MATH 322, SPRING 2013. PRACTICE PROBLEMS FOR MIDTERM 2

INSTRUCTOR: GERARDO HERNÁNDEZ

Problem 1 Compute the Fourier series of the indicated functions
(a) $f(x)=\cos ^{3} x,-\pi \leq x \leq \pi$.
(b) $f(x)= \begin{cases}0, & -\pi<x<0 \\ \sin x, & 0 \leq x<\pi\end{cases}$

Problem 2 Sketch the Fourier cosine series of $f(x)=\sin (\pi x / L)$. Briefly discuss.
Problem 3 If $f(x)=\left\{\begin{array}{ll}x^{2}, & x<0 \\ e^{-x}, & x>0\end{array}\right.$, what are the even and odd parts of $f(x)$?
Problem 4 Fourier series can be defined on other intervals besides $-L \leq x \leq L$. Suppose that $g(y)$ is defined for $a \leq y \leq b$. Represent $g(y)$ using periodic trigonometric functions with period $b-a$. Determine formulas for the coefficients. Hint: Use the linear transformation

$$
y=\frac{a+b}{2}+\frac{b-a}{2 L} x .
$$

Problem 5 Using the textbook formula (3.3.13), determine the Fourier cosine series of $\sin \pi x / L$.

Problem 6 Show that the derivative of an even function is an odd function.

Problem 7 Show that the derivative of an odd function is an even function.

Problem 8 Determine whether or not the indicated function is piecewise smooth.
(a) $f(x)=|x|^{3 / 2},-2<x<2$
(b) $f(x)=[x]-x, 0<x<3([x]=$ integer part of $x)$
(c) $f(x)=x^{4} \sin (1 / x),-1<x<1$
(d) $f(x)=e^{-1 / x^{2}},-1<x<1$

Problem 9 Consider the heat equation with a known source $q(x, t)$:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+q(x, t) \text { with } u(0, t)=0 \text { and } u(L, t)=0
$$

Assume that $q(x, t)$ (for each $t>0$) is a piecewise function of x. Also assume that u and $\partial u / \partial x$ are continuous functions of x (for $t>0$) and $\partial^{2} u / \partial x^{2}$ and $\partial u / \partial t$ are piecewise smooth. Thus,

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \sin \frac{n \pi x}{L}
$$

What ordinary differential equation does $b_{n}(t)$ satisfy? Do not solve this differential equation.
Problem 10 Solve the following non homogeneous problem

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+e^{-t}+e^{-2 t} \cos \frac{3 \pi x}{L}\left[\text { assume that } 2 \neq k(3 \pi / L)^{2}\right]
$$

subject to

$$
\frac{\partial u}{\partial t}(0, t)=0, \frac{\partial u}{\partial x}(L, t)=0, \text { and } u(x, 0)=f(x)
$$

Use the following method. Look for the solution as a Fourier cosine series. Justify all differentiations of infinite series (assume appropriate continuity).

Problem 11 Let $f(x), 0 \leq x<L$, satisfy $f(x)=f(L-x)$. Let u be the solution of the wave equation with initial conditions $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=0$. Show that $u(x, L / 2 c)=0$ for $0<x<L$.

Problem 12

(a) Using the textbook formulas (3.3.11) and (3.3.12), obtain the Fourier cosine series of x^{2}
(b) From part (a), determine the Fourier sine series of x^{3}
(c) Generalize part (b) in order to derive the Fourier sine series of x^{m}, m odd.

