M
_azXa(th - qu)(z))EQth'

Note that the boundary conditions are still fulfilled for the error of ¢;. That is,

Iy : 0,€% = (0,q11 — 02q12) = Q01 — g0tz = Qgo, ™
Iy: 0:% = (0.q11 — 0=q12) = —0q1qu1 + Qq1Gr2 = —q1, €™
Ly One? = Onqy1 — Onqia = —Qgsqi1 + QgsQr2 = _Olqsf?qto

Then, we can apply Lemmas 15 and 19, obtaining, respectively
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and

/(MlAtht + 026" )1 dM < =R [ Vie® |72y — R20l0267 (|72 pn)

M

/ [(up1 - Vg + w10:.¢41) — (Un2 - Vigee + w205qs2)] € dM

M
~ C 1 1Y’
44, 03 20

+Cl (1 + 40711) H€uh||2L2(M)

(5 ] IVRe Bary + [0+ G 192
453 L2(M) 1 2 °3 L2(M)*

In order to estimate the last integral of (65), we first note that

azXe(Qtl - Q'us(z)) - aZXE(QtQ - qu(z))

= X{;(Qtl - QUS(Z))az(Qtl - QUS(Z)) - X{;(QtQ - QUS(Z))az(QtQ - QUS(Z))

=+ Xé(Qtl - %)s(z))az(QtQ - QUS(Z))

By Hoélder’s inequality and Lipschitz continuity assumption (6), we have

/VT(aZXE(qtl - qu<2)> y aZXE(th y qu(z)))EQth
M

- / Vi (g1 — gos(2)) (2% )2 dM
M

+ / Vi, (g1 — Gos(2)) — Xo(@e2 — Gus(2)))(Baez)e®dM
M

- / Vi (@ — s (2)) — X — os (2))] (Ostos (2))e M
M

< Vre||0€ || 2oy 1% | L2 (M)

VL / (@11 — @os(2)) — (@12 — os (2))]10s a7 [dM
M

+ VTL2 / ‘(Qtl - Q'us(z)) - (Qtz - qu(z))”a,Zst(Z)HEQt|dM
M
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(66)

= X;(Qtl - QUQ(Z)) azgqt + [X/E(qtl - QUS(Z)) 2 X/s(th - st(z))]az(%z - QUQ(Z))

< Vreelle™ |y lle® L2y + VrLa |0z quzl s I [ e (an) 1€ |2 ()

+ VrLa|0.qus ()l Lo €™ | Loy 1€ 1| 2 () -

Then, applying the continuous injection i4 of H'(-) into L*(-) (see, e.g., [27, Theorem 1.3.4]), we deduce

that
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/VT(asz(Qtl - qu(z)) - asz(QtQ - QUS(Z)))E:qth
M

< Vree|e® | mr o le® Iz )
+ Ve Lolliall? ([10=e2ll g vy + 102q0s () L (m)) €% i vy €% |22
< Vi [ee + Lollaall? (19-qe2l 5 (a) + 10208 (D) L (vy) ] 1% 172 00
+ Vi [ee + Lalliall? (110:qe2 ]z (amy + 102G0s (2) |z 0] 11EY | 22y [IVE® || L2ty

Thanks to estimate of the Lemma 6 and Young’s inequality, we get

/Vﬂ@x4%1—%J@)—@xx%w—%xdﬂﬁﬁﬂ1

(68)
Cq, (t
< cqo(8) (14 2 e 120 gy + 17520 0
where
N 9 1/2
Cq () = Vr |cc + Lalia|? ((th + E(cl + Czcl(t))) + ||3zqu(2)|H1(M)>] -
Substituting (66), (67) and (68) into (65), it yields
1d q¢ |2 ; qe |2
QEHE 22 + (min{er, k2 ) IVE® (|72 0
~ 2
o Ca 1 1 rg, (
s&a@+ﬁg+g(ugg)+%x>o+ “29) | e 0 "

G (1 + Cl) e 122 g + [61 + 7“} IV |32 0y

+ (5 + G8] 17 12 uq
For the uniqueness of ., we proceed in a similar way as for ¢; in (65), getting

96”2

i lle®l17 2 gy + (mindpn, pa Ve (12 0

~ = 2 ~ ~
gh@+%%§@+%”f%ﬁm+@0ﬁ@k“hm (70)

N =

[5 +5 } INGE ||L2 ot {51 + —53} [Veur ||L2(M

Finally, for the uniqueness of up, we multiply equation (63a) for the difference up; — upg by the error e%.

Integrating over M, we get

/ (e )2 dM

M

+ /((uhl Vi) upt + widupy — ((ape - Vi) upe + wedoupg))e dM 1)
M
== /(Vhap)fuh + /(V1Ah5uh + 102 e d M.
M M
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Here, the term that involves the Coriolis parameter vanishes since
A 2 u
fo(Z2xuy — 2 xug)y - ™ = fo(va —vi,u1 — ug) - (u1 — uz,v1 —va2) =0,

and eP = p; — pa2. As a consequence of Lemma 15 (see Appendix A), we deduce that

/(z/lAhs“h + 102" ) e dM < —1/1||Vh6“’1||%2(M) - 1/2||8z6“"||2L2(M). (72)
M

Then, we can apply Lemma 19 (see Appendix A), obtaining

/[((uhl -Vi)upt + w10:up1) — (W2 - Vi) sz + wed.upg)] e dM

~ C 1 1\?
20, [14+ =2 | + = (1 + —~> € 12 gy (73)
451 53 265,

[251 + %+ %5 5| Ve 2

L2 (M)

Integration by parts gives us the boundary conditions d,e"* = 0 and (8¢). We obtain

—/Vhap ceMdM = /Ep(Vh e )dM — /Ep One™dl's = /sp(Vh cep)dM
M M

—/sp 0,eVdM = /ewazspd/\/l — /spsw

M M M

e

20

Since ¥ := w; —wy = 0 at z = 2y and z = 21, together with the equation (8b), we get

f/Vhsp e dM = /5”826pd/\/l = /5“’(b(qt1,961;z) — b(qi2, 0e2; 2))dM.

M
Also,
/Ew(b(%h Oc1; 2) — b(Gr2, Oen; 2))dM = / SLeteram— [ g <_ B 60) shetdM
0o CPGO
i M
L w
n /g <_ g — 1) (Xe (@1 — qus(2)) — Xe (@2 — qus(2)))e¥dM
Cp90
M

< 9Coy,co max {1, L1} (€%l 2y + 2% | 2ay) 1€ 22 (00)
1 2 0 2 5
< 5920920,50 (max{1, L1})" ([ 2oy + 2] L2(an))” + 5“6“}“%2(/\4)-
5
In the case where rain is known to be bounded and so the transition function y. can be assumed of compact

support, the Lipschitz continuity condition is not longer necessary. Furthermore, the involved coefficients
greatly simplify as the term ||%|| does not show up anymore.
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Since (a + 2b)? < 3(a? + 2b?) for a,b > 0, we obtain

= [Tnermam < PG (1o ) (7
e T A
Substituting (72), (73) and (74) into (71), it yields
1d
5l 1720y H(min{er, vo})[[Ve™ |72
< 0ol CRIP (e gy + 1% B o) -

~ =~ 2
C 1 1 2
i [201 (1) + 2 (+35) ] e 1z (ay
~ T2 ~2 o~ ~
+ [28 4+ G+ S — 0] 1V B ray

Finally, the total energy estimate is obtained. Combining the estimates (69), (70) and (75) together with
the definition of the total error given in (64), we get

1 d O (o) {e) O
§E|\5t N2 + H{linz {5, 13, 55 HIVE T2y < Crs@ e 122y + C.6lIVEH 1720 (76)

where,

2 22 max 2
C15(t) = 3C <1 - 40—1> + L (1 + LN) + ¢q, (1) (1 + thft)) . 9" Chy,eo ( N {1,L1}) 7

1 03 20 204 205
~ 02 3C2~ 4y o
02’5 =461 + —E —2(53 - + —5<2’1 — 20)2.
3 2 2 2

For simplicity, we choose the parameters gj, j€{1,2,3,4,5}, as follows

~ 1 ~ 2

0y i= — 5 y 5 0g 1= s s s

1 20 ge{lnz}{yj 1, K5} 2 5\/—02 je{l 2}{1/] My K}

~ 1

03 1=

3 1502 ]6{1 2}{Vj7/j/JaK/J}

5= min { Lood : i 5
= — min {vi, ui, K; = min {v K

4 5 je{1,2} o Hg R 1 5 5(21 — Zo) je{1,2} G0 Hir B

This choice of the parameters g] allows the coefficients for the term ||[Ve™!|2, ) to be combined and

appear on the left. This way, the inequality (76) reduces to

1d 1 . .
§d_”6 e + 5 5 g{l}n {js 11, K HIVEC T2 ) < Cror ()1 172 a0 (77)
with
B _ _ 2
~ 10C 15C2 5V6C
Cror(t) := 3C | 1+ min {v 1 Ki} ‘min {v y } 1+4 mln\f; 2 }
i oy K
jefl 5y §o My Kj jeqlsy jr K> K jefls Go Hs g

Please cite this article in press as: N.A. Sanchez-Goycochea, G. Hernédndez-Duenias, Global well- posedness of a model for
precipitating convection with hydrostatic pressure under fast autoconversion and rain evaporation conditions, J. Math. Anal.
Appl. (2024), https://doi.org/10.1016/j.jmaa.2024.128132

© 0 N o o b~ W N =

A OB DA DD D WOWWWW W W W WWN NN DN NNNDNNDN R 2 R R R e
G A W N B O © 0N W B O VN WD HE O Y 0N W N H O

46



© 0 N o o b~ W N =

A A D D D D BB P D WWWWWW W WWWN N DNDNNDNDNDDNDNDDN R B 2 2R R
0 N o a W N H O © 00 N OO g P W N FEHF O LV 0o N G P W N H O VU 0N N WN = O

JID:YJMAA  AID:128132 /FLA [m3L; v1.349] P.32 (1-41)

32 N.A. Sdanchez-Goycochea, G. Hernandez-Duenas / J. Math. Anal. Appl. ess (seee) eseeee
e, |1+ 5cq,(t) 15(z1 — 20)2°CZ, ., (max{1, L1})”
qt . - .
2 min {v;, u;,k; min {v;, it;, k;
je{l,Q}{ i M i} j€{1,2}{ i Iy K }

Integrating (77) over [0, ¢], we get

t

e (D172 (pay < 1™ (0N 172 pn) +/QCtot(S)I\etOt(S)H%zw)dS-
0

Finally, by virtue the Gronwall inequality (see [2, Lemma 1.1, eq. (1.77)]), we get

t

||€t0t(t)‘|%2(M) < H€t0t(0)H%2(M) exp /2Ctot(5)d5 = 07
0

implying ' = 0, and thus (up1, qi1,0e1) = (Un2, @2, Oe2)-
We now proceed to prove the global regularity of the solution.

Proof of Theorem 1. The uniqueness is a direct consequence of the subsection 3.2.3. On the order hand, in
Lemma 1 we have demonstrated that there is a unique local strong solution (u, g, 6.), satisfying

u, v, qt, 0, € C([0, To); HA(M)),w € C([0, To]; H(M))

We extend the unique strong solution (u, g4, 8.) to the maximal time of existence Tmax. To obtain a global
strong solution we need to prove Tpax = +00. Suppose, by contradiction, that Tpax < 400, then

im  [[(an, g, 0e) || Lo (0,75, 52 (M) = +00.
T — Tmax

From the above it can be deduced that

lim sup || (up, gt, 0e )| 52 (a1 = +00- (78)
T —Tmax

By Lemmas 3-5, we have that for some T € (0,70) C (0, Tmax)

sup |[(un, gr, 0e) | 2y < K, (79)
0<t<T

where K is a positive constant independent of 7. i.e. depending only on initial and boundary data. The
corresponding limits for the vertical velocity are analogous. Applying limits to (79) when T — 7., we

max?

arrive at a contradiction of (78). Thus, Thax = +00. O
Acknowledgments
This research was supported, in part, by grants UNAM-DGAPA-PAPIIT IN112222 and Conahcyt Al-

S-17634. The co-author N. S-G would like to thank Conahcyt for its financial support with a postdoctoral
fellowship through the project A1-S-17634.

Please cite this article in press as: N.A. Sadnchez-Goycochea, G. Herndndez-Duenas, Global well-posedness of a model for
precipitating convection with hydrostatic pressure under fast autoconversion and rain evaporation conditions, J. Math. Anal.
Appl. (2024), https://doi.org/10.1016/j.jmaa.2024.128132

© 0 N o o b~ W N =

A A B DA B DB B DDA WWWWWWWWWWN N DNDNNDNDNDNDNDNRER B R PR R R R R
o N o o0 b W N H O © 00 N o0 g b~ W NN R O ©VW 0o N o g b W NN FEF O VW oo N O M W NN =R O


Original text:
Inserted Text:
postdocotoral


© 0 N o O b~ W N =

A A D D D D B B D WWWWWW W W WWN N DNNNDNDNDDNDNDDN R B 2o R
0 N o a A W N H O © 00 N OO g P W N FEF O VW 0O N P W N H O VU N N WN = O

JID:YJMAA AID:128132 /FLA [m3L; v1.349] P.33(1-41)
N.A. Sdnchez-Goycochea, G. Herndndez-Duefias / J. Math. Anal. Appl. ees (seee) seeees 33

Appendix A

In this Appendix, several lemmas needed for the existence and uniqueness proofs are proved. Lemmas
that do not include a proof have been demonstrated in [5,14].
Linear Parabolic equations: Given a positive time T, set Q7 := Qx (0, T). Consider the parabolic problem

O+ Lu=F inQT,
Bu=G onTx(0,7),
’LL(,O) = Uo,

where L is a elliptic operator. The boundary operator B and the boundary function G are given by

Optt+au =0 on Ty, 10) on I,
Bu := and G :=
8nu—|—ﬂu =0 on F()UFl. 1/} on FOUF1.

Lemma 9. [5] Consider a positive time T € (0,00) and the initial data ug € L?(2). We assume that

0<a,8eWh™(Q), ¢eL*0,T,H(T,))
Y e L2(0,T, H/*(TyuTy)), 8B € L*(9Q % (0,T))

hold, and that F € L?>(Q7). Then, there is a unique weak solution to (8), satisfying
||U||L<><>(0,T,L2(Q)) + HUHLZ(O,T,HI(Q))
< C (IIFl2(@r) + lluoll L2y + 116l L2 7. mr1r2 sy + 191 L2 01,072 (rguryy) + 10:Gll L2 (0,7, 22002)) ) -
Moreover, if we assume that ug € H'(Q), then the unique weak solution is a strong one, and satisfies
1wl Lo 0,711 (02)) + Nwll 20,1, m2(02)) + 10cull L2 (@7
< C(IFlr2@r + luollzre) + 10llc2 0.0 a2y + 181200112 m0ury)) + 110Gl L2(0,7,1200))) -
Proof. See [5, Corollary A.1] O

Lemma 10. /28] Let T € (0,+00) and let us consider X,Y and B three Banach spaces with X C B CY
and compact embedding X — B. Then,

o If L is a bounded subset of LP(0,7,X), with 1 < p < 400 and % is bounded in L'(0,T,Y), for all
f € L. Then, L is relatively compact in LP(0,T; B).

o If L is bounded in L>=(0,7T,X) and % is bounded in L"(0,T,Y), for all f € L and r > 1. Then, L is
relatively compact in C([0,T]; B)

Proof. See [28, Corollary 4] O
Lemma 11. Let M’ be a bounded domain of R™,n € {2,3}, with Lipchitz continuous boundary OM'’. Then,
given f € L?*(M'), there exists a unique p € Hi(M') := {v € HY(M') : v = 0 on OM'} satisfying the

Poisson problem

Ap=fin M p=0 on M.
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Moreover, there exists a constant Cp, > 0 such that

VDl L2y < Collfllz2arry-

Proof. Using one of the Green identities (cf [8, Corollary 1.2 or Theorem 1.8]) we can derive the following
variational formulation of the Poisson problem

/Vf)~VU:—/fv, Yo e Hy(M). (A1)
M M

A direct application of Lax—Milgram’s Lemma (cf [8, Theorem 1.1] or [9, Theorem 4.1]) on the bilinear form
B(p,v) := [, VD - Vv and the functional F(v) =
the solution. Furthermore, taking v = p in (A.1) together with the Friedrichs—Poincaré inequality (cf [9,

—f e JUs leads us to the existence and uniqueness of

Lemma 4.1]), we arrive at

IVBllzzay < If Iz Bz < Collfllzzan VDl L2 vy,
where (), is the constant from the Friedrichs—Poincaré inequality. Finally by Young’s inequality, we get
_ L ooyen2 T—
IVDllL2(mry < %Cpr”L%M/) + §||VP||L2(M/)-

The proof is concluded by choosing ¢ small enough. O

Lemma 12. Let p be the pressure at the top surface, satisfying the Poisson equation (13). Then, given
SV = (ug, Vo, gt0, Be0) € H? (M), there exists a constant C’p > 0 independent of the solution vector such that

VB2 mry < CollS™ [l 2 ()
Proof. We will start the proof by rewriting (13) as

21

Ap = (z1 — ZQ)/FdZ, (A.2)
20
where
F=Vp (u" -V)up) + / Apb(ql, 07 0)do — fo(O,0" — Oyu™). (A.3)

To avoid proliferation of unimportant constants, we will use the terminology a < b whenever a < Cb and C
is a positive constant independent of the solution. In what follows, we will prove that F' € L?(M). To do
this, note that due to the fact that (ug,vo, gto,0e0) € H 2(J\/l)7 and that the buoyancy force term involves
the Laplacian of ¢;, and 6., then we have

/ Anb(q, 0% 0)do < VBlgl(21 — 20)2Cop eo |18 12200
(A.4)

20 Lz(M)

1o (@0™ — Byl z2eany < 21folllS™ 2 oo
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In order to estimate the first term of F, defined in (A.3), we use the incompressibility condition (11e) to
get

Vi - (0™ V)up) = 2(0,u™)? + 2(0yv™)? + 2u™ (O™ + Ogyv™) + 20™(Dyyv™ + Opyu™)
+20,0" 0y u™ + 20,u™0yv"™ + 0,0, (uw) + 0y0; (vw).

The first few terms on the right hand side of the above identity can be estimated thanks to the continu-
ous injection 44 of H'(Q) into L*(Q) with Sobolev constant Csp, (see [26, Theorem 1.3.4]). For instance,
[(02u™)? |20y = H&‘IU"HQM(M) < C§0b||azu”u§{1w) < C’EobHS”H%{;,(M) (the same estimate holds for
(Byz)")2). For other terms, we use the logarithmic type embedding inequality for anisotropic Sobolev spaces
(see Lemma 18). That is, [|u"0syv" [|L2(m) < [U"]| Lo () 102y 0" lL2(M) S Cuyoo (B)IS™ | 22 A1)- The terms
U O™, V" (Oyy 0™ + Ogyu™), 20, 0™ Oyu™ and 20,u" 0, v™ are estimated in a manner analogous to the above.
Then, due to the fact that w™ vanishes in zp and z; (see Lemma 2), the last terms involved in the decom-

position of Vj - ((u™ - V)u}) vanish when integrating with respect to z, (so they no longer appear in (A.2)),
that is, [ (9,0, (uw) + 0,0 (vw))dz = 0, ((uw)‘;l)) + 0y ((vw)‘;l)) = 0. Thus,

20

V- (0" - V)up)l[ 2o S 18" 200 (A.5)

According to the estimates of (A.4) and (A.5), and the definition of F' in (A.3), we have shown that
F € L?*(M). Thanks to the above fact, it is not difficult to see that the right side of (A.2) belongs to
L?(M’). Indeed,

21 2 7 2
(z1 fzo)/Fdz = /(21 — 2)? /Fdz dmM’
20 L2(my M 20
21
< /(zl —20)4/F2dzd/\/l
M 20
— (= z0)! [ FHM S8 s
M

Finally applying Lemma 12 to the identity (A.2), we conclude ||V3p||r2(mr) < éf,HS"H%p(M), where Cj is
a positive constant that depends only on Cp, Csob, |fol, Coy,e0> 95 Cu,0o and of some power of (21 — 2z9). O

Lemma 13. Suppose that w satisfies the incompresibility condition (8¢). Then

[wllLr vy < l21 = 20l Vi - anll L (v = |21 = 20[[[0:w]| L (ag).-
Proof. Let 2 be any standard domain in R™ with n € IN. By Hélder’s inequality, it is known that

1/7‘1 1/7'2

/ fl < / T / | =l VS € LT(Q),
Q Q

Q
where r1, 75 € (0,400) satisfying % + % =1. So,

T1

[is) <l i, Yieri@. (A.6)

Q
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On the other hand, from the incompressibility condition (8e), we get for z € (zo, 21)

w(z,y,z,t) = /Vh ~up(x,y, s, t)ds,

from which it follows that

T1

wll3y agy = /|w\“dM<// /|Vh-Uh|ds dzd M’

M’z z

g// /|Vh~uh,\ds dzdM'.

M’ zo 0

Applying (A.6) for Q = [z, 21], we get

21
Jwllfh g < //|21 = PRIV T gy M
M’ zo

Z1

< |zg — 20|/ / V5 - up 21,‘1([20721]) /dz dmM’

M 20
z1
r1+7
= |Z1 - Zo| 1T2 : //|Vh . uh‘rldzd./\/l
M’ zo
= |21 — ZO| ||Vh uhHL"l(M)

The proof is concluded by combining the relationship between r; and ro and the previous estimate. 0O

Lemma 14. Suppose that (8¢) and the boundary conditions (10) are satisfied. Then, for any measurable
function f € HY(M), the following identify holds

/(uh~Vhf+w82f)fdM:O.

M

Proof. It follows from integration by parts and the identity (8, f)f = 50,,(f?), that

/ (wh - Vo f +wd. f) fAM

M
_ /(uh.vhf)fd/\/l +/(w8zf)fd/\/l = %/Uh'vh(fQ)dM + %/wi(fQ)dM
M M M M
—5 |~ [ wrams [ npaom - [ [wr)] i

M oM M M

By the boundary conditions (10), the second and fourth integrals vanish, since u-n = d,u = 0 over OM
and w =0 at z = 25 and z = z;. Then
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|
L

/(uh -Vnf+ wazf)fd/\/l = —% /(V}L -up + Bzw)f2d/\/l
M

where in the last step we have used the incompressibility condition given in (8). O

Lemma 15. Suppose that (8e) is satisfied. Let f be one of the solution variables u,v,q; or 0. satisfying the
boundary conditions (10). Then, the following estimate holds

/(AlAhf + X002 ) fAM < =MV fll72 ) — X2llO-F172 )
M

with A1 and Ao are positive constants.

Proof. It follows from integration by parts that

/ (AL + M2 f)fAM = A, / (A f)f dM + 2y / (@2f)f dM

M M M
~ \ / (Vif - Vaf)dM+ Ay / (@ f)f ATy — Ao / (0.£)(0..1) dM
M I M
o [ @] am
oo

Then, using the boundary conditions (10) for f € {u, ¢, 0.}, we deduce that

JOuBAS + 220200 M =~V rny — A0y — e [ F
s

M
— A2 / f2

M’

am’.

zZ=z0

z=

d./\/l/ —Oé*o)\g / f2
1 v

The proof is concluded, thanks to the fact that the last three integrals are non-negative since the scalars
/\j,a*ma*l,aso > ( for all j € {1,2},* S {qt,He},o S {qt,He}. O

Lemma 16. [1/] For any measurable function f satisfying f,0.f € L*(M) the following estimates hold

1
sup | flloromry < £z ) + 102 fll L1 (am)-

z20<z<z1 21 — 20
Proof. See [14, Lemma 1-Appendix] 0O

Lemma 17. [5] Let f1, fo € L*>(M) be such that V, f1, Vi fo € L2(M). Then, the following inequalities hold

/ /Zl|f1|dz 7|f2f3|dz M’

M/
~ 1/2 1/2 1/2 1/2 1/2 1/2
< iz 25 (1205 e + 198 2 otrny ) 100 5ny (181 5y + 19 S0 )

and
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zZ1 zZ1
!/
M’ 0 0

~ 1/2 1/2 1/2 1/2 1/2 1/2
<@ Al (AN ey + IV R A1 0 ) 10205y (12175 ey + 1902150y ) 1520

Proof. See [5, Lemma 2.1]. O

3 1
i=1 r;

Lemma 18. [}] Let v = (r1,7r2,73) with r; € (1,400) such that
Q C R3, we have for any A > 0 that

< 1. Then, for any function f on

1]z &
||f||Loo<mscAmax{1,supT” log* ( Y (1 lzrsc + 10: () +e

522 i=1

Proof. See [4, Lemma 2.4]. O

Lemma 19. Suppose that (8¢) is satisfied. Consider measurable functions f; € H'(M) with j € {1,2}
satisfying the boundary conditions (10) and

VRO fill L2(m) < constant.

Then, there are positive constants 5’j, j€{1,2} and gj Jj €41,2,3}, such that the following estimate holds
/[(uhl Vi +wi10:f1) = (Un2 - Vi fa + w20 f2)] e/ dM
M
~ C 1 ( 1 )2 ) ~ Cy )
S C 1+T + = 1+7~ €‘f +C 1+T €uh’
1 ( 451> 5 Y e Iz2 a0 + Ca I €™ 1122 ()
T gg f12 T 5§~ uy (|12
+ |61 + K IV e ||L2(M) + |61 + 753 |V et L2(M)>
3

where ef = fi— fo.
Proof. We first note that

(up1 - Vi fi +w10. f1) — (Up2 - Vi fo +w20. f2)
= (up1 - Vafi +wi0:f1) — (Up2 - Vi fa +w20: f2) £ (Up1 - Vi fa +w10: f2)
=up - Vpe! + w0, + 9. Vifo+e¥0,fa.

Multiplying by e/ and integrating over M, we get

/ (Wns - Vifo + w10 1) — (ns - Vi fo + wds fo)] ! dM
upt - Vier +wi0,ef +e% Vi fo + Ewazfg]sfd/\/l

upt - Vel + wl(')zef]afd./\/l + /[5“’1 -Vifo+ awazfg]afd/\/l.
M

4 :A[[
_ A[[
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The first integral on the right hand side vanishes thanks to Lemma 14. Thus,

/[(uh1 -Vinf1+ wlazf1> - (uh2 Vi fe + w2azf2)] EfdM

(A7)
- / £ ) fod M + / £, fole! dM.

M M

In order to bound the second integral, we decompose it into two parts

/ (e -V fa)eldM

M
]. ¥, 1 zZ1
S/ PO /|Vhf2|dz+/|vhazf2|dz /|5“h||5f|dsz/
M’ ! Ozg 20 20

- 1 1/2 1/2 1/2
<@ (52 1) (9 fallzzcan + 10:Vifllzzan) < I/ 1w (167132 + 190135 0)

1/2 1/2 1/2
X||€uhHL/2(M) (ngh“L/z(M) + ||thuh||L/2(M)) .

Owing to the fact that f; € H*(M) and the term [|0.V, fa 12(rq) is bounded, then there exists a constant
C1 > 0 such that

~ 1 ~
(<2 +1) (9 falrian +10:9nfal o) < G

Therefore, combining the above together with the fact that (a'/2 4+ b/2)(c'/? +d'/?) < a+ b+ ¢+ d, we
arrive at

/(suh Vi f2)ef dM

M
-~ 1/2 up 111/2 u u

< Cillef N gy e 1etany (7 22y + 11V R 20ty + €™ N2 an) + 1V0™ 2200y
51 u u u

5 (el 2 my + €™ 1r2an) (I 2oy + 1VRE L2y + €™ 20y + IV RE® 22 (M1))

51 2 61

> (e 2oy + €™ lL2my)” + > (e 2oy + g™ IL2my) (VR L2y + V0™ L2 (0m)) -

Now, by Young’s inequality, one arrives at

u ~ u 62 u

S vumeram < G (1 Facun + 1™ Bacan) + 2 (167 Bag + 1= 2 o)
1

M

+ 31 (I8 2y + V8" 2 00 )

Equivalently,

/(a“h Vifa)eldM < C (1 + %) (\Iffl\i2<M)+||€“*‘||2L2<M>)
) ) (A8)
31 (190 Baguny + VA 3arg)) -
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Analogously, we can deduce that

/\Z(E D, f2)efdM < //|Vh6“h|dz/|8 falle’|dz

M’ zg

1/2 1 2
< Gl Vne™ lzzn e 1 5tagy (1671 5tae + 1907 1500 )
where 5’2 is a positive constant satisfying

a0 Lol 5t gy (10121 ongy + 1900 2l 5y ) < Co

Applying Young’s inequality and algebraic arrangements, it turns out that

~ 1 5.
/(é‘wazfz)EfdM < Co||Vre™ || 2 <1 + 25) lef |l L2y + 52||Vh€f||L2(M)
2

< 2 ~
1 1 52 CQ~
< - 1 —_— f 4 v f _26 un 9 .
< o (15 35 ) 1Moo + F1T0e lincan ) + GENTne aqan

This fact together with the inequality (a + b)% < 2(a? + b?) for all a,b > 0, it implies that

v 1 1)? 53 C3~ "
/(8 8Zf2)€fdM < = (1 + —~) ||8f||2LQ(M) + —E”Vhé'f”%;(M + —63||Vh6 h ||L2 M) (Ag)
03 264 463

The proof is concluded by replacing the inequalities (A.8) and (A.9) into (A.7). O
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