MATH 319 - SEC 003, SPRING 2014. HOMEWORK 8

INSTRUCTOR: GERARDO HERNÁNDEZ

Due: Wednesday, April 2nd.

Please show all your work and/or justify your answers.

Section 4.1 Problems 11 and 16 Verify that the given functions are solutions of the differential equation, and determine their Wronskian.

- **11.** y''' + y' = 0; $1, \cos(t), \sin(t)$
- **16.** $x^3y''' + x^2y'' 2xy' + 2y = 0$; $x, x^2, 1/x$.

Problem Consider the Hermite differential equation

$$y'' - 2xy' + y = 0$$
, $y(0) = y_0, y'(0) = y'_0$.

Find the recursive relation for the power series solution. Compute the first 7 terms.

Section 5.1 Problems 1,4, and 8 Determine the radius of convergence of the given power series

- $\bullet \ \Sigma_{n=0}^{\infty}(x-3)^n$
- $\bullet \ \Sigma_{n=0}^{\infty} 2^n x^n$
- $\bullet \ \sum_{n=1}^{\infty} \frac{n! x^n}{n^n}$

Section 5.1 Problems 9, 12 Determine the Taylor series about the point x_0 for the given function. Also determine the radius of convergence of the series.

- $\sin x, x_0 = 0$
- x^2 ; $x_0 = -1$.

Section 5.1 Problems 21, 26 Rewrite the given expression as a sum whose generic term involves x^n

- $\bullet \ \Sigma_{n=2}^{\infty} n(n-1) a_n x^{n-2}$
- $\bullet \ \Sigma_{n=1}^{\infty} n a_n x^{n-1} + x \Sigma_{n=0}^{\infty} a_n x^n$

Section 5.2 Problems 2,4,5,8. In each of the following problems,

- (a) Seek power series solutions of the given DE about the given point x_0 ; find the recurrence relation
- (b) Find the first four terms in each of the two solutions y_1, y_2
- (c) By evaluating the Wronskian, show that y_1 and y_2 form a fundamental set of solutions.

1

- (d) If possible, find the general term in each solution
 - $y'' xy' y = 0, x_0 = 0$
 - $y'' + k^2 x^2 y = 0$, $x_0 = 0$, k a constant
 - $(1-x)y'' + y = 0, x_0 = 0$
 - xy'' + y' + xy = 0, $x_0 = 1$