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Preface

In the mid fifties, in a celebrated paper [13], Albrecht Dold and René Thom

proved a theorem which roughly states that the homotopy groups of the infinite

symmetric product of a pointed space are isomorphic to the reduced homology

groups of the given space with Z-coefficients. The infinite symmetric product of

a space is the free H-space generated by the space. The proof of the theorem

involves the concept of quasifibration. This theorem was the core of [2]. A few

years later, M. McCord [35] proved a similar theorem, but using the free topological

group generated by the space instead. Indeed this construction allowed to put as

coefficients not only Z, but any abelian group or any ring. These topological abelian

groups, which are constructed in a functorial way, when applied to the spheres,

yield the Eilenberg–Mac Lane spaces which are used to define cohomology. The

aim of this book is to introduce algebraic topology by defining homology and

cohomology from this point of view. This approach has been successfully used in

algebraic geometry in order to apply the methods of algebraic topology to study

geometric phenomena.

The book is intended to have advanced undergraduate level or basic graduate

level, i.e. it can be used as a text book to give an alternative introduction to

homology and cohomology. Furthermore, the book compares this viewpoint with

the traditional one. Therefore singular homology and cohomology are presented,

perhaps with less detail than in other books, but still explaining their construction.

An explicit isomorphism is then given between the homotopical homology (and

cohomology) and the singular homology (and cohomology).

One of the techniques used in the book is that of simplicial sets. So we have

devoted a chapter to their study. Their close relatives, the simplicial complexes

are briefly presented in a section of the introductory chapter.

Other chapters include fibrations and cofibrations and the higher homotopy

groups, as well as homological algebra. In the introductory chapter, there are also

sections on category theory,and on a convenient category of topological spaces,

where we work. The book is intended, as far as possible, to be self-contained, but

for a good understanding of the material, basic knowledge on point-set topology,

as well as on group and module theory are required.

This electronic version of the book is preliminary. The book is still in process

of being written, and many details are due.
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Introduction

We expect from the reader the knowledge of basic notions both in point-set

and algebraic topology, mainly about the fundamental group and covering maps.

Notions of categories, functors and natural transformations, as well as the concept

of adjoint functors. We recall the main definitions.

We shall use the following basic categories: Sets and functions, denoted by Set,

topological spaces and continuous maps, denoted by Top, as well as several (full)

subcategories of Top.

xiii
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Chapter 1 Basic concepts and notation

In this preliminary chapter we shall study the basic notions that will be

needed in the book. After a short account on basic symbols and useful construc-

tions, we start recalling the very basic concepts in category theory, like functors,

natural transformations and adjointness. Then we continue with the topological

setup of the text, namely the category of k-spaces, where we shall work. The simpli-

cial complexes build up an important source of spaces. We devote the next section

to them. The geometric realization of a simplicial complex is a CW-complex. We

study CW-complexes in the last section.

1.1 Basic symbols

Throughout the text we shall use the following basic symbols, among others. The

symbol ≈ between two topological spaces means that they are homeomorphic, ≃
between continuous functions or topological spaces means that they are homotopic

or homotopy equivalent, and ∼= between groups (abelian or nonabelian) means they

are isomorphic. The symbol ◦ denotes composition of functions (maps, homomor-

phisms) and will be omitted ocasionally, if doing so does not lead to confusion.

The term map invariably means a continuous function between topological spaces,

and the term function is reserved either for functions between sets or for those

maps whose codomain is R or C.

And now a final note about some additional notation that will be used in the

text. If X is a topological space and A ⊆ X is a subspace, then in agreement

with the special cases mentioned below we shall use the notation
◦
A to denote

the topological interior of A in X, and the notation ∂A to denote its topological

boundary. X ⊔ Y denotes the topological sum of X and Y . On the other hand,

if V is a vector space provided with a scalar product (or Hermitian product,

if the space is complex), which we usually denote by ⟨−,−⟩, then we use the

notation ∥ · ∥ or | · | to denote the norms in V associated to the inner product,

that is, ∥x∥ or |x| =
√
⟨x, x⟩. Likewise, if U ⊆ V is a linear subspace, we use

U⊥ = {x ∈ V | ⟨x, a⟩ = 0 for all a ∈ U} to denote the orthogonal complement of

U in V with respect to the inner product.

1



2 1 Basic concepts and notation

1.2 Some basic topological spaces

Euclidean spaces, various of its subspaces, and spaces derived from these will all

play an important role for us.

R will represent the set (as well as the topological space and the real vector

space) of real numbers. R0 will denote the singleton set (of only one point) {0} ⊂ R.
Frequently, we shall use the notation ∗ for an (arbitrary) singleton set. Rn will be

the notation for Euclidean space of dimension n, or Euclidean n-space, such that

Rn = {x = (x1, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} .

Using the equality

((x1, . . . , xm), (y1, . . . , yn)) = (x1, . . . , xm, y1, . . . , yn)

we identify the Cartesian product Rm × Rn with Rm+n. Likewise, we identify Rn

with the closed subspace Rn × 0 ⊂ Rn+1. We give
∪∞
n=0Rn = R∞ the topology

of the union (which is the colimit topology, as we shall see shortly). R∞ consists,

therefore, of infinite sequences of real numbers (x1, x2, x3, . . . ) almost all of which

are zero, that is to say, such that xk = 0 for k sufficiently large. Rn is identified

with the subspace of sequences (x1, . . . , xn, 0, 0, . . . ). The topology of R∞ is such

that a set A ⊂ R∞ is closed if and only if A ∩ Rn is closed in Rn for all n.

Topologically we identify the set (as well as the topological space and the

complex vector space) C of complex numbers with R2 using the equality x+ iy =

(x, y), where i represents the imaginary unit, that is i =
√
−1. Analogously with

the real case, we have the complex space of dimension n, Cn = {z = (z1, . . . , zn) |
zi ∈ C, 1 ≤ i ≤ n}, or complex n-space.

In Rn we define for every x = (x1, . . . , xn) its norm by

|x| =
√
x21 + · · ·+ x2n ;

likewise, in Cn we define the norm by

|z| =
√
z1z̄1 + · · ·+ znz̄n ,

where z̄ denotes the complex conjugate x − iy of z = x + iy. Up to the natural

identification between Cn and R2n, it is an exercise to show that the two norms

coincide.

For n ≥ 0 we shall use from now on the following subspaces of Euclidean space:

Dn = {x ∈ Rn | |x| ≤ 1}, the unit disk or the unit ball of dimension n.

Sn−1 = {x ∈ Rn | |x| = 1} = ∂Dn, the unit sphere of dimension n− 1.

◦
Dn = {x ∈ Rn | |x| < 1}, the unit cell of dimension n.
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In = {x ∈ Rn | 0 ≤ xi ≤ 1, 1 ≤ i ≤ n}, the unit cube of dimension n.

∂In = {x ∈ In | xi = 0 or 1 for some i}, the boundary of In in Rn.

I = I1 = [0, 1] ⊂ R, the unit interval.

∆n = {x ∈ Rn+1 | xi ≥ 0 and
∑
xi = 1}, the standard n-simplex.

∆̇n = {x ∈ ∆n | xi = 0 for at least one i}, the boundary of the standard

n-simplex.

Briefly, we usually call Dn the unit n-disk, Sn−1 the unit (n − 1)-sphere,
◦
Dn the

unit n-cell, and In the unit n-cube. It is worth mentioning that all of the spaces

just defined are connected (in fact, pathwise connected), except for S0, ∂I, and
∆̇1, these being homeomorphic to each other, of course. The disks, the spheres,

the cubes, and their boundaries also are compact (but not the cells, except for the

0-cell
◦
D0

= ∗).

The group of two elements Z2 = {−1, 1} (which can also be seen as the quotient

of the group of the integers Z modulo 2Z) acts on Sn by the antipodal action, that

is, (−1)x = −x ∈ Sn. The orbit space of the action, which is the result of identifying

each x ∈ Sn with its antipode −x, is denoted by RPn and is called real projective

space of dimension n.

1.2.1 Exercise.

(a) Show that Sn is the one-point compactification of Rn. (Hint: Use the stere-

ographic projection. See [42].)

(b) Show that there is a homeomorphism Sn ≈ In/∂In. (Hint: Show that the

n-cube In is homeomorphic to n-ball Dn, then prove that the n-cell
◦
Dn is

homeomorphic to Rn and use the fact that the quotient Dn/Sn−1 is the one-

point compactification of
◦
Dn.)

The infinite-dimensional sphere S∞ =
∪∞
n=0 Sn, where the inclusion

Sn−1 ⊂ Sn is defined by the inclusion Rn ⊂ Rn+1, is a subspace of R∞. The action

of Z2 in Sn induces an action in S∞, whose orbit space is denoted by RP∞ and is

called infinite-dimensional real projective space. In fact, the inclusion Sn−1 ⊂ Sn

induces an inclusion RPn−1 ⊂ RPn and the union
∪∞
n=0RP

n coincides topologically

with RP∞.

On the other hand, the circle group S1 = {ζ ∈ C | ∥ζ∥ = 1} acts on S2n+1 ⊂
Cn+1 by multiplication on each complex coordinate, namely, ζ(z1, . . . , zn+1) =

(ζz1, . . . , ζzn+1). The orbit space of this action, which is the result of identifying

z ∈ S2n+1 with ζz ∈ S2n+1, for all ζ ∈ S1, is denoted by CPn and is called complex
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projective space of dimension n (in fact, its real dimension is 2n). The action of

S1 on S2n+1 induces an action on S∞, whose orbit space is denoted by CP∞ and

is called infinite-dimensional complex projective space. In analogy with the real

case, the inclusion S2n−1 ⊂ S2n+1, defined by the inclusion Cn ⊂ Cn+1, induces

an inclusion CPn−1 ⊂ CPn and the union
∪∞
n=0CP

n coincides topologically with

CP∞.

The group of n×n invertible matrices with real (complex) coefficients is denoted

by GLn(R) (GLn(C)) and consists of the matrices whose determinants are not

zero. The subgroup On ⊂ GLn(R) (Un ⊂ GLn(C)) consisting of the orthogonal

matrices (unitary matrices), that is, such that the matrix sends orthonormal bases

to orthonormal bases with respect to the canonical scalar product in Rn (the

canonical Hermitian product in Cn) or, equivalently, such that its column vectors

form an orthonormal basis, is called the orthogonal group (unitary group) of n×n
matrices. In particular, O1 = Z2 and U1 = S1.

1.3 Categories

The spirit of algebraic topology consists in assigning to topological spaces certain

algebraic objects, such as groups, modules, or algebras, and to continuous maps,

corresponding algebraic homomorphisms in a sensitive way. This means, in more

technical terms, that algebraic topology defines functors from topological cate-

gories to algebraic categories. This section explains briefly what categories and

functors are, as well as some other related concepts.

1.3.1 Definition. A category C consists of a class of objects, denoted by obC,

and for any A,B ∈ obC, a set of morphisms C(A,B). An element f ∈ C(A,B) is

usually denoted by f : A −→ B. They are such that the following hold:

(i) If f : A −→ B and g : B −→ C are morphisms, there is a composite

g ◦f : A −→ C. In other words, there is a function ◦ : C(A,B)×C(B,C) −→
C(A,C). It is associative in the sense that if h : C −→ D, then (f ◦ g) ◦ h =

f ◦ (g ◦ h)

(ii) For all C ∈ obC, there is a unique morphism idC ∈ C(C,C), called the

identity of C, such that if f : A −→ B, then idB ◦ f = f = f ◦ idA.

If a morphism f : A −→ B is such that there is another morphism g : B −→ A

such that g ◦ f = idA and f ◦ g = idB, then we say that f is an isomorphism with

inverse g, which is also an isomorphism.
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If f : A −→ B, g : B −→ C, f ′ : A −→ B′, and g′ : B′ −→ C are morphisms

such that g ◦ f = g′ ◦ f ′, we say that the diagram (or square)

A
f //

f ′

��

B

g

��
B′

g′
// C

commutes (or is commutative).

1.3.2 Definition. Let C and D be categories. Under a functor F : C −→ D

we understand an assignment F : obC −→ obD, A 7→ F (A), and a function F :

C(A,B) −→ D(F (A), F (B)) such that F (idA) = idF (A) and F (g◦f) = F (g)◦F (f).

A subcategory C′ of a category C consists of a subclass obC′ ⊆ obC such that

for each pair of objects A,B ∈ obC′ the set C′(A,B) is a subset of C(A,B). If

these two sets are equal for all A,B ∈ obC′, then we say that the subcategory

is full. If C′ is a subcategory of C, then one has an inclusion functor , denoted by

i : C′ −→ C, such that for any object A ∈ obC′, i(A) = A and for any morphism

f : A −→ B, i(f) = f .

A natural transformation τ between two functors F,G : C −→ D consists of a

morphism τA : F (A) −→ G(A) for each A ∈ obC such that for every morphism

f : A −→ B in C, one has G(f) ◦ τA = τB ◦ F (f). We write this fact stating that

the square

A

f

��

F (A)
τA //

F (f)
��

G(A)

G(f)
��

B F (B) τB
// G(B)

commutes. We say that τ is a natural isomorphism if for each A ∈ obC the

morphism τA is an isomorphism.

1.3.3 Definition. Given functors F : C −→ D, G : D −→ C, we say that F is

left-adjoint to G and that G is right-adjoint to F if there is a natural isomorphism

ΦC,D : D(F (C), D) −→ C(C,G(D)) ,

that is, a bijection such that for any objects C,C ′ ∈ obC and D,D′ ∈ D and

morphisms f : C −→ C ′ and g : D −→ D′, one has commutative squares

D(F (C ′), D)
ΦC′,D //

F (f)∗

��

C(C ′, G(D))

f∗

��
D(F (C), D)

ΦC,D

// C(C,G(D))

, D(F (C), D)
ΦC,D //

g∗
��

C(C,G(D))

G(g)∗
��

D(F (C), D′)
ΦC,D′

// C(C,G(D′))

,

where F (f)∗(ψ) = ψ ◦ F (f) : F (C) −→ D, f∗(φ) = φ ◦ f : C −→ G(D), g∗(ξ) =

g ◦ ξ : F (C) −→ D′, and G(g)∗(η) = G(g) ◦ η : C −→ G(D′).
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The following is a well-known result and will be used in the sequel.

1.3.4 Proposition. Let F : C −→ D, G : D −→ C be covariant functors. Then

(a) There is a one-to-one correspondence between natural transformations ΦC,D :

D(F (C), D) −→ C(C,G(D)) and φ : 1C −→ G ◦ F .

(b) There is a one-to-one correspondence between natural transformations ΨC,D :

C(C,G(D)) −→ D(F (C), D) and ψ : F ◦G −→ 1D.

Proof: (a) Given Φ, define φ by φC = ΦC,F (C)(idF (C)) : C −→ GF (C). Conversely,

given φ, define Φ by ΦC,D(g) = G(g) ◦ φC : C −→ G(D).

(b) Given Ψ, define ψ by ψD = ΨG(D),D(idG(D)) : FG(D) −→ D. Conversely,

given ψ, define Ψ by ΨC,D(f) = ψD ◦ F (f) : F (C) −→ D. ⊓⊔

Given two functors S, T : D −→ C, we denote by Nat(S, T ) the set of natural

transformations from S to T . The following result is easy but very important.

1.3.5 Lemma. (Yoneda lemma) Let D be a category and take a covariant functor

K : D −→ Set. Then given any object X in D, there is a bijection

φ : Nat(D(X,−),K)
∼=−→ K(X) ,

which maps a natural transformation η : D(X,−) −→ K to ηX(1X).

Proof: Consider the following commutative diagram.

X

f

��

D(X,X)

f∗
��

ηX // K(X)

K(f)
��

Y D(X,Y ) ηY
// K(Y ) .

Then, given an element x ∈ K(X), define a natural transformation by ηY (f) =

D(f)(x). This yields an inverse to φ,

ψ : K(X) −→ Nat(D(X,−),K) .

⊓⊔

We shall use the following basic categories: Sets and functions, denoted by Set,

topological spaces and continuous maps, denoted by Top, as well as several (full)

subcategories of Top.
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1.4 A convenient category of topological spaces

The category of all topological spaces Top does not behave well with respect to

identifications. For instance, if p : X −→ X ′ is an identification and Y is any

topological space, then the product p × idY : X × Y −→ X ′ × Y need not be

an identification. Kelley [30] solved this problem introducing the category of com-

pactly generated Hausdorff spaces (see also [45] or [2]). This category, however,

has another pathology. Namely, if X is a compactly generated Hausdorff space and

q : X −→ X ′ is an identification, then X ′ need not be Hausdorff and thus might be

outside of the category. In this section we shall introduce another category, which

was studied by R. Vogt [49] and has the desired properties, namely for spaces X

and Y in the category and the product in the category we have:

• If p : X −→ X ′ is an identification, then X ′ is in the category.

• If p : X −→ X ′ is an identification, then the product p × idY : X × Y −→
X ′ × Y is an identification.

1.4.1 Definition. Let X be any topological space. Define k(X) as the space with

the same underlying set as X and a finer topology given by

• A ⊆ X is closed in k(X) if and only if α−1A ⊆ K is closed for any continuous

map α : K −→ X, where K is an arbitrary compact Hausdorff space. We

then say that A is k-closed.

Clearly, if A is closed in X, then A is closed in k(X). Thus the identity idkX :

k(X) −→ X is always continuous. We say that X is a k-space if X = k(X), i.e. if

the closed sets in X are precisely the ones in k(X). Denote by K-Top the category

of k-spaces and continuous map. We call the topology of k(X) the k-topology.

1.4.2 Exercise. Show that indeed the k-closed sets in X constitute a topology.

1.4.3 Proposition. The assignment X 7→ k(X) determines a covariant functor

k : Top −→ K-Top.

Proof: Let f : X −→ Y be continuous and denote by k(f) : k(X) −→ k(Y )

the same function. To verify the continuity of k(f), take a closed set B ⊂ k(Y ),

namely such a set that β−1B ⊂ K is closed for any continuous map β : K −→ Y .

Since the map β = idkY ◦ k(f) ◦ α = f ◦ α : K −→ Y is continuous, one has that

α−1(k(f)−1B) = β−1B ⊆ K is closed. Thus k(f)−1B ⊆ k(X) is closed. ⊓⊔

1.4.4 Exercise. Show the following:
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(a) If X is a k-space and A ⊆ X is closed, then A as a subspace with the usual

relative topology is again a k-space.

(b) If X is a k-space and A ⊆ X is open, then A as a subspace with the usual

relative topology is again a k-space.

(c) Conclude that if X is a k-space and A ⊆ X is locally closed, i.e., the inter-

section of an open set and a closed set, then A as a subspace with the usual

relative topology is again a k-space.

(d) Give an example of a k-space X and a subspace A which with the usual

relative topology is not a k-space.

We have the following.

1.4.5 Definition. If X is a k-space and A ⊆ X is any subset, then we define

the k-relative topology of A as the topology of k(A). A with this topology is called

k-subspace of X. For simplicity, whenever we talk about a subspace A of a k-space

X, we mean the k-subspace, even though we shall not write k(A).

1.4.6 Exercise. Let X be a k-space and A ⊆ X be a k-subspace. Show that the

map i : A ↪→ X has the following universal property:

(a) i is continuous.

(b) If Y is a k-space, then a map f : Y −→ A is continuous if and only if the

composite i ◦ f : Y −→ X is continuous.

The following result summarizes the main properties of the functor K.

1.4.7 Proposition.

(a) The identity function idkX : k(X) −→ X is continuous.

(b) The topology in k(X) is the finest such that any continuous map α : K −→
X, K compact and Hausdorff, factors through the identity idkX : k(X) −→ X.

(c) For every compact Hausdorff space K there is a one-to-one correspondence

between continuous maps K −→ X and continuous maps K −→ k(X).

(d) For every compact Hausdorff space K, k(K) = K.

(e) The functor k is idempotent, namely k(k(X)) = k(X) for every topological

space X.
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(f) A map f : X −→ Y is continuous if and only if f ◦α : K −→ Y is continuous

for every continuous map α : K −→ X, where K is an arbitrary compact

Hausdorff space.

Proof: Property (a) is obvious and property (b) follows by definition. Property

(c) follows immediately from (b). To show property (d), take B ⊆ k(K) closed.

Hence, by definition, α−1B ⊂ L is closed for any continuous map α : L −→ K, L

compact Hausdorff. Hence, if we take L = K and α = id : K, then B = α−1B is

closed and so idkK : k(K) −→ K is a homeomorphism. Property (e) follows from

the definition of k(X). To prove property (f) assume first that f is continuous.

Then f ◦ α is continuous for every continuous map α : K −→ X, where K is an

arbitrary compact Hausdorff space. Conversely assume that f ◦α is continuous for

every continuous map α : K −→ X, where K is an arbitrary compact Hausdorff

space. To see that f is continuous, let B ⊆ Y be closed. Since f ◦ α is continuous,

then α−1f−1B ⊆ K is closed. Hence by definition f−1B ⊆ X is closed and thus f

is continuous. ⊓⊔

We have the following categorical result about the category K-Top and the

functor k.

1.4.8 Corollary. The inclusion functor i : K-Top −→ Top is left-adjoint to the

functor k : Top −→ K-Top, namely the following equality of sets holds:

K-Top(X, k(Y )) = Top(i(X), Y ) ,

where X is a k-space and Y is an arbitrary topological space.

Proof: If f : X −→ k(Y ) is continuous, then f = idkY ◦f : i(X) −→ Y is continuous.

Furthermore, if g : i(X) −→ Y is continuous, then by 1.4.7 (e) k(g) : X =

ki(X) −→ k(Y ) is continuous. Thus both sets K-Top(X, k(Y )) and Top(i(X), Y )

have exactly the same functions. ⊓⊔

1.4.9 Examples. The following are examples of k-spaces.

1. Compact Hausdorff spaces. Namely assume that C is a compact Hausdorff

space and A ⊂ C is such that for any continuous map α : K −→ C the

inverse image α−1(A) ⊆ K is closed. Then in particular the identity map

idC : C −→ C is continuous and thus A = id−1
C (A) ⊆ C must be closed.

2. More generally, locally compact Hausdorff spaces. Namely assume that X is

a locally compact Hausdorff space and B ⊂ X is nonclosed. Hence there is a

point x ∈ B (the closure of B) which is not in B. Hence there is a compact

(Hausdorff) neighborhood K of x in X such that x /∈ K ∩ B, although

x ∈ K ∩B. To see this, take another neighborhhod V of x in X. Hence V ∩K
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is a neighborhhod of x in X and consequently (V ∩K)∩B = V ∩(K∩B) ̸= ∅.
Thus, if i : K ↪→ X is the (continuous) inclusion, then i−1(B) = K ∩ B is

nonclosed in K. Consequently B is nonclosed in the k-topology.

3. Or even more generally, compactly generated Hausdorff spaces in the sense

of Kelley [30] and Steenrod [45]. Namely assume that X is a compactly

generated Hausdorff space and A ⊆ X is such that for any continuous map

α : K −→ C the inverse image α−1(A) ⊆ K is closed. Then in particular,

if C ⊂ X is compact, the inclusion map i : C ↪→ X is continuous. Thus

A∩C = i−1A ⊂ C is closed and hence C is closed in the compactly generated

topology of X.

4. First-countable Hausdorff spaces. Namely assume that X is a first-countable

Hausdorff space and B ⊂ X is nonclosed. Hence there is a point x ∈ B (the

closure of B) which is not in B. Take a nested countable neighborhood basis

· · ·Un−1 ⊂ Un ⊂ Un−1 ⊂ · · · around x and for each n take xn ∈ Un∩B. Then

xn → x and so the set K = {xn | n ∈ N}∪{x} is compact (Hausdorff). Thus,

if i : K ↪→ X is the (continuous) inclusion, then i−1(B) = B ∩ K = {xn |
n ∈ N} is nonclosed in K. Consequently B is nonclosed in the k-topology.

5. CW-complexes. Namely assume that X is a CW-complex and A ⊂ X is such

that for any continuous map α : K −→ X the inverse image α−1(A) ⊆ K

is closed. Then, in particular, for any characteristic map φi : Dni −→ X, the

inverse image φ−1
i (A) ⊂ C is closed. By definition of the topology of X, A

must be closed in X (see 1.6.3 below).

The following results give the properties of the category K-Top which will be

of interest in what follows.

1.4.10 Theorem. Let X be a k-space and assume that q : X −→ Y is an iden-

tification. Then Y is a k-space. Consequently, the category K-Top is closed under

identifications.

Proof: Assume that B ⊆ Y is such that for any continuous map β : K −→ Y , with

K a compact Hausdorff space, one has that the inverse image β−1B ⊂ K is closed.

To prove that B ⊆ Y is closed, we must show that q−1B ⊆ X is closed. Since X

is a k-space, it is enough to see that for every continuous map α : K −→ X, with

K a compact Hausdorff space, the inverse image α−1(q−1B) ⊆ K is closed. This is

indeed the fact, since α−1(q−1B) = (q ◦ α)−1B = β−1B, for β = q ◦ α : K −→ Y .

⊓⊔

1.4.11 Proposition. Assume that X =
∪∞
n=0X

n has the union topology (i.e.

B ⊂ X is closed if and only if B ∩Xn is closed in Xn), where Xn is a k-space.

Then X is a k-space.
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Proof: Assume that B ⊂ X is such that for any continuous map α : K −→ X with

K compact Hausdorff, the inverse image α−1(B) ⊂ K is closed in K. We have to

prove that B is closed in X, namely that B ∩Xn is closed in Xn. Since Xn is by

assumption a k-space, we must show that for any continuous map β : K −→ Xn

with K compact Hausdorff, the inverse image β−1(B ∩ Xn) is closed in K. But

β−1(B ∩ Xn) = α−1(B) is closed, since α = i ◦ β : K −→ Xn ↪→ X is clearly

continuous. ⊓⊔

1.4.12 Exercise. Give an alternative proof of 1.4.11 by showing the following:

(a) If C ⊂ X is compact, then there exists n such that C ⊂ Xn. (Hint: Otherwise

one can take a sequence of points xn ∈ C ∩ (Xn−Xn−1) for all n which has

no cluster point.)

(b) If K is a compact Hausdorff space and α : K −→ X is continuous, then α

factors through the inclusion Xn ↪→ X for some n.

Now use that Xn is a k-space.

Given two k-spaces X and Y , we consider their (usual) topological product

X ×top Y . There are examples that show that this product need not be a k-space

(see [14]). We have the next.

1.4.13 Definition. Given two k-spaces X and Y , we define their k-product by

X × Y = k(X ×top Y ) .

Thus the product of k-spaces is again a k-space.

We must check that this is a product in the category K-Top, in other words,

that it has the universal property. For infinite products, we do the same.

1.4.14 Theorem. Let X, Y , and Z be k-spaces.

(a) The projections πX : X × Y −→ X and πY : X × Y −→ Y are continuous.

(b) If f : Z −→ X and g : Z −→ Y are continuous maps, then the induced map

(f, g) : Z −→ X × Y is continuous.

Proof: (a) follows from the classical case applying functor k, since by 1.4.7 (e),

k(X) = X and k(Y ) = Y . To prove (b) notice that by the universal property of

the topological product, the map (f, g) : Z −→ X ×top Y is continuous. Applying

functor k we have a continuous map (f, g) : k(Z) −→ k(X ×top Y ). But again

k(Z) = Z, hence the result. ⊓⊔
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1.4.15 Proposition. Let C be a compact Hausdorff space and Y an arbitrary

space. Then the following hold:

(a) C × Y = C ×top k(Y ).

(b) If Y is a k-space, then C × Y = C ×top Y .

Proof: Since (b) is clearly a consequence of (a), we just prove (a). To that end,

let us take a k-closed set B ⊆ C ×top Y , namely such that for any continuous

map α : K −→ C ×top k(Y ), K a compact Hausdorff space, the inverse image

α−1(B) ⊆ K is closed. We must prove that B is closed in C ×top k(Y ).

Take (x, y) ∈ C ×top k(Y ) − B. The inclusion C × {y} ↪→ C ×top k(Y ) is a

continuous map from a compact Hausdorff space, hence B ∩ (C × {y}) is closed

(compact) and thus there is a neighborhood U of x in C such that (U×{y})∩B = ∅.
Let A ⊆ Y be the image under the projection of (U ×top Y ) ∩ B ⊆ C ×top Y and

let β : K −→ Y be a continuous map from a compact Hausdorff space. The map

i × β : U ×top K −→ C ×top Y , where i is the inclusion, is continuous with a

compact Hausdorff domain. Hence by assumption, (i × β)−1(B) ⊂ U ×top K is

closed and thus also β−1A ⊂ K is closed. Therefore, A is k-closed in Y . Since

y /∈ A, we have that U ×top (Y − A) is a neighborhood of (x, y) in C ×top Y such

that (U ×top (Y −A)) ∩B = ∅. Consequently B ⊆ C ×top k(Y ) is closed. ⊓⊔

In order to prove the second property of the category K-Top, namely that the

product of identifications is an identification, we have to develop some theory.

First recall that given two topological spaces X and Y one can endow Top(X,Y )

with the compact-open topology defined as follows. Let C ⊆ X be any compact

set and let U ⊆ Y be any open set. Then the topology has as subbasis the sets

(C,U) = {f ∈ Top(X,Y ) | f(C) ⊂ U}. Denote the resulting topological space by

Topco(X,Y ). This map space need not be a k-space, even if X and Y are k-spaces.

Therefore we have the next.

1.4.16 Definition. Let X and Y be k-spaces. Define their k-map space by

M(X,Y ) = k(Topco(X,Y )) .

Thus the k-map space of k-spaces is again a k-space. If we are dealing with pointed

spaces, denote by M∗(X,Y ) the k-subspace of M(X,Y ) of pointed maps.

We shall need the following result.

1.4.17 Proposition. The mapping f 7→ f̂ , where f̂(x)(y) = f(x, y), yields a

natural bijection

Θ : K-Top(X × Y, Z) −→ K-Top(X,M(Y, Z)) .
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Before we proceed to prove Proposition 1.4.17, we prove the following lemma.

1.4.18 Lemma. If K is a compact Hausdorff space and Y is any topological space,

then the evaluation map eK,Y : Topco(K,Y ) ×top K −→ Y given by eK,Y (f, x) =

f(x) is continuous.

Proof: This is a special case of the more general result whereK is a locally compact

Hausdorff space (see Proposition 1.3.1 in [2]). ⊓⊔

The evaluation map has the following universal property which will be used

below.

1.4.19 Proposition. Assume that the evaluation map eY,Z : Topco(Y, Z)× Y −→
Z is continuous and consider a commutative diagram

X ×top Y
f //

f̂×idY ((RR
RRR

RRR
RRR

RR
Z

Topco(Y,Z)×top Y .

eY,Z

77ooooooooooooo

Then f is continuous if and only if f̂ is continuous. ⊓⊔

1.4.20 Lemma. Given a continuous map f : X × Y −→ Z, where X and Y are

k-spaces, the adjoint map f̂ : X −→ M(Y, Z) given by f̂(x)(y) = f(x, y) is also

continuous.

Proof: Since X is a k-space, it is enough to prove that the composite K
α−→ X

f̂−→
M(Y, Z) is continuous, where K is a compact Hausdorff space and α is continuous.

First notice that the commutative diagram

K × Y α×idY // X × Y f //

id
��

Z

K ×top Y
α×idY

// X ×top Y

f

::uuuuuuuuuu

shows that the composite f ◦ (α × idY ) : K ×top Y −→ Z is continuous. Hence

it has a continuous adjoint ̂f ◦ (α× idY ) : K −→ Topco(Y, Z). The following is a

commutative diagram:

K
̂f◦(α×idY ) //

α

��

Topco(Y, Z)

X
f̂

// M(Y,Z) .

id

OO

Applying Proposition 1.4.7, the continuity of f̂ follows. ⊓⊔
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1.4.21 Lemma. If Y is a k-space, then the evaluation map eY,Z :M(Y,Z)×Y −→
Z is continuous.

Proof: It is enough to prove that for an arbitrary continuous map α : K −→
M(Y, Z)×Y , where K is compact Hausdorff, the composite eY,Z ◦α is continuous.

Let α = (α1, α2) and consider the commutative diagram

K
α //

δ

��

M(Y, Z)× Y
eY,Z // Z

K ×K
α1×id

//M(Y, Z)×K
α∗
2×id

//

id×α2

OO

M(K,Z)×K
id

// Topco(Y, Z)×top Y ,

eY,Z

OO

where δ is the diagonal map. Since the composite eY,Z ◦ id ◦ (α∗
2× id) ◦ (α1× id) ◦ δ

is continuous, the map eY,Z ◦ α on the top is continuous as desired. ⊓⊔

Since the evaluation map eY,Z : M(Y,Z) × Y −→ Z is continuous if Y and

Z are k-spaces, we may now restate Proposition 1.4.19 to obtain the universal

property of the evaluation maps for the category K-Top.

1.4.22 Proposition. Consider a commutative diagram

X × Y f //

f̂×idY ''OO
OOO

OOO
OOO

O Z

M(Y, Z)× Y .
eY,Z

88rrrrrrrrrrr

Then f is continuous if and only if f̂ is continuous. ⊓⊔

We are now ready for the proof of Proposition 1.4.17. Namely, take first f ∈
K-Top(X × Y,Z), that is, a continuous map f : X × Y −→ Z. Then Θ(f) = f̂ :

X −→M(Y, Z) is continuous by Lemma 1.4.20. Conversely, if f̂ : X −→M(Y, Z)

is continuous, then

f : X × Y f̂×idY //M(Y, Z)× Y
eY,Z // Z

is continuous, since by Lemma 1.4.21, eY,Z is continuous. ⊓⊔

Before passing to the proof, we state our desired result.

1.4.23 Theorem. Assume that X and Z are k-spaces and that p : X −→ Y is an

identification (thus Y is a k-space too). Then p × idZ : X × Z −→ Y × Z is an

identification.
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Proof: Since p is surjective, p× idZ is surjective too. Assume that g : Y ×Z −→W

is such that the composite g ◦ (p × idZ) is continuous. To prove that p × idZ is

an identification, we must show that from the assumption it follows that g is

continuous.

Consider the bijections, as given in Proposition 1.4.17,

Θ : K-Top(X × Z,W ) −→ K-Top(X,M(Z,W )) ,

Θ′ : K-Top(Y × Z,W ) −→ K-Top(Y,M(Z,W )) .

Since g ◦ (p× idZ) : X × Z −→W is continuous, so is its image Θ(g ◦ (p× idZ)) :

X −→M(Z,W ), which is given by

Θ(g ◦ (p× idZ))(x)(z) = g(p× idZ)(x, z) = g(p(x), z) .

Furthermore we have the following commutative triangle

X
Θ(g◦(p×idZ)) //

p
!!B

BB
BB

BB
B M(Z,W )

Y .
Θ′(g)

99ttttttttt

Indeed, Θ′(g)(y)(z) = g(y, z), so that if x ∈ X, then Θ′(g)p(x)(z) = g(p(x), z) =

Θ(g ◦ (p× idZ))(x)(z).

But by hypothesis, p is an identification. Thus, since Θ′(g)p is continuous and p

is an identification, so is Θ′(g) continuous. On the other hand, since Θ′ is bijective,

it follows that g = Θ′−1Θ′(g) is continuous. ⊓⊔

Since the composite of identifications is an identification, we have the following.

1.4.24 Corollary. Assume that X, Y , W , and Z are K-spaces and that p : X −→
Y and q : W −→ Z are identifications. Then p × q : X ×W −→ Y × Z is an

identification.

Proof: Just observe that p × q = (idY × q) ◦ (p × idW ) and that by the previous

theorem, idY × q and p× idW are identifications. ⊓⊔

To finish this section, we prove that Θ induces isomorphisms in K-Top.

1.4.25 Theorem. Let X and Y be k-spaces. Then

Θ :M(X,M(Y, Z)) −→M(X × Y, Z)

is a natural homeomorphism.
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Proof: Consider the diagram

M(X,M(Y, Z))×X × Y e1×id //

Θ×id×id
��

M(Y, Z)× Y

e2

��
M(X × Y, Z)×X × Y

ê3×id
33hhhhhhhhhhhhhhhhhhh

e3
// Z ,

where e1 = eX,M(Y,Z), e2 = eY,Z , and e3 = eX×Y,Z . Since Θ makes the diagram

commute, it is continuous by the universal property 1.4.22 of e3. The triangle on

the bottom commutes by definition of ê3. Thus ê3 ◦ (Θ × id) = e1 due to the

universal property of e2. By the universal property of e1, there is a unique map

Ψ :M(X × Y,Z) −→M(X,M(Y,Z))

such that e1 ◦ (Ψ× id) = ê3. On the other hand,

e3 ◦ ((Θ ◦Ψ)× id× id) = e2 ◦ (e1 × id) ◦ (Ψ× id× id) = e2 ◦ (ê3 × id) = e3 ,

e1 ◦ ((Ψ ◦Θ)× id) = ê3 ◦ (Θ× id) = e1 .

Hence, by the universal properties of e3 and e1, we have Θ◦Ψ = id and Ψ◦Θ = id.

Thus Ψ and Θ are inverse homeomorphisms. ⊓⊔

1.4.1 The pointed category of k-spaces

Pointed spaces will play a central role in this book. Recall that a pointed space is

a k-space X together with a base point x0 ∈ X. There are several constructions

we shall be interested in. Many of them rest upon the unit interval I = {t ∈ R |
0 ≤ t ≤ 1} considered as a pointed space with 0 as the base point. Whenever we

take quotient spaces of the form X/A, we take as base point of them the point

onto which A collapses. If A = ∅, then we put X/A = X+ = X ⊔ {∗} taking the

isolated point as base point. In what follows, given two pointed spaces X and Y ,

we shall denote by M∗(X,Y ) the map space of pointed maps, which is a subspace

of the map space M(X,Y ) as defined above.

1.4.26 Definition. Let X and Y be pointed spaces.

(i) We define the wedge sum or simply the wedge X ∨ Y of the spaces X and

Y as the subspace X × {y0} ∪ {x0} × Y ⊂ X × Y and we define their smash

product X ∧ Y as the quotient space X × Y/X ∨ Y . We denote the class of

the pair (x, y) in X ∧ Y by x ∧ y. Notice that the 0-sphere S0 = {0, 1} acts
as a neutral for the smash product, namely X ∧ S0 ≈ X.

(ii) A special role will be played by the cone of X, CX = X ∧ I, and the

suspension of X, ΣX = X ∧ S1, where by definition S1 = I/S0. There is an

embedding X ↪→ CX given by x 7→ x∧ 1. It is an easy exercise to show that

CX/X ≈ ΣX.
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(iii) We shall also use the path space PX defined as the set of pointed maps

M∗(I,X) = {σ ∈M(I,X) | σ(0) = x0}. We consider also the loop space ΩX

defined as the set of pointed maps M∗(S1, X) = {λ ∈M(I,X) | λ(0) = x0 =

λ(1)}.

1.4.27 Exercise. Show that for allm,n ≥ 0 there is a homeomorphism Sm∧Sn ≈
Sm+n. (Hint: Use the facts that a sphere Sk is the one-point compactification of

Rk and that the one-point compactification of a product of spaces is the smash

product of the one-point compactification of each of the spaces.)

Recall the homeomorphismM(X×Y, Z) ≈M(X,M(Y,Z)). If we consider the

subspace ofM(X×Y,Z) of those maps which send X∨Y to the base point z0 ∈ Z,
this space corresponds via the homeomorphism to the subspace M∗(X,M∗(Y,Z)

of M(X,M(Y,Z). Since maps which send X ∨ Y into a point are in one-to-one

correspondence with pointed maps of the smash product, we obtain the following

pointed version of 1.4.25.

1.4.28 Theorem. Let X, Y , and Z be pointed k-spaces. Then there is a natural

homeomorphism

Θ∗ :M∗(X,M∗(Y, Z)) −→M∗(X ∧ Y, Z) .

⊓⊔

This means in particular that the functor K-Top −→ K-Top given byX 7→ X∧Y
is left adjoint the functor Z 7→M∗(Y,Z). A special case is obtained taking Y = S1.
Then we obtain the next.

1.4.29 Theorem. Let X and Z be pointed k-spaces. Then there is a natural home-

omorphism

Θ̃ :M∗(X,ΩZ) −→M∗(ΣX,Z) .

⊓⊔

We finish the section with a basic definition of a general character.

1.4.30 Definition. Under a topological (abelian) group we shall understand an

abelian group F such that F is also a k-space and the map

F × F −→ F , (u, v) 7−→ u− v

is continuous. Here the product is, as always, the product in K-Top.

1.4.31 Exercise. Show that the continuity condition imposed in the definition

of a topological (abelian) group is equivalent to the continuity of the sum, namely

of the map F ×F −→ F , (u, v) 7→ u+ v, and the continuity of the pass to inverse,

namely of the map F −→ F , u 7→ −u
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1.5 Simplicial complexes

In this section we shall speak about simplicial complexes, also called triangulated

spaces or polyhedra. There are two closely related concepts: that of an abstract

simplicial set, which has combinatorial character, and that of a geometric simplicial

complex which is already a topological space.

1.5.1 Definition. An abstract simplicial complex C consists of a set of vertices

V (C) and for each integer k ≥ 0 a set Ck consisting of subsets of V (C) of cardi-

nality k + 1, which satisfy the following conditions

(a) For each vertex v ∈ V (C), the singleton {v} ∈ C0.

(b) Each subset of a set in Ck with j + 1 elements of them must lie in Cj .

In other words, V (C) is an arbitrary set of points v called vertices. Each Ck consists

of subsets σ = {v0, v1, . . . , vk} of V which satisfy that if σ′ ⊆ σ has cardinality j+1,

say σ′ = {vi0 , vi1 , . . . , vij}, then σ′ lies in Cj . Formally, C = C0∪C1∪· · ·∪Ck∪· · · .
A simplicial complex C is finite dimensional of dimension n if Ck = ∅ for all

k > n. An element σ of Ck is called a simplex of dimension k, or k-simplex of

C. Furthermore, a nonempty subset σ′ of a k-simplex σ is called a face of σ. The

set Ck is called the k-skeleton of C. A simplicial complex D such that for each k,

Dk ⊂ Ck is called a simplicial subcomplex.
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Figure 1.1 A simplicial complex

It is convenient to consider ordered simplicial complexes, namely simplicial

complexes C such that the set of vertices C0 is partially ordered, and each sim-

plex σ with the induced order is totally ordered. In this case we shall write

[vi0 , vi1 , . . . , vik ] for a k-simplex if and only if vij < vil if and only if j < l. Notice
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that a simplex σ ∈ C can be considered as a simplicial complex (a subcomplex of

C).

Hence, given a partially ordered set V , then the set C(V,≤)k of totally ordered

subsets σ ⊂ V with k+1 elements is the k-skeleton of an ordered simplicial complex

C(V,≤).

1.5.2 Examples. The following are important examples of simplicial complexes.

1. For each n ∈ N, define a simplicial complex Dn as follows. Consider V (Dn) =

{0, 1, . . . , n}, n ≥ 0, with the obvious order. Then Dk
n consists of all sets of

the form {i0, i1, . . . , ik} such that i0 < i1 < · · · < ik.

2. Let {Ui | i ∈ I} be a family of subsets of a set X and consider the set

C(I)k = {{i1, . . . , ik} ⊂ I | im ̸= in if m ̸= n and Ui1∩· · ·∩Uik ̸= ∅, k ∈ N} .

Then these sets constitute a simplicial complex C(I). If the family {Ui | i ∈
I} is a cover of a topological space X, then the simplicial complex C(I) is

called the nerve of the given cover.

3. Given a simplicial complex C there is an associated ordered simplicial com-

plex sdC, called the barycentric subdivision whose partially ordered set of

vertices V (sdC) consists of all simplexes of C with the partial order relation

given by

σ ≤ τ if and only if σ ⊂ τ .

1.5.3 Definition. Given a simplicial complex C , we define its geometric realiza-

tion as the set

|C| =

α : V (C) −→ I | α−1(0, 1] ∈ C and
∑

v∈V (C)

α(v) = 1

 .

Notice that α−1(0, 1] is finite. The metric topology of |C| is given by the metric

defined by µC(α, β) =
√∑

v∈V (C)(α(v)− β(v))2 (where the sum is finite). We

denote this metric space by |C|metric. By restriction of the metric to the geometric

realization |σ| ⊂ |C|metric, we furnish |σ| with a topology. The topology that we

take in |C| is the coherent (weak) topology with respect to the closed subsets |σ|,
that is, we declare a subset A ⊆ |C| to be closed if and only if the intersection

A ∩ |σ| is closed for all simplexes σ ∈ C.

1.5.4 Example. LetD be the simplicial complex of Example 1.5.2 1. Its geometric

realization |Dn| is homeomorphic to the standard n-simplex

∆n =

{
n∑
i=0

tiei |
n∑
i=0

ti = 1

}
and the homeomorphism is given by α 7→

∑n
k=0 α(k)ek, where e0 = (1, 0, . . . , 0),

e1 = (0, 1, 0, . . . , 0),..., en = (0, . . . , 0, 1) ∈ Rn+1. See Figure 1.2.
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0

∆1

0
∆0

∆2

Figure 1.2 The standard 1-, 2-, and 3-simplexes

More generally than in the example, if we take any set of points V = {x0, . . . , xk}
in Rn which are affinely independent (i.e. the k vectors x1 − x0, . . . , xk − x0 are

linearly independent), then its convex hull, namely the set

ξ =

{
k∑
i=0

λixi | λi ≥ 0,

k∑
i=0

λi = 1

}
⊂ Rn

is a Euclidean simplex in Rn. The interior of ξ is given by

◦
ξ =

{
k∑
i=0

λixi | λi > 0,

k∑
i=0

λi = 1

}
⊂ ξ .

The faces of ξ are the convex hulls of the subsets of V .

1.5.5 Remark. |C| is the union of its skeletons. More precisely, it is a filtered

space

|C| ⊃ · · · ⊃ |Ck| ⊃ |Ck−1| ⊃ · · · ⊃ |C0| ,

where the 0-skeleton |C0| is discrete and the difference between the k-skeleton and

the (k− 1)-skeleton |Ck| − |Ck−1| is a disjoint union of k-cells, namely the interior

of geometric k-simplexes (see the previous example). Hence |C| is a CW-complex.

A topological space X together with a homeomorphism φ : |C| −→ X is called a

polyhedron and the map φ is called a triangulation of X.

1.5.6 Example. The five regular polyhedra, namely the tetraheder, the cube, the

octaheder, the dodecaheder, and the icosaheder are Euclidean simplicial complexes

with 4, 8, 6, 20, and 12 vertices, respectively.

More generally than in the example above, we have the next.
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1.5.7 Lemma. Given a k-simplex σ in a simplicial complex C, the geometric

realization |σ| is homeomorphic to the standard k-simplex ∆q.

Proof: Given α ∈ |σ|, where σ = {v0, v1, . . . , vk}, define φ : |σ| −→ ∆k by φ(α) =∑k
i=0 α(vi)ei, where ei = (0, . . . , 1, . . . , 0), i = 0, 1, . . . , k, is the canonical generator

of Rk+1. Then φ is a homeomorphism with inverse ψ : ∆n −→ |σ| given by

ψ(
∑k

i=0 tiei)(vj) = tj . ⊓⊔

Given two (ordered) simplicial complexes C and D, by a simplicial map we

shall understand a (-n order-preserving) function f : V (C) −→ V (D) such that

if {vi0 , vi1 , . . . , vik} is a k-simplex of C, then {f(vi0), f(vi1), . . . , f(vik)} is an l-

simplex of D. Given such an f , it defines a map |f | : |C| −→ |D| given by

|f |(α)(w) =
∑

v∈f−1(w) α(v).

1.5.8 Proposition. The map |f | : |C| −→ |D| is continuous.

Proof: It is enough to check the continuity of the restriction of |f | to an arbitrary

k-simplex |σ|. By 1.5.7 it is equivalent to check the continuity of the corresponding

map between standard simplexes. Thus take the square

|σ|

|f ||σ|
��

φ

≈
// ∆k

f ′

���
�
�

|τ |
ψ

≈ // ∆l ,

where φ and ψ are the homeomorphisms given in Lemma 1.5.7 and f ′ is such

that the square commutes. Thus |f ||σ| is continuous if and only if f ′ is continu-

ous. So it is enough to compute f ′. Let σ be the simplex {v0, v1, . . . , vk} and take

α ∈ |σ|, i.e. α : {v0, v1, . . . , vk} −→ I such that α(v0) + α(v1) + · · · + α(vk) = 1.

If f(σ) = {w0, w1, . . . , wl}, then clearly f ′ : ∆k −→ ∆l is given by f ′(ei) =(∑
i∈f−1(wj)

α(vi)
)
ej and then extending the map affinely. Thus clearly f ′ is con-

tinuous. ⊓⊔

1.5.9 Example. If k < n, we may define a simplicial map Dk −→ Dn by sending

i to i if 0 ≤ i ≤ k. If k ≥ n we may define a simplicial map Dk −→ Dn by sending

i to i if 0 ≤ i ≤ n, and sending i to n if i ≥ n. Figure 1.3 shows D1 −→ D2 and

D2 −→ D1.

It is an easy exercise to prove the next result.

1.5.10 Proposition.

(a) Abstract simplicial complexes together with simplicial maps build a category

Simcom.
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Figure 1.3 The simplicial maps D1 −→ D2 and D2 −→ D1

(b) The geometric realization is a functor Simcom −→ Top. ⊓⊔

In contrast to the concept of an abstract simplicial complex, we have the next.

1.5.11 Definition. A Euclidean simplicial complex X is a finite family of sim-

plexes in Rn for some n, such that the following hold.

(a) If ξ is a simplex of X, then every face of ξ is a simplex of X.

(b) If ξ1 and ξ2 are two simplexes ofX such that their interiors meet, i.e.
◦
ξ1∩

◦
ξ2 ̸=

∅, then ξ1 = ξ2.

1.6 CW-complexes

A category which will be used along the text is that of the CW-complexes. Since

we shall relate CW-complexes with simplicial complexes and even simplicial sets,

it is convenient to replace unit balls with standard simplexes and spheres with the

boundary of standard simplexes. Thus we start with the following.

1.6.1 Definition. Define the nth standard simplex ∆n ⊂ Rn+1, n ≥ 0, as the set

∆n =

{
t0e0 + t1e1 + · · ·+ tnen | ti ≥ 0,

n∑
i=0

ti = 1

}
,

where e0, e1, . . . , en are the unit vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) ∈
Rn+1, respectively. It is sometimes convenient to write the elements of ∆n as n+1-

tuples (t0, t1, . . . , tn) such that ti ≥ 0 for all i and
∑n

i=0 ti = 1. In the case of n = 1,

one has that the elements of ∆1 are pairs (1− t, t) with 0 ≤ t ≤ 1. Thus one can

canonically identify the standard 1-simplex ∆1 with the unit interval via I −→ ∆1

given by t 7→ (1− t, t) with inverse ∆1 −→ I given by (t0, t1) 7→ t1 (this identifies

0 ∈ I with e0 ∈ R2 and 1 ∈ I with e1 ∈ R2. The boundary ∆̇n of ∆n is defined as

the set

∆̇n = {t0e0 + t1e1 + · · ·+ tnen ∈ ∆n | ti = 0 for at least one i} .
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1.6.2 Exercise. Show that one has homeomorphisms

φ : ∆n −→ Dn and φ̇ : ∆̇n −→ Sn−1 .

(Hint: The orthogonal projection onto Rn ⊂ Rn+1 sends ∆n homeomorphically to

a compact convex set in Rn with nonempty interior.)

1.6.3 Definition. A CW-complex X is a filtered space X =
∪
nX

n with the

topology of the union, where the 0th skeleton X0 is a discrete subspace, and the

nth skeleton Xn is defined from Xn−1 as follows. Take an index set In and for

each i ∈ In a continuous map ψi : S
n−1
i −→ Xn−1, where Sn−1

i is a copy of the

boundary ∆̇n of the nth standard simplex ∆n (or a copy of the unit n− 1-sphere

Sn−1). Define Xn as the attaching space

Xn−1 ∪ψ
⨿
i∈In

Dn
i ,

where Dn
i is a copy of nth standard simplex ∆n (or a copy of the unit n-ball Dn)

and ψ :
⨿
i∈In S

n−1
i −→ Xn−1 is given by ψ|Sn−1

i
= ψi. Clearly X

n−1 is a closed

subset of Xn, hence A ⊂ X is closed if and only if A ∩ Xn is closed for all n. If

qn :
⨿
Dn
i ∪Xn−1 −→ Xn is the identification map, n > 0, then for each i ∈ In

the map φi = q|Dn
i
: Dn

i −→ Xn is called the characteristic map of the ith n-cell.

The image of φi is denoted by eni and is called a closed n-cell of X. We say that

the CW-complex X is regular if for every cell eni , the characteristic map is an

embedding. We denote the category of CW-complexes by CW and the category of

regular CW-complexes by RCW.

We have the next.

1.6.4 Proposition. Let X be a CW-complex. A subset A ⊂ X is closed if and

only if φ−1
i A ⊆ Dn

i = ∆n is closed for every i ∈ In and every n > 0. Equivalently,

A is closed if and only if A ∩ eni is closed for any closed cell eni of X. ⊓⊔

1.6.5 Examples. In the following examples it is convenient to take Dq
i = Dq and

Sq−1
i = Sq−1.

1. The unit q-sphere Sq is a CW-complex such that X0 = X1 = · · · = Xq−1 =

{x0} and Sq = Xq is obtained as an attaching space X0 ∪ψ Dq, where ψ :

Sq−1 −→ X0 is the obvious map.

2. The q-sphere can be seen as a regular CW-complex. One may alternatively

define Sq as the space filtered by the subspaces Xn = Sn ⊂ Rn+1, n =

0, 1, . . . , q with the canonical inclusions. There are two attaching maps ψn−1
i :

Sn−1 −→ Sn−1, i = 1, 2, each of which is the identity, n = 1, 2 . . . , q − 1.
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3. The real projective space RPq is a CW-complex filtered by the subspaces

Xn = RPn, n = 0, 1, . . . , q with the canonical inclusions. The attaching map

ψn−1 : Sn−1 −→ Xn−1 = RPn−1 is the antipodal identification.

4. The complex projective space CPq is a CW-complex filtered by the subspaces

X2n−1 = X2n = CPn, n = 0, 1, . . . , q with the canonical inclusions. The

attaching map ψn−1 : S2n−1 −→ Xn−1 = CPn−1 is the usual identification

given by the equivalence relation z ∼ z′ if there is ζ ∈ S1 such that z′ = ζz,

where z, z′ ∈ S2n−1 ⊂ R2n = Cn.

5. The geometric realization |K| of an abstract simplicial complex is a regular

CW-complex with one n-cell for each nondegenerate n-simplex of K.

1.6.6 Exercise. Describe the examples 1.-5. above in terms of the standard sim-

plexes Dq
i = ∆q and their boundaries Sq−1

i = ∆̇q.



Chapter 2 Elements of simplicial sets

In this chapter we shall study the notions on simplicial sets that will be needed

in the book. Simplicial sets are an alternative to the study of (nice) topological

spaces from a combinatorial viewpoint. This approach to algebraic topology dates

back to the early fifties, when Eilenberg and Zilber studied the singular homol-

ogy theory. Simplicial sets lie halfways between topology and algebra, since their

nearness to algebra makes the computation of homotopy and homology groups

easier, while one can define for simplicial sets many topological concepts, such as

connectedness, homotopy, fibrations, et cetera.

2.1 Simplicial sets

In this section we define the concept of simplicial set. We start considering the

category ∆ whose objects are the ordered sets n = {0, 1, 2, . . . , n}, n ∈ N, and
whose morphisms are monotonic (order-preserving) functions µ : m −→ n, namely,

if i ≤ j ∈m, then µ(i) ≤ µ(j) ∈ n.

2.1.1 Definition. Let C be any category. Then a simplicial object of C is a con-

travariant functor K : ∆ −→ C. We denote by Kn the value of K at n and we call

its elements n-simplexes. Furthermore, if µ : m −→ n is a morphism in ∆ then we

denote by µK : Kn −→ Km the morphism K(µ). Given two simplicial objects K

and K ′ of C, we define a morphism φ : K −→ K ′ to be a natural transformation

of functors. Namely, for each n ∈ N, one has a morphism φn : Kn −→ K ′
n such

that for any morphism µ : m −→ n, the following diagram commutes:

Kn
φn //

µK

��

K ′
n

µK
′

��
Km φm

// K ′
m .

We have a category simp-C of simplicial objects of C.

2.1.2 Definition. Assume that C is a category that admits subobjects of its

objects. Given a simplicial object K of C, we shall understand by a simplicial

subobject a simplicial object L of C such that for each n, Ln is a subobject of Kn

and the inclusions Ln ↪→ Kn induce a morphism L ↪→ K of simplicial objects.

25
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2.1.3 Examples. The next will be useful examples in what follows.

1. If C = Set is the category of sets, then the simplicial objects are called

simplicial sets. We denote the category of simplicial sets simply by SSet. In

this case, given a simplicial set K, we have the concept of a simplicial subset ,

which is a simplicial set L such that for each n, Ln ⊆ Kn. This allows to

define the concept of a quotient of simplicial sets K/L, which is a simplicial

set which for each n is given by (K/L)n = Kn/Ln. If L is a simplicial subset

of K, it is an easy exercise to show that K/L is a simplicial set too.

2. If C = Grp (or Ab) is the category of (abelian) groups, then the simplicial

objects are called simplicial (abelian) groups. We denote the category of

simplicial groups by SGrp (or SAb in the abelian case). As above, given a

simplicial group Γ, we have the concept of a (normal) simplicial subgroup Λ,

such that for each n, Λn ⊆ Γn is a (normal) subgroup. Defining (Γ/Λ)n =

Γn/Λn (group quotient), it is an easy exercise to show that we obtain a

simplicial set (or group).

A source of new simplicial objects is given by the following.

2.1.4 Proposition. Let K be a simplicial object of a category C and take a covari-

ant functor F : C −→ D. Then the composite functor F ◦K is a simplicial object

of D. For each n ∈ N, the object (F ◦K)n is given by F (Kn) and if µ : m −→ n

is a morphism in ∆, then µF◦K = F (µK). ⊓⊔

Given a simplicial set K, for each n ∈ N there are two types of operators,

namely the degeneracy operators si : Kn −→ Kn+1 and the face operators di :

Kn −→ Kn−1, 0 ≤ i ≤ n. These operators are determined by si = K(σi) and

di = K(δi), where σi : n+ 1 −→ n and δi : n− 1 −→ n are given by

σi(j) =

{
j if j ≤ i
j − 1 if j > i

δi(j) =

{
j if j < i

j + 1 if j ≥ i .

2.1.5 Exercise. Show that any morphism µ : m −→ n of ∆ is a composite of

face and degeneracy morphisms.

2.1.6 Exercise.

(a) Show that the morphisms δi : n −→ n+ 1 and σi : n+ 1 −→ n satisfy the
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following relations:

δjδi = δiδj−1 if i < j ,

σjδi = δiσj−1 if i < j ,

σjδj = σjδj+1 = idn ,

σjδi = δi−1σj if i > j + 1 ,

σjσi = σiσj+1 if i ≤ j .

(b) Conclude that the following simplicial identities hold:

didj = dj−1di if i < j ,

disj = sj−1di if i < j ,

djsj = dj+1sj = idKn ,

disj = sjdi−1 if i > j + 1 ,

sisj = sj+1si if i ≤ j .

Recall the nth standard simplex ∆n ⊂ Rn+1, n ≥ 0, defined as the set

∆n =

{
t0e0 + t1e1 + · · ·+ tnen | ti ≥ 0,

n∑
i=0

ti = 1

}
,

where e0, e1, . . . , en are the unit vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) ∈
Rn+1. The face morphisms δi : n− 1 −→ n and the degeneracy morphisms σi :

n+ 1 −→ n induce maps δi# : ∆n−1 −→ ∆n by sending each vertex ej to eδi(j)
and σi# : ∆n+1 −→ ∆n by sending each vertex ej to eσi(j), respectively, and then

extending them affinely.

2.1.7 Examples. The following are two manners of associating simplicial sets to

topological spaces.

1. Given a topological space X, we can associate to it the singular simplicial

set S(X) : ∆ −→ Set as follows

S(X)(n) = Sn(X) = {α : ∆n −→ X | α is continuous} .

Its face and degeneracy maps are given by

di(α) = α ◦ δi# : ∆n−1 −→ X , si(α) = α ◦ σi# : ∆n+1 −→ X .

As a functor, S(X) : ∆ −→ Set is defined as follows. If µ : m −→ n is

a morphism of ∆, then µ determines a map µ# : ∆m −→ ∆n by mapping

each vertex ei ∈ ∆m to eµ(i) ∈ ∆n and then extending affinely. Then the

function µS(X) : Sn(X) −→ Sm(X) is given by µS(α) = α ◦µ#. An element

σ ∈ Sn(X) shall be called a singular n-simplex of X.



28 2 Elements of simplicial sets

X

∆2

α

Figure 2.1 A singular 2-simplex in a space X

2. If C is an ordered abstract simplicial complex, then we can associate to it a

simplicial set K(C) such that

K(C)m = {(v0, v1, . . . , vm) | {v0, v1, . . . , vm} ∈ C, v0 ≤ v1 ≤ · · · ≤ vm} ,

and the face operator d
K(C)
i : K(C)m −→ K(C)m−1 is given by

d
K(C)
i (v0, . . . , vm) = (v0, . . . , v̂i, . . . , vm) ,

where the hat means that the vertex vi is removed, and s
K(C)
i : K(C)m −→

K(C)m+1 is given by

s
K(C)
i (v0, . . . , vm) = (v0, . . . , vi, vi, . . . , vm)

It is an easy exercise to show that these operators satisfy the simplicial

identities 2.1.6 (b).

This construction is a functor, namely if f : C −→ D is a simplicial map,

then we define K(f) : K(C) −→ K(D) as follows. Give K(f)n : K(C)n −→
K(D)n by K(f)(v0, v1, . . . , vn) = (f(v0), f(v1), . . . , f(vn)). Thus we have a

functor Simcom −→ SSet.

2.2 Geometric realization

The last example in the previous section shows how to produce from a topological

space simplicial sets. The following definition links the combinatorics of the sim-

plicial sets with the topology. Concretely it assigns to a simplicial set a topological

space.



2.5 Geometric realization 29

2.2.1 Definition. Let K be a simplicial set. Endow each set Kn with the discrete

topology and take the standard simplex ∆n with its relative topology as a subspace

of Rn+1. The geometric realization of K is given by

|K| =
∞⨿
n=0

Kn ×∆n/∼ ,

with the quotient topology, where the equivalence relation ∼ is generated by the

relation (x, µ#(t)) ∼ (µK(x), t) for µ : m −→ n, where x ∈ Kn and t ∈ ∆m. We

shall denote by [x, s] the equivalence class of (x, s) ∈ Kn×∆n and call it geometric

simplex.

According to 2.1.5, it should be enough to consider the equivalence relation

generated by the relations (x, δi#(s)) ∼ (di(x), s) and (x, σi#(t)) ∼ (si(x), t), where

x ∈ Kn, s ∈ ∆n−1, and t ∈ ∆n+1.

Given a morphism of simplicial sets φ : K −→ K ′, we may define a continuous

map |φ| : |K| −→ |K ′| as follows. Consider the diagram⨿
nKn ×∆n

⨿
φn×id //

q

��

⨿
nK

′
n ×∆n

q′

��
|K|

|φ|
//__________ |K ′| .

where q and q′ are the respective quotient maps. The map |φ| is well defined and

thus continuous, since it is compatible with the quotient maps, namely if µ : m −→
n is a morphism in ∆, then (φmµ

K(x), s) = (µK
′
φn(x), s) ∼ (φn(x), µ#(s)), where

the equality holds because φ is natural. Thus equivalent elements are mapped by⨿
φn × id to equivalent elements.

It is a routine exercise to prove the following.

2.2.2 Proposition. The realization is a functor, namely the equalities |idK | =
id|K| and |ψ ◦φ| = |ψ| ◦ |φ| hold if φ : K −→ K ′ and ψ : K ′ −→ K ′′ are morphisms

of simplicial sets. ⊓⊔

2.2.3 Proposition. Let C be a simplicial complex and let K(C) be its associated

simplicial set. There is a natural homeomorphism φ : |C| −→ |K(C)|

Proof: Take α ∈ |C|, α : V (C) −→ I, and define φ(α) = [x, s] ∈ |K(C)|, where
x = (v0, v1, . . . , vn) ∈ K(C)n if α−1(0, 1] = {v0, v1, . . . , vn}, v0 < v1 < · · · < vn,

and s = α(v0)e0+α(v1)e1+ · · ·+α(vn)en ∈ ∆n. Conversely, define ψ : |K(C)| −→
|C| as follows. Let (x, s) ∈ K(C)n×∆n be a representative of an element in |K(C)|
such that x = (v0, v1, . . . , vn) and s = s0e0+s1e1+· · ·+snen, si ̸= 0, i = 0, 1, . . . , n,

and define

ψ′(x, s) : V (C) −→ I by ψ′(x, s)(v) =

{
si if v = vi, i = 0, 1, . . . , n ,

0 otherwise.
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It is an easy exercise to show that ψ′ is compatible with the equivalence relation

which defines |K(C)| and thus it determines ψ. It is also easy to verify that both

φ and ψ are continuous and inverse to each other. ⊓⊔

The next family of simplicial sets will be very important in what follows.

2.2.4 Definition. The simplicial set ∆[q] : ∆ −→ Set given by ∆[q]n = ∆(n,q)

is called the q-model and the simplicial subset ∆̇[q] : ∆ −→ Set given by ∆̇[q]n =

{σ : n −→ q | σ is not surjective} is the boundary the q-model.

2.2.5 Exercise. Show that the geometric realization of the q-model is the stan-

dard q-simplex, namely |∆[q]| ≈ ∆q. Furthermore show that |∆̇[q]| ≈ ∆̇q.

2.2.6 Exercise.

(a) Verify that ∆[q] is indeed a simplicial set and show that its geometric real-

ization |∆[q]| is canonically homeomorphic to the standard q-simplex ∆q.

(b) Verify that ∆̇[q] is also a simplicial set and show that its geometric realization

|∆̇[q]| is canonically homeomorphic to the boundary ∆̇q of the standard q-

simplex.

If one takes a monotonic function α : q −→ n, one can associate to it the

simplex α∗(n) ∈ ∆[n]q, which clearly determines a one-to-one relation between

monotonic functions q −→ n and the q-simplexes of ∆[n]. Indeed we have the

next.

2.2.7 Proposition. There is a bijection between the set of monotonic functions

∆(q,n) and the set of morphisms of simplicial sets SSet(∆[q],∆[n]).

Proof: Map the function α : q −→ n to the morphism given by

[q] 7−→ (α(0), α(1), . . . , α(q)) ,

namely α : ∆[q] −→ ∆[n]. Then α([q]) = α∗([n]). ⊓⊔

In other words, the last result states that we have a full subcategory of the

category of models which is isomorphic to ∆.

2.2.8 Exercise. Consider the simplicial set Σq−1 : ∆ −→ Set given by Σq−1
n =

{σ : n −→ q− 1 | σ(i) = 0, i = 0, . . . , q − 2}, Σq−1
q−1 = {idq−1}, and Σq−1

n = {σ :

n −→ q− 1 | σ is surjective}. Verify that Σq−1 is indeed a simplicial set and show

that its geometric realization is homeomorphic to the q − 1-sphere Sq−1.
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2.2.9 Example. If C = Ab is the category of abelian groups and G : ∆ −→ Ab is a

simplicial abelian group, then its geometric realization |G| is an abelian topological

group (see below). We postpone the proof of this nontrivial fact.

2.2.10 Theorem. Let K be a simplicial set and Y be a k-space. Then there is a

natural bijection

K-Top(|K|, X) ∼= SSet(K,S(X)) .

In other words, the functor | · | is left-adjoint to the functor S.

Proof: According to Lemma 1.3.5, for the proof we shall need the following canon-

ical morphisms which relate the geometric realization and the singular simplicial

set construction. First consider a simplicial set K and let

(2.2.18) αK : K −→ S(|K|) be given by αn(x)(s) = [x, s]

for x ∈ Kn and s ∈ ∆n. We have to show that αK is natural, i.e., that given

µ : m −→ n, the following is a commutative diagram:

Kn
αn //

µK

��

Sn(|K|)

µS

��
Km αm

// Sm(|K|) ,

where we shorten the notation (αK)n by writing simply αn, and similarly for m.

To see this, we chase an element x ∈ Kn along the diagram. Going right and down

and evaluating in t ∈ ∆m, we obtain µSαn(x)(t) = αn(x)(µ#(t)) = [x, µ#(t)],

while going down and right, we obtain αm(µ
K(x))(t) = [µK(x), t]. Thus both are

equal.

If X is a topological space, let also

(2.2.19) ρX : |S(X)| −→ X

be given by

ρX([σ, t]) = σ(t) where σ ∈ Sn(X), t ∈ ∆n .

To see that ρX is well defined consider a morphism µ : m −→ n. Then by

definition (µS(σ))(s) = σ(µ#(s)). Therefore, both ρX([µ
S(σ), s]) = (µS(σ))(s)

and ρX([σ, µ#(s)] = σ(µ#(s)) are equal.

We pass to the proof of the theorem. Consider the function

RK,X : SSet(K,S(X)) −→ Top(|K|, X)

given by RK,X(φ) = ρX ◦ |φ|. Explicitly, if φ : K −→ S(X) is a morphism of

simplicial sets, then φ maps each simplex x ∈ Kn to a singular simplex φ(x) :

∆n −→ X. So we have RK,X(φ)([x, s]) = φn(x)(s).
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On the other hand, consider the function

AK,X : Top(|K|, X) −→ SSet(K,S(X))

given by AK,X(f) = S(f)◦αK . Explicitly, if we have a continuous map f : |K| −→
X, x ∈ Kn, and s ∈ ∆n, then AK,X(f)n(x)(s) = f([x, s]).

To see that A and R are inverse of each other, take x ∈ Kn and s ∈ ∆n and

consider

AK,X(RK,X(φ))n(x)(s) = RK,X(φ)([x, s]) = φn(x)(s) ,

thus AK,XRK,X(φ) = φ, and

RK,XAK,X(f)([x, s]) = AK,X(f)n(x)(s) = f([x, s]) ,

thus RK,XAK,X(f) = f . ⊓⊔

2.2.20 Definition. Let K be a simplicial set. An n-simplex x, i.e. an element

x of Kn is said to be degenerate if x is of the form si(y) for some y ∈ Kn−1

and any i. Otherwise, we say that x is nondegenerate. Furthermore we say that a

representative (x, s) ∈ Kn×∆n of a geometric simplex [x, s] ∈ |K| is nondegenerate
if x is nondegenerate and s ∈

◦
∆n (i.e. s is an interior point).

2.2.21 Exercise. Show that a n-simplex x ∈ Kn is degenerate if and only if

there is a surjective morphism µ : n −→ m and an m-simplex y ∈ Km such that

x = µK(y).

2.2.22 Proposition. If x is a degenerate simplex, then there is a unique nonde-

generate simplex x0 such that x = si0si1 · · · sik(x0), for some finite sequence of

degeneracy maps si0 , si1 , . . . , sik .

Proof: First notice that if x = µi0µi1 · · ·µik(x0) for some nondegenerate simplex

x0, where each µij is either a face or a degeneracy map, then one can switch the

face maps to the right using the simplicial identities 2.1.6 (b) and then replace x0

with one of its proper faces. If this face turns out to be degenerate, we apply the

process once more. Eventually this process stops. Hence a degenerate simplex can

always be written in the form si0si1 · · · sik(x0).

To show the uniqueness, assume that x0 and y0 are nondegenerate simplexes,

possibly in different sets Km and Kn, such that s(x0) = t(y0), where s and t

are composites of degeneracy operators. Assume s = si0 ◦ si1 ◦ · · · ◦ sik and take

d = dik ◦dik−1
◦· · ·◦di0 . Then by the third simplicial identity x0 = ds(x0) = dt(y0)

and using again the simplicial identities for the first equality, and switching the face

maps to the right, we obtain x0 = t′d′(y0) for some composite of face operators

d′ and some composite of degeneracy operators t′. But since by assumption x0 is

nondegenerate, t′ must be the identity and so x0 = d′(y0). Thus x0 is a face of y0.

But repeating this argument reversing x0 and y0, we may prove that y0 is a face

of x0. This can only happen if x0 = y0. ⊓⊔
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2.2.23 Proposition. Every geometric simplex [x, s] ∈ |K| has a unique nonde-

generate representative.

Proof: If x ∈ Kn is already nondegenerate but s lies in the boundary of ∆n,

then s = δ(t), where t ∈
◦
∆m, m < n, and δ is the composite of finitely many

face operators δi#. Thus (x, s) ∼ (d(x), t), where d : Kn −→ Km is the function

corresponding to δ.

If x ∈ Kn is degenerate, then x = s(x0), where s : Km −→ Kn, m < n, is the

composite of finitely many degeneracy operators si and x0 ∈ Km is nondegenerate.

In this case, (x, s) ∼ (x0, σ(s)), where σ corresponds to s. If σ(s) is not an interior

point of ∆m, we may proceed as in the first part of the proof. ⊓⊔

2.2.24 Example. Given a topological spaceX, a singular n-simplex σ : ∆n −→ X

is nondegenerate if it cannot be written as a composite ∆n π−→ ∆k τ−→ X, where

π is a simplicial collapse with k < n and τ is a singular k-simplex.

Notice that a nondegenerate simplex might have a degenerate face. Also a

degenerate simplex might have a nondegenerate face (for instance, we know that

djsj(x) = x for any x, degenerate or not).

2.3 Product and quotients of simplicial sets

We shall need products of simplicial sets.

2.3.1 Definition. Let K and K ′ be simplicial sets. Define their product K ×K ′

by

(a) (K ×K ′)n = Kn ×K ′
n,

(b) If µ : m −→ n is a morphism in ∆ and (x, x′) ∈ (K ×K ′)n, then

µK×K′
(x, x′) = (µK(x), µK

′
(x′)) .

This is obviously a simplicial set. Observe that the projections πn : Kn×K ′
n −→ Kn

and π′n : Kn ×K ′
n −→ K ′

n are simplicial morphisms.

2.3.2 Examples.

1. Given any (abstract) group G, one can define a simplicial group Γ as follows.

Let Γn = G for all n and let µΓ = 1G for all morphisms µ : n −→m.
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2. Let F be a topological (abelian) group. The singular simplicial set S(F )
is a simplicial (abelian) group, if one defines the product of two singular

n-simplexes σ and τ by elementwise multiplication, namely

σ · τ : ∆n −→ F is given by (σ · τ)(s) = σ(s)τ(s) ∈ F .

If f : F −→ G is a continuous homomorphism of topological groups, so is

S(f) : S(F ) −→ S(G) a simplicial homomorphism.

2.3.3 Theorem. Let K and K ′ be simplicial sets. Then there is an isomorphism

η : |K ×K ′| ≈−→ |K| × |K ′|.

Proof: Consider the maps |π| : |K ×K ′| −→ |K| and |π′| : |K ×K ′| −→ |K ′|. By
the universal property of the product, there is a map

η : |K ×K ′| −→ |K| × |K ′| .

We prove first that this continuous map is bijective.

Consider z ∈ |K × K ′| and take a nondegenerate representative ((x, x′), t) ∈
(Kn×K ′

n)×∆n. Then, according to 2.2.23 |π|(z) = [x, t] has a nondegenerate rep-

resentative (x0, t0) and |π′|(z) = [x′, t] has a nondegenerate representative (x′0, t
′
0).

We define an inverse function ξ : |K| × |K ′| −→ |K × K ′| as follows. Take

an element (a, a′) ∈ |K| × |K ′| and nondegenerate representatives (xa, ta) and

(xa′ , ta′) of a and a′. If ta = (t0, t1, . . . , tk) and ta′ = (t′0, t
′
1, . . . , t

′
k′), then for each

m,n, define

tm =

m∑
i=0

ti and t′n =

n∑
j=0

t′j .

Let r0 < r1 < · · · < rb = 1 be the sequence obtained by ordering the different

elements of {tm} ∪ {t′n} by size, and define t′′i = ri − ri−1, 0 ≤ i ≤ b, r−1 = 0.

Clearly 0 < t′′i < 1 and
k∑
i=0

t′′i = rb = 1 .

Therefore the point ub = (t′′0, t
′′
1, . . . , t

′′
b ) lies in the interior of the standard simplex

∆b. Let i1 < · · · < ib−a be those integers i such that ri /∈ {tm} and let j1 < · · · <
jb−a′ be those integers j such that rj /∈ {t′n}. Hence {iα} and {jβ} are disjoint,

ua = σi1 · · ·σib−a
(ub) y ua′ = σj1 · · ·σjb−a′ (ub). Now put

ξ(a, a′) = [(sib−a
· · · si1(xa), sjb−a′ · · · sj1(xa′)), ub] .

Then we have

|π|ξ(a, a′) = [sib−a
· · · si1(xa), ub] = [xa, ta] = a

and

|π′|ξ(a, a′) = [sjb−a′ · · · sj1(xa′), ub] = [xa′ , ta′ ] = a′ .
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Hence η ◦ ξ = id|K|×|K′|. On the other hand, taking z ∈ |K ×K ′| as above,

ξη(z) = ξ([xa, ta], [xa′ , ta′ ]) = [(x, x′), t] = z .

To finish, notice that ξ is continuous in each product cell of |K|×|K ′| and since we

are working in the category of k-spaces this implies that ξ is continuous. Therefore

η is a homeomorphism with inverse ξ. ⊓⊔

2.3.4 Theorem. Let G be a simplicial (abelian) group. Then the geometric real-

ization |G| is a topological (abelian) group (in K-Top).

Proof: The group structure of G is given by a family of set functions µn : Gn ×
Gn −→ Gn (multiplication) and ιn : Gn −→ Gn (pass to the inverse) that make

each Gn into a group. Define the maps

m : |G| × |G| −→ |G| and i : |G| −→ |G|

by m = |µ| ◦ ξ and i = |ι|, where µ and ι are the simplicial morphisms defined

by the families µn and ιn, respectively. The conditions on the functions µn and

ιn that make Gn into a group as well as the naturality of ξ imply that m and i

convert |G| in a topological group. ⊓⊔

The following will have much interest in Chapter 6 below.

For the next, recall Example 2.1.3 2.

2.3.5 Proposition. Let K be a simplicial set and Q ⊂ K be a simplicial subset.

Then |K/Q| ≈ |K|/|Q|.

Proof: The sequence of simplicial sets Q
i
↪→ K

p
� K/Q determines a sequence of

spaces |Q|
|i|
↪→ |K|

|p|
� |K/Q|, where |i| is an embedding and |p| is an identification.

Consider, on the other hand, the quotient map q : |K| � |K|/|Q|. We shall see

that both |p| and q identify exactly the same points.

Assume first that q([σ, t]) = q([σ′, t′]). If [σ, t] ̸= [σ′, t′], then this means that

[σ, t], [σ′, t′] ∈ |Q|. Therefore (σ, t) ∈ Qm ×∆m and (σ′, t′) ∈ Qn ×∆n for some m

and n. Hence |p|([σ, t]) = [pm(σ), t] = [τ , t] and [|p|([σ′, t′]) = [pn(σ
′), t′] = [τ ′, t′],

where the bar means the class in the quotient. Both representatives (pm(σ), t) and

(pn(σ
′), t′) are degenerate if m > 0 and n > 0 and the common nondegenerate rep-

resentative of both is (τ0, 1) ∈ (K0/Q0)×∆0. Consequently, |p|([σ, t]) = |p|([σ′, t′]).

Conversely, assume that |p|([σ, t]) = |p|([σ′, t′]), where (σ, t) and (σ′, t′) are

nondegenerate. We claim that if σ /∈ Qm, then pm(σ) is also nondegenerate. This

is true, because if pm(σ) is degenerate, then the classes σ = sK(σr) with r < m.

But in this case σ = {σ} = sK(σr), and so sK(σr) = σ, which is a contradiction.

Therefore, the assumption means that [pm(σ), t] = [pn(σ
′), t′], and we have two

possible cases:
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(i) σ ∈ Qm and σ′ ∈ Qn, hence [σ, t], [σ′, t′] ∈ |Q|, so that q([σ, t]) = q([σ′, t′]).

(ii) σ ∈ Qm and σ′ /∈ Qn, hence [pm(σ), t] = [τ0, 1] = [pn(σ
′), t′]. But by the claim

above, pn(σ
′) is nondegenerate. Therefore, pn(σ

′) = τ0 and thus σ′ ∈ Q0,

contradicting the assumption.

Hence, only case (i) can hold. ⊓⊔

2.4 Kan sets and Kan fibrations

In what follows we shall define a special subclass of simplicial sets, which is quite

useful. One should call them Kan simplicial sets but we stick to one of the usual

terms, namely simply Kan sets. Before stating the definition, we need some previ-

ous concepts.

2.4.1 Definition. The simplicial kth horn Λ[n, k] is the union of all faces of

the simplicial set ∆[n] except for the kth face. Equivalently it can be defined as

the simplicial subset of ∆[n] generated by the set {d0, d1, . . . , dk−1, dk+1, . . . , dn},
di : ∆[n − 1] −→ ∆[n]. It has the property that Λ[n, k]j = ∆[n]j for j < n − 1,

and ∆[n, k]n−1 = ∆[n]n−1 − {dk}. Given a simplicial set K, a sequence of n − 1-

simplexes of K (x0, x1, . . . , xk−1, xk+1, . . . , xn−1, xn) is said to be a horn in K with

a hole in the kth place if

di(xj) = dj−1(xi) , i < j and i ̸= k ̸= j

holds.

0 1

2

Figure 2.2 The simplicial horn Λ[2, 1]

Notice that the geometric realization |Λ[n, k]| of the simplicial kth horn is

the subcomplex of the geometric realization |∆[n]| of the n-simplex obtained by

removing the interior of |∆[n]| and the interior of the kth face of it (see Figure

2.2).

2.4.2 Definition. A simplicial set K is said to satisfy the extension condition or

Kan condition if for all n = 1, 2, . . . , and all 0 ≤ k ≤ n, any morphism of simplicial

sets

Λ[n, k] −→ K
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admits an extension to a morphism of simplicial sets

∆[n] −→ K .

Such a simplicial set K is called a Kan set or a Kan complex . In a diagram

Λ[n, k] //
� _

��

K

∆[n]

<<y
y

y
y

y

Nowadays a Kan set is also called a fibrant simplicial set. We shall stick to the

term Kan set.

2.4.3 Exercise. Show that a simplicial setK is a Kan set if and only if for all n =

1, 2, . . . , and all 0 ≤ k ≤ n the following holds: For any horn T = (x0, x1, . . . , xk−1,

xk+1, . . . , xn−1, xn) in K there is an x ∈ Kn such that di(x) = xi for all i ̸= k.

Such an x is called the filling of the horn. This is an alternate description of the

Kan condition.

2.4.4 Definition. Given a simplicial set K and a simplex x ∈ Kn, we define its

boundary by

D(x) = (d0(x), d1(x), . . . , dn(x)) .

2.4.5 Exercise. Show that if x, y ∈ Kn are degenerate and D(x) = D(y), then

x = y.

The following result yields a very important example of a Kan set.

2.4.6 Proposition. For any space X, the singular simplicial set S(X) is a Kan

set.

Proof: By the adjunction 2.2.10 there is a correspondence between the following

diagram of simplicial sets and the one of spaces:

Λ[n, k] //
� _

��

S(X)

∆[n]

::u
u

u
u

u

|Λ[n, k]| //
� _

��

X .

|∆[n]|

::v
v

v
v

v

Since the topological horn |Λ[n, k]| is a deformation retract of the topological n-

simplex |∆[n]|, the extension problem on the right has a solution and the dashed

arrow exists. Passing this back along the adjunction 2.2.10 once more, we obtain

a solution for the extension problem on the left as desired. ⊓⊔

There are other nice examples as follows.
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2.4.7 Examples.

1. It is easy to verify that the 0-model ∆[0] satisfies the Kan condition, namely

it is a Kan set.

2. The n-model ∆[n], n > 0 does not satisfy the Kan condition. For instance,

take the 1-model ∆[1] and consider the horn Λ[2, 0] which consists of the

edges [0, 2] and [0, 1] of ∆[2]. Now take the simplicial morphism that maps

[0, 1] and [0, 2] ∈ Λ[2, 0] to [0, 1] and [0, 0] ∈ ∆[1], respectively. There is a

unique such simplicial map, since we specified what happens in the nonde-

generate simplexes of Λ[2, 0]. Observe that these functions are order pre-

serving. Notice that this simplicial morphism cannot be extended to a map

∆[2] −→ ∆[1], since the given prescriptions

0 7−→ 0 , 1 7−→ 1 , 2 7−→ 0

are order preserving as morphisms Λ[2, 0] −→ ∆[1], but they are not so as

morphisms ∆[2] −→ ∆[1].

3. Any simplicial group (ignoring its group structure) satisfies the Kan condi-

tion. For a proof of this fact see [39, Theorem 2.2].

Recall the morphism of simplicial sets αK : K −→ S(|K|) given by αK n(σ)(s) =

[σ, s] and the continuous map ρX : |S(X)| −→ X given by ρX([σ, s]) = σ(s). It is

an immediate result that

S(ρX) ◦ αS(X) = idS(X) .

The following is an interesting result for the other composite.

2.4.8 Proposition. For any space X, the composite

αS(X) ◦ S(ρX) : S(|S(X)|) −→ S(X) −→ S(|S(X)|)

is homotopic to idS(|S(X)|) relative to S(X).

Proof: By Proposition 2.4.6, the singular simplicial set S(X) is a Kan set. Thus

there is a simplicial homotopy

H : S(|S(X)|)×∆[1] −→ S(|S(X)|) rel S(X)

which starts with idS(|S(X)|) and ends with the composite αS(X) ◦ r, where r :

S(|S(X)|) −→ S(X) is some simplicial retraction. Hence the composite αS(X) ◦
S(ρX) ◦ H is a simplicial homotopy relative to S(X), which starts with αS(X) ◦
S(ρX) and ends with αS(X)◦S(ρX)◦αS(X)◦r = αS(X)◦r, because S(ρX)◦αS(X) =

idS(X). Since S(|S(X)|) is a Kan set too, the homotopy relation relative to S(X)

is an equivalence relation on the set of all simplicial morphisms S(|S(X)|) −→
S(|S(X)|). ⊓⊔
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In what follows we define the concept of a Kan fibration, which is a general-

ization of the notion of Kan set, and show that given a simplicial group Γ and a

subgroup Λ, then the simplicial quotient map Γ � Γ/Λ is a Kan fibration with

fiber Λ. In the definiton of a Kan fibration we shall not use the (explicit) concept

of homotopy; later on we shall give characterizations that depend on homotopy.

2.4.9 Definition. Let π : K −→ Q be a morphism of simplicial sets. We shall

say that π is a Kan fibration if for every horn T = (x0, . . . , xk−1, xk+1, . . . , xn+1)

in K with a hole in the kth place (see 2.4.1), and for any n-simplex y of Q such

that di(y) = π(xi), for i ̸= k, there is an n+1-simplex x of K such that di(x) = xi,

i ̸= k, and π(x) = y. We say that the horn T in K can be filled in K over y. The

simplicial set K will be called the total simplicial set, Q the base simplicial set,

and π the projection. If we take a 0-simplex y0 seen as a simplicial subset of Q,

then K ′ = π−1(y0) is a simplicial subset of E which will be called the fiber of π.

If x0 is a 0-simplex of the fiber F ′, we shall frequently refer to the sequence

(K ′, x0)
i
↪→ (K,x0)

π� (Q, y0)

as simplicial fiber sequence. If there is no danger of confusion, we shall also write

K ′ ↪→ K � Q for this sequence.

The following is a convenient characterization of a Kan fibration.

2.4.10 Proposition. A morphism of simplicial sets π : K −→ Q is a Kan fi-

bration if and only if given morphisms of simplicial sets g : Λ[n, k] −→ K and

f : ∆[n] −→ Q such that f |Λ[n,k] = π ◦ g, where Λ[n, k] is the simplicial kth horn

in ∆[n], there exists a morphism of simplicial sets h : ∆[n] −→ K which extends

g and lifts f . In a diagram, we have:

(2.4.3)

Λ[n, k]
g //

� _

��

K

π

��
∆[n]

f
//

h

;;x
x

x
x

x
Q .

Proof: Clearly to have a morphism g : Λ[n, k] −→ K is equivalent to having a horn

T = (x0, . . . , xk−1, xk+1, . . . , xn+1) in K; furthermore a morphism f : ∆[n] −→ Q

is an n-simplex y in Q, and the commutativity of (2.4.3) means that di(y) = π(xi),

for i ̸= k. The extension h : ∆[n] −→ K determines an n-simplex x in K such that

di(x) = xi, i ̸= k, and π(x) = y. Hence the horn T can be filled by x over y. ⊓⊔

The following concept provides a system to construct Kan fibrations.
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2.4.4 Definition. Let Γ be a simplicial group and let K be a simplicial set. We

say that Γ acts on K from the left, if there is a morphism of simplicial sets

Γ×K −→ K , (g, x) 7−→ gx ,

such that

1x = x , (gh)x = g(hx) for all x ∈ K , g, h ∈ Γ .

Here 1 means the unit element in each group Γn. We thus have a left action of Γ

on K. One can correspondingly define a right action K × Γ −→ K.

Given a left (right) action of Γ on K, we say that two n-simplexes x, x′ ∈ Kn

lie in the same orbit if x′ = gx (x′ = xg) for some g ∈ Γn. This relation is clearly

an equivalence relation and the quotient sets, denoted by Kn\Γn (Kn/Γn) build

up a simplicial set K\Γ (K/Γ) called the simplicial orbit set. Each equivalence

class is called orbit.

The action of Γ on K is said to be free if gx = x ⇒ g = 1, equivalently,

the action is free if for each x ∈ Kn the mapping Γn −→ Kn given by g 7→ gx is

injective for all n.

2.4.5 Example. If Λ is a simplicial subgroup of Γ, then Λ acts on Γ by left (right)

multiplication. The simplicial orbit set in this case is the homogeneous simplicial

set Γ\Λ (Γ/Λ). See Example 2.1.3 2.

2.4.6 Note. If we take π : K −→ ∗, where ∗ means the one-point simplicial set,

then π is a Kan fibration if and only if K is a Kan set.

2.4.7 Proposition. Let π : K −→ Q be a Kan fibration. Then its fiber K ′ is Kan

set.

2.4.8 Exercise. The collection

T = (x0, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2+1, . . . , xir−1, xir+1, . . . , xn)

is a so-called horn with r holes in K, if it satisfies a compatibility condition similar

to that of a horn with a hole. Let π : K −→ Q be a Kan fibration. Show that if

y ∈ Qn is such that T lies over the faces of y, then T may be filled by some x ∈ Kn

over y.

2.4.9 Exercise. Given a Kan fibration π : K −→ Q, show that K is a Kan set if

and only if Q is a Kan set.

2.4.10 Theorem. If a simplicial group Γ acts freely on a simplicial set K, then

the orbit map π : K −→ K\G is a Kan fibration.
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Proof: Consider a horn T = (x0, . . . , xk−1, xk+1, . . . , xn) in K and an n-simplex y

of K\G such that di(y) = π(xi), for i ̸= k.

First step. For r = 0, 1, . . . , k − 1 we construct consecutively simplexes tr ∈ Kn

in such a way that π(tr) = y and di(tr) = xi for 0 ≤ i ≤ r. Since π is surjective,

there is an simplex t−1 ∈ Kn such that π(t−1) = y. If we assume that we already

have constructed tr for r ≤ k − 2, since πdr+1(tr) = dr+1(y) = π(xr+1) and the

action is free, there is a unique gr ∈ Γn such that

(2.4.11) grdr+1(tr) = xr+1 .

If we apply di with i ≤ r to this equation, then we obtain

(2.4.12) di(grdr+1(tr)) = di(xr+1) = dr(xi) .

Once more, since the action is free, we must have

(2.4.13) di(gr) = 1 for 0 ≤ i ≤ r .

We define tr+1 = sr+1(grtr). Hence π(tr+1) = π(tr) = y and from equations

(2.4.11) and (2.4.12) it follows that di(tr+1) = xi for 0 ≤ i ≤ r + 1.

Second step. For q = 0, 1, . . . , n−k we construct consecutively simplexes vq ∈ Kn

in such a way that π(vq) = y and di(vq) = xi for 0 ≤ i < k and n − q < i ≤ n.

We start setting v0 = tk−1. By induction, assume that vq has been constructed

already and we construct vq+1 as in the first step.

Third step. We then have that vn−q is a filling of the given horn over y. In case

that k = 0, we skip the first step and start with the second with a v0 such that

π(v0) = y. ⊓⊔

By 2.4.5, an immediate consequence is the next.+

2.4.14 Corollary. Given a simplicial group Γ and a subgroup Λ, then the simpli-

cial quotient map Γ � Γ\Λ is a Kan fibration with fiber Λ. ⊓⊔

2.5 Simplicial abelian groups

In this section we shall study in certain detail the structure of simplicial abelian

groups, namely the objects of the category SAb introduced in 2.1.3, Example 2,

above. We shall see two interesting properties. One is the fact that any simplicial

abelian group can essentially be seen as a chain complex, while the other property

is the fact that any surjective simplicial homomorphism is a Kan fibration, whose

fiber is the kernel of the homomorphism.
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2.5.1 Definition. Let A be a simplicial abelian group, namely an object of SAb,

and consider the face operators di : An −→ An−1, 0 ≤ i ≤ n. Define the + boundary

operator

∂n : An −→ An−1 by ∂n(a) =

n∑
i=0

(−1)idi(a) .

2.5.2 Proposition. The composite An+1
∂n+1−→ An

∂n−→ An−1 is equal to zero.

Proof: Take an element a ∈ An+1 and consider

∂n∂n+1(a) =

n∑
i=0

(−1)idi

n+1∑
j=0

(−1)jdj(a)


=

(n,n+1)∑
(i,j)=(0,0)

(−1)i+jdidj(a)

=
∑
i<j

(−1)i+jdidj(a) +
∑
i≥j

(−1)i+jdidj(a)

=
∑
i<j

(−1)i+jdj−1di(a) +
∑
i≥j

(−1)i+jdidj(a)

=
∑
k≥l

(−1)k+l+1dkdl(a) +
∑
i≥j

(−1)i+jdidj(a)

= 0 ,

where we put k = j − 1 and l = i and the fourth equality follows from the first

simplicial identity 2.1.6 (b). ⊓⊔

Thus we have proved that A∗ = (An; ∂n | n ∈ N ∪ {0}) is a chain complex (see

Chapter 5).

Assume that F is a simplicial abelian group and that G ⊆ F is a simplicial

subgroup, namely G is a simplicial group and for each n, the group Gn is a sub-

group of Fn. Moreover, the inclusion homomorphisms i : Gn ↪→ Fn determine a

homomorphism of simplicial groups i : G ↪→ F . In this case, one can also define

a simplicial quotient group F/G by (F/G)n = Fn/Gn, i.e. the quotient group of

cosets of Gn in Fn for each n. If µ : m −→ n is a morphism in ∆ then we take

the homomorphism µF/G : (F/G)n −→ (F/G)m induced by the homomorphism

µF : Fn −→ Fm. The fact that G ⊂ F is a simplicial subgroup guarantees that

µF/G is well defined. The other property of the simplicial abelian groups which we

want to exhibit was already proven in the last section. We put here the case of

simplicial abelian groups, which follows immediately from 2.4.14.

2.5.3 Proposition. Let F be a simplicial abelian group and let G ⊂ F be a sim-

plicial subgroup. Then the quotient morphism π : F � F/G is a Kan fibration.

⊓⊔



Chapter 3 Homotopy theory of simplicial

sets

In many ways, simplicial sets behave very much like spaces. This is also the

case with homotopy concepts.

3.1 Simplicial homotopy

The role usually played by the interval will be played here by the 1-model ∆[1],

which has the nondegenerate 1-simplex [0, 1] and two nondegenerate 0-simplexes [0]

and [1], while all other simplexes are degenerate. Each of these other simplexes has

the form [0, . . . , 0, 1, . . . , 1] with possibly no 0s or no 1s. We shall abuse notation

and write [0] and [1] for the degenerate simplexes [0, 0, . . . , 0] and [1, 1, . . . , 1],

respectively.

3.1.1 Definition. Under a path in a simplicial set K we shall understand a sim-

plicial morphism

λ : ∆[1] −→ K .

Equivalently, a path in K is a 1-simplex λ of K. Given a path λ in K, d1 ◦λ = λ[0]

is the origin of the path, and d0 ◦ λ = λ[1] is its end.

Two 0-simplexes a and b of K are said to belong to the same path component

of K if there is a path λ whose origin is a and whose end is b. We write this fact

by λ : a ≃ b or simply by a ≃ b, and say that λ is a path from a to b.

3.1.2 Theorem. In a Kan set, the path connectedness relation ≃ is an equivalence

relation.

Proof: We shall verify each of the axioms of an equivalence relation.

Reflexivity. For any vertex [a], s0 ◦ [a] is a path from a to a.

Transitivity. Given λ1 : a ≃ b and λ2 : b ≃ c, define µ : ∆[2, 1] −→ K by

letting µ take [0, 1] to λ1 and [1, 2] to λ2. The Kan condition allows to extend µ to

µ′ : ∆[2] −→ K. The composite λ = µ′ ◦ [0, 2] is a path from a to c. See Figure 3.1

Symmetry. Take a path λ : a ≃ b. We need another path in the reversed

direction. We consider the path as the edge [0, 1] of ∆[2]. If the edge [0, 2] of ∆[2]

43
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Figure 3.1 Transitivity

represents s0 ◦ [a], which exists since K is a simplicial set. Notice that d0 ◦s0 ◦ [a] =
d1 ◦ s0 ◦ [a] = [a]. From here on, we label the three vertices of [0, 1, 2] of ∆[2] as

[a, b, a]. Hence we have a simplicial morphism defined on Λ[2, 0] that takes [0, 1] to

λ and [0, 2] to s0 ◦ [a]. Once more, by the Kan condition, we extend this morphism

to all of ∆[2], and then [1, 2] gets taken to a path µ from b to a. See Figure 3.2.⊓⊔
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Figure 3.2 Symmetry

3.1.1 Homotopy of morphisms of simplicial sets

A special role in homotopy is played by the cylinders K ×∆[1], since a homotopy

in the simplicial case is a morphism η : K ×∆[1] −→ Q. Particularly important is

the next.
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3.1.3 Definition. The product ∆[n] × ∆[1] is called prism. A q-simplex in the

prism is of the form

((a0, a1, . . . , aq), (0 . . . 0︸ ︷︷ ︸
i

1 . . . 1)) ,

where 0 ≤ a0 ≤ a1 ≤ · · · ≤ aq ≤ n are integers. We abbreviate by

(a0, a1, . . . , ai, a
′
i+1, . . . , a

′
q) = ((a0, a1, . . . , aq), (0 · · ·

i
0 1 . . . 1)

(see Figure 3.3).

0

1

2

0′

1′

2′

Figure 3.3 Prism ∆[2]×∆[1]

The prism ∆[n]×∆[1] is generated by the nondegenerate n+ 1-simplexes

ci = (0, 1, . . . , i, (i+ 1)′, . . . , n′) , i = 0, 1, . . . , n .

One may easily verify the following

d0(c0) = ([n], 1) , dn+1(cn) = ([n], 0) ,

di+1(ci) = di+1(ci+1) , i = 0, 1, . . . , n− 1 ,

dj(ci) ∈ ∆̇[n]×∆[1] , i ̸= j ̸= i+ 1 .

3.1.4 Note. Since the prism ∆[n] × ∆[1] is generated by the simplexes ci, each

morphism of simplicial sets (simplicial homotopy) η : ∆[n] × ∆[1] −→ K is de-

termined by its values η(ci). They can be arbitrarily given, provided that the

equations

di+1η(ci) = di+1η(ci+1) , i = 0, 1, . . . , n− 1

hold. If L and L′ are simplicial subsets of ∆[n] or ∆[n]×∆[1], then each morphism

α : L −→ L′ is uniquely determined by its values α(x) for all x ∈ L0.

3.1.5 Definition. Let K and K ′ be simplicial sets and L ⊂ K, L′ ⊂ K ′ be

simplicial subsets. If φ,ψ : K −→ K ′ are morphisms of simplicial sets such that
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φ(L), ψ(L) ⊂ L′ ⊂ K ′, then we say that φ and ψ are morphisms of pairs. We say

that φ and ψ are homotopic if there is a simplicial homotopy η : φ ≃ ψ, namely a

morphism of simplicial sets η : K ×∆[1] −→ K ′ such that η(L×∆[1]) ⊂ L′, and

its restrictions η0 : K = K × [0] −→ K ′ and η1 : K = K × [1] coincide with φ and

ψ respectively.

3.1.6 Examples.

1. If f, g : X −→ Y are homotopic maps of topological spaces, then the induced

morphisms of the singular simplicial sets S(f),S(g) : S(X) −→ S(Y ) are

simplicially homotopic. Namely if H : X × I −→ Y is a homotopy, then the

composite

S(X)×∆[1]
id×i−→ S(X)× S(I) = S(X × I) S(H)−→ S(Y )

is a homotopy from S(f) to S(g). Notice that the morphism i : ∆[1] −→ S(I)
is given by

i0(0) = κ0 ; i0(1) = κ1 ; i1([0, 1]) = α : ∆1 −→ I , α((1− t)e0 + te1) = t .

2. The constant morphism κ : ∆[n] −→ ∆[n] given by (01 . . . n) 7→ (00 . . . 0)

and the identity morphism id : ∆[n] −→ ∆[n] are homotopic, i.e., c ≃ id via

the homotopy

(3.1.7)

η : ∆[n]×∆[1] // ∆[n] ,

(a0, a1, . . . , ai, a
′
i+1, . . . , a

′
q)

� // (0 . . . 0ai+1 . . . aq) .

However id ̸≃ c, since if there were a homotopy, it should be a morphism

∆[n]×∆[1] −→ ∆[n] such that (1, 1′) 7→ (1, 0), where 0 and 1. But (1, 0) is

not a simplex of ∆[n]. Thus the homotopy relation is not reflexive and thus

it is not an equivalence relation.

3.1.8 Theorem. Let L ⊂ K, L′ ⊂ K ′ be pairs of simplicial sets. Then we have

the following:

(a) If K ′ is a Kan set, then the homotopy relation for morphisms φ,ψ : K −→ K ′

is an equivalence relation.

(b) If L′ and K ′ are Kan sets, then the homotopy relation for morphisms φ,ψ :

(K,L) −→ (K ′, L′) is an equivalence relation.

(c) If A is a Kan set, then the homotopy relation for morphisms φ,ψ : K −→ K ′

relative to L, i.e. the restriction of the homotopy to L is stationary, is an

equivalence relation.



3.2 Homotopy extension and lifting properties 47

3.2 Homotopy extension and lifting properties

We now come back to Kan fibrations under the light of the homotopy concept. We

state a new concept.

3.2.1 Definition. Let π : K −→ Q be a morphism of simplicial sets. We shall

say that π has the homotopy lifting property (the HLP for short) for the pair of

simplicial sets (L,L′) if given the commutative diagram

(3.2.10)

L× e ∪ L′ ×∆[1]
γ //

� _

��

K

π

��
L×∆[1] η

//

η̃
88pppppp
Q

of morphisms of simplicial sets (shown in solid arrows), where e = [0] or [1], there

is a simplicial homotopy η̃ (shown in dashed arrow) such that both triangles com-

mute. Equivalently we may say that the pair (L,L′) has the homotopy extension

property (the HEP for short) for the morphism of simplicial sets π : K −→ Q.

The following provides a characterization of Kan fibrations.

3.2.11 Theorem. The following assertions are equivalent:

(a) π : K −→ Q is a Kan fibration.

(b) π : K −→ Q is surjective and has the HLP for the pairs (∆[n], ∆̇[n]), n =

0, 1, . . . .

(c) π : K −→ Q is surjective and has the HLP for all pairs (L,L′) of simplicial

sets.

Proof: Clearly (a) ⇒ (b). Namely assume first that e = [0] and consider the

generating simplexes ci of ∆[n]×∆[1] (see 3.1.3). According to 3.1.3, G(dj(ci)) for

i ̸= j ̸= i+1 and to 2.2.7, G(dn+1(cn)) are defined. One may choose η̃(cn) so that

it is a filling of the horn

(G(d0(cn)), G(d1(cn)), . . . , G(dn−1(cn)), G(dn+1(cn))) over η(cn) ,

and then we may choose η̃(cn−1) to be a filling of

(G(d0(cn−1)), G(d1(cn−1)), . . . , G(dn−2(cn−1)), G(dn+1(cn−1))) ,

et cetera. Thus diη̃(ci) = diη̃(ci−1) for all i. By 3.1.4, η̃ is a morphism of simplicial

sets which obviously makes diagram (3.2.10) commute. In case that e = [1] one

begins with c0, then c1 and so on and proceeds analogously as above.
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To see that (b) ⇒ (c), one should proceed skeleton by skeleton inductively

under the assumption that η̃n−1 has been already defined in such a way that the

next diagram commutes:

(3.2.12)

L× e ∪ L′ ×∆[1]
γ //

� _

��

K

π

��

L× e ∪ (L′ ∪ Ln−1)×∆[1]� _

��

η̃n−1
66llllllll

L×∆[1] η
// Q

Next diagram (with the solid arrows) commutes:

(3.2.13)

∆[n]× e ∪ ∆̇[n]×∆[1]
x×id //

� _

��

L× e ∪ (L′ ∪ Ln−1)×∆[1]
η̃n−1

//
� _

��

K

π

��
∆[n]×∆[1]

η̃x

22ddddddddddddddddddddd

x×id
// L×∆[1] η

// Q

By (b) we can complete it with η̃x (dashed arrow) making the triangles commute.

Then we define

η̃n : L× e ∪ (L′ ∪ Ln)×∆[1] −→ K

by

η̃n(x, t) =

{
η̃n−1(x, t) if (x, t) ∈ L× e ∪ (L′ ∪ Ln−1)×∆[1] ,

η̃x([n], t) .

for the nondegenerate x ∈ Ln. η̃n is a morphism of simplicial sets for which diagram

(3.2.12) with n instead of n− 1 commutes.

Now we prove (c) ⇒ (a). In the diagram

(3.2.14)

∆[n]× e ∪ Λ[n, i]×∆[1]
η| //

� _

��

Λ[n, i] //
� _

��

K

π

��
∆[n]×∆[1]

η̃

33hhhhhhhhhhhh

η
// Λ[n]

ζ

<<y
y

y
y

y
// Q

the right subdiagram is given (solid arrows) and we wish to find the dashed arrow ζ

so that the two triangles commute. Take first i > 0 and we choose e = [1] and define

η according to 3.1.4 by η(j) = j for all j, η(j′) = j for all j ̸= i−1 and η((i−1)′) = i.

Then η is a morphism of simplicial sets for which η(∆[n]× [1] ∪ Λ[n, i]×∆[1]) ⊂
Λ[n, i]. If i = 0, we choose e = [0] and η = ω (see 3.1.7). In both cases, using

(b), one can find a morphism of simplicial sets η̃ which makes diagram (3.2.14)

commutative. One defines ζ by ζ([n]) = η̃([n], 1− e). ⊓⊔

We finish this section stating a result which is the simplicial version of the

topological fact that that the inclusion A ↪→ X of a subcomplex A of a CW-

complex X has the homotopy extension property (see Definition 4.3.1). It follows

from the previous result if we take Q = ∆[0].



3.3 Simplicial homotopy groups 49

3.2.15 Theorem. A simplicial set K is a Kan set if and only if it has the following

homotopy extension property. For e = [0] or [1] and every pair of simplicial sets

(L,L′), given a morphism α : L −→ K and a simplicial homotopy η : L′×∆[1] −→
K such that η|L′×[0] = α|L′, there is a homotopy η̃ : L × ∆[1] −→ K such that

η̃|L′×∆[1] = η and η̃|L×[0] = α. In diagrams

(3.2.16)

L′
� _

j

��

j0 // L′ ×∆[1]

j×id

�� η

��

L
j0

//

α //

L×∆[1]
η̃

%%K
KKKK

K .

or L× [0] ∪ L′ ×∆[1]
(α,η) //

� _

��

K .

L×∆[1]

η̃

77ooooooo

⊓⊔

3.3 Simplicial homotopy groups

In this section we define the simplicial homotopy groups of a simplicial set and we

construct the long exact sequence of simplicial homotopy groups determined by a

Kan fibration. Given a pointed Kan set K, i.e., each set Kn has a distinguished

base point ∗, there are two different definitions of πn(K). The first is the following.

We wish to acknowledge here that for many of the proofs we were inspired by [16],

[31], and [34].

3.3.1 Definition. Let K be a pointed Kan set. We consider the set

πn(K) = [∆̇[n+ 1], ∗;K, ∗] n = 1, 2, . . .

of homotopy classes of morphisms of pairs of simplicial sets, where ∆̇[n+1] denotes

the boundary of ∆[n+ 1], .

Notice that we require that K is a Kan set in order for homotopy to be an

equivalence relation. For the other definition, we need some preparation.

3.3.2 Definition. Two n-simplexes x, x′ ∈ Kn are said to be homotopic if the

following hold:

(a) di(x) = di(x
′) for 0 ≤ i ≤ n.

(b) There is a simplex y ∈ Xn+1 such that

(i) dn(y) = x,

(ii) dn+1(y) = x′, and

(iii) di(y) = sn−1di(x) = sn−1di(x
′), 0 ≤ i ≤ n− 1.
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In other words, such that

D(y) = (sn−1d0(x), . . . , sn−1dn−1(x), x, x
′) .

The previous definition means that the two homotopic simplexes x and x′ have

the same boundaries and that y acts as a homotopy between them relative to the

boundary, in such a way that x and x′ become two of the faces of y. The rest of

the faces of y degenerate. See Figure 3.4.
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Figure 3.4

3.3.3 Exercise. Show that homotopy of simplexes is an equivalence relation for

Kan sets. (Hint: Arrange a simplex in such a way that the known parts fall on

certain faces of horns and the parts whose existence we want to show fall on the

missing faces. The Kan extension condition allows these relations to exist.)

Now we can give the second definition of πn(K).

3.3.4 Definition. Let K be a pointed Kan set. We define πn(K) to be the set

of equivalence classes of n-simplexes x of K such that di(x) ∈ ∗, 0 ≤ i ≤ n, up to

homotopy of simplexes.

There are two things to be done. One is to show that both definitions are

equivalent. The second is how to endow πn(K) with a group structure. First we

need some preparation.

3.3.5 Lemma. Let K be a Kan set and assume that di(x) = di(x
′) for all i. Then

we obtain the same equivalence relation of Definition 3.3.2 if we instead require

that dr(y) = x, dr+1(y) = x′ for some 0 ≤ r ≤ n, and di(y) = disr(x) = disr(x
′)

for i ̸= r, r + 1. In other words, if

D(y) = (sn−1d0(x), . . . , sn−1dr−1(x), x, x
′, sn−1dr+2(x), . . . , sn−1dn(x)) .
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Proof: A full proof is available in [34, Lemma 5.5]. We sketch here some ideas of

it. It is a sort of induction, since one proves that for relevant values of r there is

a y as in Definition 3.3.2, namely so that dr(y) = x and dr+1(y) = x′, then there

is some other y′ such that dr+1(y
′) = x and dr+2(y

′) = x′. One does this showing

that there is an n + 2-simplex z that contains the n + 1-simplexes y and y′ and

then one uses the Kan extension property of K. Figure 3.5 shows this in small

dimension.

0
∗

1

2

x x′

y

3

1

2

0

x

x′

∗

x′

x′

y

∗
s0(X

′)

s1(x
′)

Figure 3.5

⊓⊔

Given an n-simplex x ∈ Kn of a simplicial set, there is a unique morphism of

simplicial sets ξ : ∆[n] −→ K which maps the only nondegenerate n-simplex en of

∆[n] exactly to x. We say that ξ represents x. We have the next.

3.3.6 Lemma. Let K be a Kan set. Then two n-simplexes x and x′ in K are ho-

motopic in the sense of 3.3.2 if and only if the morphisms ξ and ξ′ which represent

them are homotopic in the sense of 3.1.5.

Proof: We assume first that x and x′ are homotopic n-simplexes of K which are

represented by morphisms ξ, ξ′ : ∆[n] −→ K. Hence there is an n + 1-simplex

y ∈ Kn+1 that connects x and x′, for instance dn(y) = x, dn+1(y) = x′, and

di(y) ∈ ∗ for all other values of i. We must define a morphism η : ∆[n]×∆[1] −→ K

which yields the desired homotopy. We already know that in the bottom and top

η must be given by ξ and ξ′, respectively. Now η must be such that the image of

one of the n + 1-simplexes yields y, let it be the last, and put si(x) in the others

(see Figure 3.6).

Conversely, assume that ξ and ξ′ are homotopic relative to ∗ via η : ∆[n] ×
∆[1] −→ K. The image of η is a simplicial subset such that each of the nondegen-

erate n + 1-simplexes of the prism has two n-faces which are not in ∆̇[n] × ∆[1]

and the rest are in ∆̇[n]×∆[0] which goes totally to ∗ in K. It is not difficult to

verify that the two n-faces not in ∆̇[n] × ∆[1] are consecutive faces. These faces
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are consecutive homotopies which by the transitivity property of the homotopy

relation imply the homotopy between x and x′. ⊓⊔

In order to prove the equivalence between the two definitions of the homotopy

groups, we need one more previous result, which is very familiar in the topological

context.

3.3.7 Lemma. Given a pointed Kan set K, there is a bijection

[∆[n], ∆̇[n];K, ∗] −→ [∆̇[n+ 1], ∗;K, ∗] .

Proof: Take β : (∆[n], ∆̇[n]) −→ (K, ∗), identify ∆[n] with the face d0∆[n + 1],

and define α : (∆̇[n+1], ∗) −→ (K, ∗) by defining it by β on d0∆[n+1] and by the

only morphism to ∗ on di∆[n+1] for i > 0. Following the same procedure one can

prove that a homotopy of β relative to ∆̇[n] determines a homotopy of α relative

to ∗. Thus we have a well-defined function

Φ : [∆[n], ∆̇[n];K, ∗] −→ [∆̇[n+ 1], ∗;K, ∗] , Φ([β]) = [α] .

Conversely, assume given a morphism α : (∆̇[n + 1], ∗) −→ (K, ∗). We shall

show that there is a homotopy from α to a morphism α′ which maps the horn

Λ[n + 1, 0] to ∗. Once we have done this, we define β as α′|d0∆[n+1], modulo the

obvious isomorphism.

As we did in 3.3.6, in order to construct a homotopy between two inclusions

of k-simplexes x and x′ in K, it is enough to find a a simplex y in K such that

dk(y) = x and dk+1(y) = x′, which can be taken as one of the blocks of a prism.

The rest of it can be filled up with degeneracies of either x or x′.
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The construction is by induction. The induction step is as follows. Assume

that αk−1 : ∆̇[n+ 1] −→ K is such that α([0]) ∈ ∗ and α(z) ∈ ∗ for all simplexes

z ∈ ∆̇[n + 1] of dimension ≤ k − 1 and such that [0] is a vertex of z. Then there

exists a homotopy from αk−1 to an αk which takes all simplexes up to dimension

k that have [0] as a vertex to ∗. This homotopy can be assumed to be relative to

the faces of dimension up to k − 1 which have [0] as a simplex.

Of course we can take α0 = α, and assume that we have constructed αk−1 for

k ≥ 1. We have to define only the desired homotopy on the k-simplexes of ∆[n+1]

which have [0] as a vertex. Then we may apply the homotopy extension theorem

3.2.15. Hence we let z be a k-simplex of ∆[n + 1] having 0 as a vertex. We know

already that αk−1di(z) ∈ ∗ for all i ̸= 0. Take the horn Λ[k+1, 0] and observe that

we can map it into K in such a way that the k-face corresponding to dk+1∆[k+1]

is αk−1(z) and that all other k-faces are mapped into ∗. This can be done since

αk−1di(z) ∈ ∗ for all i > 0. Since K is a Kan set, we can extend the horn to a

k + 1-simplex y in K with the property that dk+1(y) = αk−1(z) and dk(y) ∈ ∗.
This is all we need to define a homotopy on z starting with αk−1(z) and ending

with with the only map from z into ∗. Moreover, this homotopy is relative to all

faces of z for which [0] is a simplex. These homotopies can be found for all such

simplexes z independently and compatibly. This way, we obtain a homotopy on

all k-simplexes of ∆[n + 1] having [0] as a vertex, which starts at αk−1 and ends

with the map to ∗. The desired homotopy to αk is now obtained extending this

one using Theorem 3.2.15.

Inductively, we obtain a morphism αn+1 : ∆̇[n+ 1] −→ K which is homotopic

to the given α and is such that the horn Λ[n + 1, 0] is mapped into ∗. We now

define β as the restriction αn+1|d0∆[n+1].

Now suppose that α, α′ : ∆̇[n+ 1] −→ K are homotopic relative to ∗. In order

to show that the corresponding β and β′ constructed as above, are homotopic, we

must define a homotopy which starts with the homotopyH : ∆̇[n+1]×∆[1] −→ K,

H : α ≃ α′, and ends with a homotopy Hk+1 : ∆̇[n + 1] ×∆[1] −→ K such that

Hk+1(Λ[n + 1, 0] × ∆[1]) ∈ ∗ and extends the homotopies constructed for α and

α′, as we did above. Then the restriction Hk+1|d0∆[n+1]×∆[1] will be the desired

homotopy from β to β′. Thus the class [β] depends only on the class [α] and so we

have a well defined function

Ψ : [∆̇[n+ 1], ∗;K, ∗] −→ [∆[n], ∆̇[n];K, ∗]

which can be shown to be the inverse of Φ defined above. ⊓⊔

Now we can pass to the group structure of πn(K). Notice first that an element

[α] ∈ πn(K), which is given by a morphism of simplicial sets α : ∆[n] −→ K such

that α(∆̇[n]) = ∗ determines a unique n-simplex a ∈ Kn such that di(a) = ∗ for
all i.
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3.3.8 Definition. Let K be a Kan set. Given two simplexes a, b ∈ Kn such that

di(a) = di(b) = ∗ for all i, one may consider the horn (∗, . . . , ∗, a,−, b). Fill the
horn with v ∈ Kn+1 and put c = dn(v), then c is such that di(c) = ∗ for all i. We

can define the product of the elements of πn(K) represented by a and b by

[a] · [b] = [c] .

Figures 3.7 and 3.8 illustrate this construction for n = 1 and n = 2 respectively.

3.3.9 Proposition. The homotopy class of c depends only on the homotopy classes

of a and b.

Proof: Assume that v′ ∈ Kn+1 also satisfies dn−1(v
′) = a, dn+1(v

′) = b, and

otherwise di(v
′) = ∗. By the extension condition, there is a w ∈ Kn+2 such that

di(w) = ∗ for 0 ≤ i ≤ n− 2, dn−1(w) = sndn−1(v), dn+1(w) = v and dn+2(w) = v′.

Hence dn−1(w) is a homotopy from dn(v) and dn(v
′).
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Assume now that b is homotopic to b′, namely there is some w ∈ Kn+1 such that

di(w) = ∗, 0 ≤ i ≤ n−1, dn(w) = b′ and dn+1(w) = b. We can find w′ ∈ Kn+1 such

that dn−1(w
′) = a, dn+1(w

′) = b′, and di(w
′) = ∗, 0 ≤ i ≤ n−1. It follows from the

extension condition that there is a u ∈ Kn+2 such that di(u) = ∗, 0 ≤ i ≤ n − 2,

dn−1(u) = sn−1(a), dn(u) = w′, and dn+2(u) = w.

Hence dndn+1(u) = dn(v
′), dn+1dn+1(u) = b, and dn−1(u) = a. This means

that we may take the same v for either b or b′. Analogously one may prove that

the homotopy class of c is independent on how we choose a. ⊓⊔

3.3.10 Proposition. With the operation defined above, πn(K) is a group if n ≥ 1.

Proof: Let a, b ∈ Kn represent two elements of πn(K). By the extension property,

there is v ∈ Kn+1 such that di(z) = ∗, 0 ≤ i ≤ n− 1, dn(v) = b, and dn+1(v) = a.

Hence [dn−1(v)] · [a] = [b]. This proves divisibility on the left. Divisibility on the

right is proven similarly. Taking b = ∗ one obtains left and right inverses of [a].

If a, b, c ∈ Kn represent three elements of πn(K), if we use the extension

property, then we may choose vn−1, vn+1, vn+2 ∈ Kn+1 such that di(vν) = ∗,
0 ≤ i ≤ n − 2 and ν = n − 1, n + 1, n + 2, dn−1(vn−1) = a, dn+1(vn−1) = b,

dn−1(vn+1) = dn(vn−1), dn+1(vn+1) = c, dn−1(vn+2) = b, and dn+1(vn+2) = c.

From these equalities, we obtain

([a] · [b]) · [c] = [dn(vn−1)] · [c] = [dn−1(vn+1)] · [c]
= [dn(vn+1)] = [a] · [dn(wn+2)] = [a] · ([b] · [c]) .

Hence the operation is associative. ⊓⊔

The assignment K 7→ πn(K) is a functor SSet −→ Grp. We have namely the

next. Let f : K −→ L be a morphism of pointed simplicial sets between Kan sets,

and take a ∈ Kn such that di(a) = ∗ for all i. Since f is a morphism of simplicial

sets, dif(a) = fdi(a) = ∗. If a ≃ a′, then by definition, there is an element

u ∈ Kn+1 such that dn(u) = a, dn+1(u) = a′, and di(u) = ∗ for 0 ≤ i < n. Hence

dnf(u) = fdn(u) = f(a), dn+1f(u) = fdn+1(u) = f(a′), and dif(u) = fdi(u) = ∗
for 0 ≤ i < n. Consequently f(a) ≃ f(a′) and so f defines a function

f∗ : πn(K) −→ πn(L) .

3.3.11 Proposition. The following hold:

(a) If f0, f1 : K −→ L are homotopic pointed morphisms of simplicial sets, then

f0∗ = f1∗ : πn(K) −→ πn(L).

(b) (idK)∗ = 1πn(K) and if f : K −→ L and g : L −→ M are morphisms of

simplicial sets, then (g ◦ f)∗ = g∗ ◦ f∗.
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(c) If f : K −→ L is a morphism of simplicial sets and n ≥ 1, then f∗ :

πn(K) −→ πn(L) is a homomorphism.

Proof: We take the definition πn(K) = [∆[n], ∆̇[n];K, ∗] for this. Therefore let

a : (∆[n], ∆̇[n]) −→ (K, ∗) be a morphism of simplicial sets. Then f0 ◦ a, f1 ◦ a :

(∆[n], ∆̇[n]) −→ (K, ∗) are homotopic. Hence

f0∗([a]) = [f0 ◦ a] = [f1 ◦ a] = f1∗([a])

and this proves (a).

Obviously (idK)∗ = 1πn(K) and on the other hand if a : (∆[n], ∆̇[n]) −→ (K, ∗)
is a morphism of simplicial sets, then

(gf)∗([a]) = [(g ◦ f) ◦ a] = [g ◦ (f ◦ a)] = g∗f∗([a])

and this proves (b).

Take f : K −→ L and a, b, c ∈ Kn are such that di(a) = di(b) = di(c) = ∗ for
all i and [c] = [a][b]. Namely there is u ∈ Kn+1 such that

D(u) = (∗, . . . , ∗, a, c, b) .

Then f(u) ∈ Ln+1 is such that

D(f(u)) = (∗, . . . , ∗, f(a), f(c), f(b)) .

Hence [f(c)] = [f(a)][f(b)]. In other words

f∗([a][b]) = f∗([a])f∗([b])

and this proves (c). ⊓⊔

3.3.12 Proposition. If n ≥ 2, then the group πn(K) is abelian.

Proof: Take elements a, b, c, e ∈ Kn. We shall give the proof in four steps.

First step. Assume that vn+1 ∈ Kn+1 is such that

D(vn+1) = (∗, . . . , ∗, a, c, b, ∗) .

We show that [a][b] = [c].

Choose vn−1 ∈ Kn+1 such that

dn(vn−1) = c , dn+1(vn−1) = b , di(vn−1) = ∗ , 0 ≤ i ≤ n− 2 .

Define c′ = dn−1(vn−1) and vi = ∗ if 0 ≤ i < n − 2, vn−2 = sn(b), and vn+2 =

sn−2(b). Then the vis satisfy Kan’s extension condition, namely there is an r ∈
Kn+2 such that di(r) = vi for all i ̸= n and we may put vn = dn(r). Then

D(vn) = (∗, . . . , ∗, c′, a, ∗) .
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Hence [c′][∗] = [a]. On the other hand, the choice of vn−1 implies [c′][b] = [c], thus

[a][b] = [c].

Second step. Now assume that vn ∈ Kn+1 satisfies

D(vn) = (∗, . . . , ∗, b, ∗, a, e) .

We show that [b][a] = [e].

Choose vn−1 ∈ Kn+1 such that

di(vn−1) = ∗ , 0 ≤ i < n−2 , dn−2(vn−1) = b , dn−1(vn−1) = ∗ , dn+1(vn−1) = ∗ .

Put c′ = dn(vn−1) and let vi = ∗ if 0 ≤ i < n − 2 and let vn−2 = sn−2(b) and

vn+2 = sn(e). Then the vis satisfy Kan’s extension condition, namely there is an

r ∈ Kn+2 such that di(r) = vi for all i ̸= n+ 1 and we may put vn+1 = dn+1(r).

D(vn+1) = (∗, . . . , ∗, c′, a, e)

hence [c′][e] = [a]. On the other hand, the choice of vn−1 and the first step imply

[c′][b] = [∗], so that [b] = [c′]−1 and so [b][a] = [c′]−1[a] = [e].

Third step. Suppose that vn+2 ∈ Kn+1 satisfies

D(vn+2) = (∗, . . . , ∗, b, c, a, e) .

We show that [b]−1[c][e] = [a].

Choose vn−2 ∈ Kn+1 with faces di(vn−2) = ∗, i ̸= n− 2, n+ 1, dn+1vn+2) = b

and dn−2(vn−2) = c′. Take another element vn−1 ∈ Kn+1 such that di(vn−1) = ∗,
0 ≤ i < n − 2 or i = n − 1, and dn−2(vn−1) = c′, dn+1(vn−1) = c, and set

b′ = (vn−1). Let vi = ∗, 0 ≤ i < n − 2, vn = sn(a). Then the vi satisfy the

extension connection, i.e. di(r) = vi, i ̸= n+1. Set vn+1 = dn+1(r). By the second

step, [c′] = [b] and [c′][b′] = [c]. On the other hand, D(vn+1) = (∗, . . . , ∗, b′, a, e).
Therefore [b′][e] = [a]. Combining we obtain [b]−1[c][e] = [a].

Fourth step. In the third step put e = ∗. Hence [b]−1[c] = [a] and applying the

first step to vn+2 of the third step in this case, it results that [a] = [c][b]−1. Thus

for every [b] and [c], [b]−1[c] = [c][b]−1, and this implies the desired result. ⊓⊔

3.4 Long exact sequence of a Kan fibration

In this section we shall derive the long exact sequence of a Kan fibration p : K −→
Q with fiber M . We start by defining the connecting homomorphism as follows.

3.4.1 Definition. Take a ∈ Qn such that di(a) = ∗ for all i. By the Kan condition

for a fibration, there is an a′ ∈ Kn such that p(a′) = a and di(a
′) = ∗ if 1 ≤

i ≤ n. Hence d0(a
′) ∈ Mn−1 and did0(a

′) = ∗ for all i. The homotopy class
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[d0(a
′)] ∈ πn−1(M) depends only on the homotopy class [a] ∈ πn(Q), namely if

[b] = [a], we take b′ ∈ Kn such that p(b′) = b and di(b
′) = ∗ if 1 ≤ i ≤ n. Since

a and b are homotopic, there is a u ∈ Qn+1 such that D(u) = (∗, a, b, ∗, . . . , ∗).
By the Kan-fibration condition, there is a u′ ∈ Kn+1 such that p(u′) = u and

D(u′) = (d0(u
′), a′, b′, ∗, . . . , ∗). Then d0(u′) ∈Mn and

D(d0(u
′)) = (d0(a

′), d0(b
′), ∗, . . . , ∗) .

Hence [d0(a
′)] = [d0(b

′)]. Therefore we have a well-defined function

∂ : πn(Q) −→ πn−1(M) given by [a] 7→ [d0(a
′)] .

3.4.2 Proposition. The function ∂ : πn(Q) −→ πn−1(M) is a natural homomor-

phism.

Proof: Recall that in the case of n = 1, the set π0(M) regularly has no group

structure. In this case what one can expect is that ∂([∗]) = [∗], which is indeed

clearly true. Thus we assume that n ≥ 2. Take a, b, c ∈ Qn such that D(a) =

D(b) = D(c) = ∗ and [a] + [b] = [c]. This means that there is u ∈ Qn+1 such that

D(u) = (∗, b, c, a, ∗, . . . , ∗). By the Kan-fibration condition, there is an element

u′ ∈ Kn+1 such that p(u′) = u and D(u′) = (d0(u
′), b′, c′, a′, ∗, . . . , ∗), where the

elements a′, b′, c′ are to a, b, c as in Definition 3.4.1 a′ is to a. Then d0(u
′) ∈Mn−1

and

D(d0(u
′)) = (d0(b

′), d0(c
′), d0(a

′), ∗, . . . , ∗) .

Hence, by Definition 3.4.1,

∂([a]) + ∂([b]) = [d0(a
′)] + [d0(b

′)] = [d0(c
′)] = ∂([c])

and thus ∂ is a homomorphism.

3.4.3 Theorem. Given a Kan fibration p : K −→ Q with fiber M , there is a

natural long exact sequence

· · · −→ πn(M) −→ πn(K) −→ πn(Q)
∂−→ πn−1(M) −→ · · ·

−→ π1(Q)
∂−→ π0(M) −→ π0(K) −→ π0(Q) −→ 0 ,

where exactness in the nongroup part simply means that the image of a function

coincides with the inverse image of the base point under the next function.

Proof: Consider elements a ∈Mn, b ∈ Kn, and c ∈ Qn such that D(a) = D(b) = ∗
and D(c) = ∗ and let i :M ↪→ K be the inclusion.

(a) We clearly have that p∗ ◦ i∗ = 0 since M = p−1(∗) and thus p ◦ i = ∗.

(b) We have that ∂ ◦ p∗ = 0 since ∂p∗([b]) = [d0(b)] = [∗].
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(c) One has i∗ ◦ ∂ = 0. Namely, let c′ ∈ Kn be to c ∈ Qn as a′ is to a in 3.4.1,

namely p(c′) = c and D(c′) = (d0(c
′), ∗, . . . , ∗). Then i∗∂([c]) = [d0(c

′)] ∈ πn−1(K).

But by the form of D(c′) it follows that d0(c) and ∗ are homotopic in K. Thus

i∗∂([c]) = 0.

(d) Now suppose that i∗([a]) = 0. This means that a ∈ Mn is homotopic

to ∗ in K. Hence there exists u ∈ Kn+1 such that D(u) = (a, ∗, . . . , ∗), and so

D(p(u)) = ∗ and ∂([p(u)]) = [a], therefore [a] ∈ im (∂). This together with (c)

shows the exactness at πn(M).

(e) If p∗([b]) = 0, then there is u ∈ Qn+1 such that D(u) = (∗, p(b), ∗, . . . , ∗). To
such a u there is u′ ∈ Kn+1 such that p(u′) = u and D(u′) = (d0(u

′), b, ∗, . . . , ∗).
Hence d0(u

′) lies in Mn, D(d0(u
′)) = ∗, and d0(u′) is homotopic to b in K. Thus

i∗([d0(u
′)]) = [b], and so [b] ∈ im (i∗). This together with (a) shows the exactness

at πn(K).

(f) Assume ∂([c]) = 0. Let again c′ ∈ Kn be to c ∈ Qn as a′ is to a in

3.4.1, namely such that p(c′) = c and D(c′) = (d0(c
′), ∗, . . . , ∗), but also such

that [d0(c
′)] = 0. Hence there is a u ∈ Mn such that D(u) = (∗, d0(c′), ∗, . . . , ∗).

By the Kan-fibration condition, there is a v ∈ Kn+1 such that p(v) = s1(c) and

D(v) = (u, d1(v), c
′, ∗, . . . , ∗). Therefore D(d1(v)) = ∗ and p(d1(v)) = c. Hence

we have the equality p∗([d1(v)]) = [c], which together with (b) yields exactness at

πn(Q). ⊓⊔
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Chapter 4 Fibrations, cofibrations, and

homotopy groups

In this chapter we shall study fibrations and cofibrations in the topological

case, and the exact sequences of homotopy groups determined by them.

For the purposes of this chapter, we shall understand by the n-ball Bn the unit

n-cube In and the n− 1-sphere Sn−1 the boundary ∂In of the unit n-cube and via

a canonical homeomorphism, also the quotient In−1/∂In−1.

4.1 Topological fibrations

In this section we study the homotopy lifting property for different families of

spaces and we analyze the special case of Serre and Hurewicz fibrations.

4.1.1 Definition. Let C be some class of k-spaces. We say that a map p : E −→ X

has the homotopy lifting property for the class C (the C-HLP for short) or that it

is a C-fibration if given a homotopy H : Y × I −→ X and a map h : Y −→ E such

that pf(y) = H(y, 0), for any space Y in C, there is a lifting H̃ : Y × I −→ E such

that pH̃(y, t) = H(y, t) and H̃(y, 0) = h(y). In a diagram

Y
h //

j0
��

E

p

��
Y × I

H
//

H̃
::v

v
v

v
v

X .

If C is the class of all unit balls Bn, then we say that p is a Serre fibration. If C is

the class of all k-spaces, then we say that p is a Hurewicz fibration

4.1.2 Exercise. Show that a Serre fibration has the homotopy lifting property

for the class of all CW-complexes.

Assume that p : E −→ X is a Hurewicz fibration and define E ×X M(I,X) =

{(e, σ) ∈ E ×M(I,X) | p(e) = σ(0)}. Consider the following commutative dia-

gram:

E ×X M(I,X)
h //

j0
��

E

p

��
E ×X M(I,X)× I

H
//

H̃

77ooooooo
X ,

61
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where h(e, σ) = e and H(e, σ, t) = σ(t). Since all spaces involved are k-spaces,

there is a solution H̃ : E ×X M(I,X) × I −→ E. If we take the adjoint Γp :

E ×X M(I,X) −→M(I, E) this map has the following properties:

Γp(e, σ)(0) = e and p ◦ Γp(e, σ) = σ .

Namely, the map Γp at the point (e, σ) lifts the path σ starting at e,

4.1.3 Definition. The map Γp : E ×X M(I,X) −→ M(I, E) is called the path-

lifting map for the Hurewicz fibration p : E −→ X.

The existence of a path-lifting map characterizes Hurewicz fibrations.

4.1.4 Theorem. A map p : E −→ X is a Hurewicz fibration if and only if it has

a path-lifting map Γp : E ×X M(I,X) −→M(I, E).

Proof: We already saw that a Hurewicz fibration p has a path-lifting map Γp.

Assume conversely that p has a path lifting map Γp. Given a homotopy H :

Y × I −→ X and a map h : Y −→ E such that pf(y) = H(y, 0), consider the

adjoint map to H, Ĥ : Y −→ M(I,X). Define K : Y −→ M(I, E) by K(y) =

Γp(h(y), Ĥ(y)). Since p(h(y)) = H(y, 0) = Ĥ(y)(0), the map K is well defined.

Defining H̃ : Y × I −→ Y to be the adjoint map to K, H̃ is the desired lifting.

Thus p is a Hurewicz fibration.

4.1.5 Examples. 1. A trivial bundle, defined as the projection on the first

factor p : X × F −→ X, is a Hurewicz fibration. Namely define a PLM by

Γ((x, y), σ) = (σ, κy), where κy is the constant path with value y. In other

words, if a point (x, y) ∈ X × F and a path σ in X are such that x = σ(0),

then the path t 7→ (σ(t), y) ∈ X × F defines a continuous PLM.

2. Let X be a pointed k-space and put PX = {σ : I −→ X | σ(0) = x0} ⊂
M(I,X) and let π : PX −→ X be given by π(σ) = σ(1). Define Γ : PX ×X
M(I,X) −→M(I, E) by

Γ(ω, σ)(t)(s) =


x0 if 4s ≤ t ,
ω( 4s−t4−2t) if t ≤ 4s ≤ 4− t ,
σ(4s+t−4

2s−1 ) if 4− t ≤ 4s .

One easily shows that the map is well defined and continuous as a function

of ω and σ. Furthermore, Γ(ω, σ)(0)(s) = ω(s), so that the path Γ(ω, σ)

starts at ω, and πΓ(ω, σ)(t) = Γ(ω, σ)(t)(1) = σ(t), so that π ◦ Γ(ω, σ) = σ.

Hence Γ is a PLM for π and so π is a Hurewicz fibration. It is the so-called

path fibration of X. Its total space PX is called the path space and its fiber

ΩX = π−1(b0) is called the loop space of X. Notice that PX is contractible,

namely the homotopy H : PX × I −→ PX given by H(σ, t) = σ1−t, where

σ1−t(s) = σ((1− t)s) is a contraction of PX to the constant path with value

x0.
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3. Let X be a pointed k-space and let now π : M(I,X) −→ X be given by

π(σ) = σ(0). Similarly as in Example 2, it is an exercise to construct a PLM

for π and thus show that it is also a Hurewicz fibration.

4. Given any continuous map f : X −→ Y , the mapping path space of f is

defined as

Ef = {(x, α) ∈ X ×M(I, Y ) | α(1) = f(x)} .

The map π : Ef −→ Y given by p(x, α) = α(0) is a Hurewicz fibration, whose

fiber π−1(y0) = Pf = {(x, α) ∈ X ×M(I, Y ) | α(0) = y0, α(1) = f(x)}, is
the so-called homotopy fiber of the pointed map f . The map i : X −→ Ef

given by i(x) = (x, κf(x)) is a homotopy equivalence with the nice property

that the following is a commutative diagram:

Ef

π
��

X

i
≃

>>}}}}}}}

f
// Y

which means that one can replace any continuous map, up to a homotopy

equivalence, by a Hurewicz fibration.

4.1.6 Definition. Let p : E −→ X be a Hurewicz fibration with fiber F =

p−1(x0), and let Γp : E ×X M(I,X) −→M(I, E) be a path-lifting map for p. Let

ΩX ⊂M(I,X) be the loop space of X, namely the subspace of loops λ : I −→ X

such that λ(0) = λ(1) = x0 (see above). Given λ ∈ ΩX, the path Γp(e0, λ) is well

defined and has the property that pΓ(e0, λ)(1) = λ(1) = x0, i. e., Γ(e0, λ)(1) ∈ F .
The map θ : ΩX −→ F given by θ(λ) = Γ(e0, λ)(1) is called the holonomy of p.

4.2 Locally trivial bundles and covering maps

A very important special case of fibrations is the following.

4.2.1 Definition. A map p : E −→ X is called a locally trivial bundle with

fiber F if every point x ∈ X has a neighborhood U ⊂ X such that there is a

homeomorphism φU : U × F −→ p−1U making the triangle

U × F φU //

π
""F

FF
FF

FF
FF

p−1U

pU||zz
zz
zz
zz

U

commute, where pU = p|p−1U : p−1U −→ U and where π is the projection onto

U . From this commutative diagram we get that φU can be restricted to a homeo-

morphism of π−1(x) = {x} × F ≈ F onto p−1(x) for all x ∈ U . Because of this we

say that the fiber is F . The open cover of such sets U is called a trivializing cover

of the bundle, and the maps φU trivializing maps.
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4.2.2 Example. If we can take U = X, that is, if E ≈ X × F , then we have a

trivial bundle. In particular, if E = X × F , then p = projX is a trivial bundle.

A very important special case of a locally trivial bundle is given as follows.

4.2.3 Definition. A locally trivial bundle p : E −→ X whose fiber F is a discrete

space is called a covering map. In particular, a covering map always is a local

homeomorphism. Figure 4.1 shows what a covering map looks like locally.

Figure 4.1

4.2.4 Proposition. Assume that X is connected. Then a map p : E −→ X is a

covering map if and only if the following condition holds:

There is an open cover U of X such that every U ∈ U is evenly covered by

p, i.e. the inverse image

p−1U =
⨿
i∈I

Ũi ,

and for each i ∈ I, p|
Ũi

: Ũi −→ U is a homeomorphism.

The proof is an easy exercise. Noteworthy is the fact that the connectedness of

X implies that all fibers p−1(x) are equivalent sets. Otherwise, given a fixed fiber

p−1(x0), the sets A = {x ∈ X | p−1(x) ≡ p−1(x0)} and B = {x ∈ X | p−1(x) ̸≡
p−1(x0)} are open disjoint nonempty sets that cover X. ⊓⊔

4.2.5 Theorem. Every locally trivial bundle is a Serre fibration.

Proof: Let p : E −→ X be a locally trivial bundle. We have to prove that for every

commutative square

Iq
f //

j0
��

E

p

��
Iq × I

H
//

H̃

;;w
w

w
w

w
X
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there exists H̃ : Iq × I −→ E such that p ◦ H̃ = H and H̃ ◦ j0 = f . For each point

x ∈ H(Iq× I) there exists a neighborhood U(x) of x such that pU(x) is trivial, and

so there exists a homeomorphism φU(x) : F × U(x) −→ EU(x) = p−1U(x). Since

H(Iq × I) is compact, we can cover it with a finite number of such neighborhoods

U(x), say U1, . . . , Uk. Since I
q×I is a compact metric space, there exists a number

ε > 0, called the Lebesgue number of the cover {H−1(Ui)}, such that every subset

of diameter less than ε is contained in some H−1(Ui). Therefore, we can subdivide

Iq into subcubes and take numbers 0 = t0 < t1 < · · · < tm = 1 in such a way

that if c is an n-face, then the image of c × [tj , tj+1] under H lies in some Ui.

(Note that the 0-faces are vertices, the 1-faces are edges, etc.) Suppose that we

have constructed H̃ on Iq × [t0, tj ]. Then we shall construct H̃ on Iq × [tj , tj+1] by

defining it on each n-subface, using induction on n.

If c is a 0-face, then we pick some Ui such that H(c × [tj , tj+1]) ⊂ Ui. Since

pH̃(c, tj) = H(c, tj), we then have H̃(c, tj) ⊂ EUi . We define

H̃(c, t) = φUi(H(c, t), projFφ
−1
Ui

(H̃(c, tj))) for t ∈ [tj , tj+1] .

This is well defined and continuous.

Assume that we have already constructed H̃ on c̃ × [tj , tj+1] for every face c̃

of dimension less than n and let c be an n-face. Let us then pick some Ui such

that H(c× [tj , tj+1]) ⊂ Ui. By hypothesis H̃ is defined on c×{tj} ∪ ∂c× [tj , tj+1].

Clearly, there exists a homeomorphism of c× [tj , tj+1] to itself that sends c×{tj}∪
∂c× [tj , tj+1] onto c× {tj}, and so using Example 1 of 4.1.5 we can complete the

diagram

c× {tj} ∪ ∂c× [tj , tj+1]
φ−1
i ◦H̃|

//
� _

��

Ui × F

proj

��
c× [tj , tj+1]

H|
//

K̃

44iiiiiiiiii
Ui.

Composing this lifting K̃ with φi, we define H̃ on c× [tj , tj+1]. In this way we

complete the induction step and obtain H̃|Iq × [0, tj+1]. Finally, by induction on

j, we define H̃ on Iq × I. ⊓⊔

4.2.6 Exercise. Using the same method of proof as in 4.2.5, prove the following

statement, which means that the concept of being a Serre fibration is a local

concept:

4.2.7 Proposition. Suppose that p : E −→ X is continuous and that there exists

an open cover {U} of X such that for each open set U in the cover the restriction

pU is a Serre fibration. Then p is a Serre fibration. ⊓⊔

4.2.8 Exercise. Assume that p : E −→ X is a covering map. Prove that p has the

unique path-lifting property; that is, p is such that for any given path α : I −→ X
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and any given point y ∈ p−1(α(0)) there exists a unique path α̃ : I −→ E satisfying

α̃(0) = y and p◦ α̃ = α. (Hint: Since p is a Serre fibration, the lifting always exists.

To prove that it is unique, show that any two liftings with the same initial point y

have to be homotopic fiber by fiber, using again the fact that p is a Serre fibration,

and notice that this is possible only if both coincide, since the fiber is discrete.)

The following is a very important example.

4.2.9 Example. Let S3 ⊂ C× C be defined as

S3 = {(z, z′) ∈ C× C | zz + z′z′ = 1} .

Also let us identify the Riemann sphere, defined by C∪{∞}, with S2 by means of

the stereographic projection e : S2 −→ C∪{∞} defined by e(ζ) = (1/1−z)(x+iy)

for ζ = (x, y, z) and z < 1 and by e(0, 0, 1) =∞. This is shown in Figure 4.2.

ζ

e(ζ)

ζ
e(ζ)

Figure 4.2

We have a map

p : S3 −→ S2 = C ∪ {∞}

defined by

p(z, z′) =

{
z
z′ if z′ ̸= 0 ,

∞ if z′ = 0 .

Then p is a locally trivial bundle with fiber S1 = {ζ ∈ C | ζζ = 1}, as we shall

soon see.

Put U = S2 − {∞}(= C) and V = S2 − {0}. We define a homeomorphism

φU : U × S1 −→ p−1U

by φU (z, ζ) =
(
ζz/
√
zz + 1, ζ/

√
zz + 1

)
. It then has an inverse

ψU : p−1U −→ U × S1
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given by ψU (z, z
′) = ( zz′ ,

z′

|z′|).

We define another homeomorphism

φV : V × S1 −→ p−1V

by

φV (z, ζ) =

(
|z|ζ√
zz + 1

,
|z|ζ

z
√
zz + 1

)
if z ∈ C− {0} and by φV (∞, ζ) = (ζ, 0). Then its inverse

ψV : p−1V −→ V × S1

is given by ψV (z, z
′) =

(
z
z′ ,

z
|z|

)
if z′ ̸= 0 and by ψV (z, 0) = (∞, z).

So we have that p : S3 −→ S2 is locally trivial. This locally trivial bundle is

called the Hopf fibration.

Given maps p : E −→ X and f : Y −→ X, we may construct the pullback

of p over f , denoted by f∗(p) : f∗(E) −→ Y , where f∗(E) = {(y, e) ∈ Y × E |
f(y) = p(e)} and f∗(p) : f∗(E) −→ Y is the projection. All these maps fit into

the so-called pullback diagram

f∗(E)

f∗(p)
��

f̃ // E

p

��
Y

f
// X ,

where f̃ : f∗(E) −→ E is the other projection. I.e. f∗(p)(y, e) = y and f̃(y, e) = y.

4.2.10 Proposition. If p : E −→ X is a locally trivial bundle and f : Y −→ X is

continuous, then the pullback of p over f , f∗(p) : f∗(E) −→ Y , is a locally trivial

bundle that has the same fiber F as p has.

Proof: Suppose that y ∈ Y and that U is a neighborhood of f(y) in X such that

there exists a homeomorphism φU that makes the triangle

U × F φU //

""F
FF

FF
FF

FF
p−1U

||zz
zz
zz
zz

U

commute. Put V = f−1U . Then V is a neighborhood of y, and the map ψV :

V × F −→ f∗(p)−1V given by ψV (y, e) = (y, φU (f(y), e)) is a homeomorphism

that makes the triangle

V × F ψV //

""F
FF

FF
FF

FF
f∗(p)−1V

zzuuu
uuu

uuu
u

V

commute. ⊓⊔
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4.2.11 Corollary. Given a covering map p : E −→ X and a map f : Y −→ X,

the pullback f∗(p) : f∗(E) −→ Y is covering map that has the same fiber as p. ⊓⊔

4.2.12 Example. Assume that R is the space of real numbers and consider the

exponential map

p : R −→ S1

defined by p(t) = e2πit ∈ S1 ⊂ C. Clearly, we have that p(t) = p(t′) if and only if

t′ − t ∈ Z. So we have that S1 ∼= R/Z as abelian groups and as topological spaces.

Let us show that it is a locally trivial bundle with fiber Z (see Figure 4.3). Put

U = S1 − {1}, so that we have p−1U = R − Z. Then there is a homeomorphism

ψU that makes the triangle

p−1U
ψU //

""D
DD

DD
DD

D U × Z

||yy
yy
yy
yy
y

U

commute. It is given by ψU (t) = (e2πit, [t]), where [t] ∈ Z satisfies t = [t] + t′ with

0 < t′ < 1. And its inverse φU : U × Z −→ p−1U is given by φU (ζ, n) = n + t,

where ζ = e2πit ∈ U with 0 < t < 1.

Figure 4.3

Analogously, if we put V = S1 − {−1}, so that

p−1V = R−
(
Z+

1

2

)
=

{
t ∈ R | t ̸= n+

1

2
; n ∈ Z

}
,

then we define ψV : p−1V −→ V × Z by ψV (t) =
(
e2πit,

[
t+ 1

2

])
. Then its inverse

φV : V × Z −→ p−1V is given by φV (ζ, n) = n + t for ζ = e2πit ∈ V with

−1
2 < t < 1

2 .
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4.2.13 Exercise.

(a) Let pi : Ei −→ Xi be a covering map for i = 1, 2, . . . , n. Show that the

product

p1 × · · · × pn : E1 × · · · × En −→ X1 × · · · ×Xn

is a covering map.

(b) Show that in general an infinite product of covering maps is not a covering

map. (Hint: Let p : R −→ S1 be the exponential map and assume that for

each i = 1, 2, . . . , pi = p. Prove that

q =
∞∏
i=1

pi :
∞∏
i=1

Ei −→
∞∏
i=1

Xi ,

where Ei = R and Xi = S1 for all i, is not a covering map.

In view of the rich structure of Hurewicz fibrations, it is a pertinent question,

under what conditions a locally trivial bundle is a Hurewicz fibration. A quite gen-

eral answer is given in [10]. In order to state the result, we need some preparation.

4.2.14 Definition. Given an open cover U = {Uα | α ∈ I} of a topological

space X, we define a partition of unity subordinate to U as a family of continuous

functions ηα : X −→ I, α ∈ I, such that the following hold:

(i) supp (ηα) ⊆ Uα, where supp (ηα) denotes the closed support of ηα, namely

the closure of the set u−1
α (0, 1].

(ii) Every point x ∈ X has a neighborhood V such that the restrictions ηα|V ≡ 0

except for finitely many indexes α.

(iii) For each point x ∈ X the (finite) sum
∑

α∈I ηα(x) = 1.

In metric spaces, each open cover admits a subordinate partition of unity as

one may show. We have the following.

4.2.15 Definition. A space X is said to be paracompact if any open cover of X

admits a subordinate partition of unity.

Thus any metric space is paracompact. By a theorem of Miyazaki [37], every

CW-complex is paracompact.

We have the next result due to Dold [10].

4.2.16 Theorem. Let p : E −→ X be a locally trivial bundle and let U be a

trivializing cover. If U admits a partition of unity, then p : E −→ X is a Hurewicz

fibration.
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As a consequence, we have the following.

4.2.17 Corollary. Let p : E −→ X be a locally trivial bundle over a paracompact

space X. Then p : E −→ X is a Hurewicz fibration. ⊓⊔

4.3 Topological cofibrations

The concept of cofibration is dual to that of fibration.

4.3.1 Definition. Let C be some class of k-spaces. We say that an inclusion map

i : A −→ X has the homotopy extension property for the class C (the C-HEP for

short) or that it is a C-cofibration if given a homotopy H : A × I −→ Y and a

map f : X −→ Y such that f(a) = H(a, 0), for any space Y in C, there is a map

H̃ : X × I −→ E such that H̃(x, 0) = f(x) for all x ∈ X, and H̃(a, t) = H(a, t) for

all a ∈ A, t ∈ I. In a diagram

(4.3.2)

A� _

j

��

j0 // A× I
j×id

�� H

��

X
j0

//

f //

X × I
H̃

$$H
HH

HH

Y .

If C is the class of all k-spaces, then we say that j is a cofibration.

For what follows, we shall require two elementary concepts. Recall that A is

a retract of X if A ⊂ X and there is a map r : X −→ A, called retraction, such

that r|A = idA. Furthermore, we say that A is a strong deformation retract of X

if A ⊂ X and there exists a homotopy H : X × I −→ X such that

H(x, 0) = 0 for all x ∈ X ,

H(a, t) = a for all a ∈ A, t ∈ I ,
H(x, 1) ∈ A for all x ∈ X .

In this case, r(x) = H(x, 1) is a retraction r : X −→ A, which we call strong

deformation retraction. The homotopy H is called a deformation.

In the next we shall follow the papers [47, 48]. The following is a useful char-

acterization of a cofibration.

4.3.3 Proposition. Let A ⊂ X be closed. Then the inclusion map j : A ↪→ X is

a cofibration if and only if there is a retraction r : X × I −→ X × {0} ∪A× I.
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Proof: Notice first that X ×{0} and A× I are closed in their union, hence a map

φ : X×{0}∪A×I −→ Y is continuous if and only if its restrictions to both closed

sets are continuous. Assume that we have a retraction r and we have the homotopy

extension problem depicted in (4.3.2). The maps f and H determine a well-defined

continuous mapK : X×{0}∪A×I −→ Y . The composite H̃ = K◦r : X×I −→ Y

solves the extension problem. Thus j is a cofibration.

Conversely, assume that j : A ↪→ X is a cofibration and in the extension

problem (4.3.2) take Y = X × {0} ∪ A × I as well as f : X −→ X × {0} ∪ A × I
and H : A × I ↪→ X × {0} ∪ A × I to be the inclusions. Then the extension

r = H̃ : X × I −→ X × {0} ∪A× I is the desired retraction. ⊓⊔

The previous result is indeed stronger. We have the following.

4.3.4 Proposition. Let A ⊂ X be closed. Then the inclusion map j : A ↪→ X is

a cofibration if and only if there is a strong deformation retraction r : X × I −→
X × {0} ∪A× I.

Proof: It only remains to prove that if j : A ↪→ X is a cofibration and r : X×I −→
X × {0} ∪A× I is a retraction, then r is indeed a strong deformation retraction.

Consider the homotopy H : X × I × I −→ X × I given by

H(x, s, t) = (r1(x, ts), tr2(x, s) + s(1− t)) ,

where r(x, t) = (r1(x, t), r2(x, t)), r1(x, t) ∈ X and r2(x, t) ∈ I. If s = 0, then

r(x, 0) = (x, 0), hence H(x, 0, t) = (x, 0), and if x ∈ A, then r(x, t) = (x, t), hence

H(x, s, t) = (x, s). Therefore, the homotopy is relative to X×{0}∪A× I. Finally,
H(x, s, 0) = (x, s) and H(x, s, 1) = r(x, s), thus the homotopy starts with the

identity and ends with the retraction r. ⊓⊔

4.3.5 Example. ∂In ↪→ In is a cofibration. Namely there is a retraction r :

In × I −→ In × {0} ∪ ∂In × I. Figure 4.4 shows r. It is an exercise to give the

algebraic expression for r.

4.3.6 Exercise. Consider the inclusion i : In × {0} ∪ ∂In × I ↪→ In × I. Show
the following.

(a) i is a cofibration.

(b) i is a homotopy equivalence. (Hint: The homotopy H : In× I × I −→ In× I
given by H(s, t, τ) = (1 − τ)(s, t) + τr(s, t), where r(s, t) is as above, starts

with the identity and ends with i ◦ r. Furthermore, r ◦ i = id.)
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(s, t)

r(s, t)

(s′, t′)

r(s′, t′)

(s′′, t′′)

r(s′′, t′′)

Figure 4.4 The retraction r : In × I −→ In × {0} ∪ ∂In × I

We shall give several further results which characterize cofibrations. Our first

result gives a characterization which shows that tha concept of cofibration has

locaal character, i.e. it depends only on a certain neighborhood of the small space

in the large one.

4.3.7 Theorem. Take a closed subset A of a space X. Then the inclusion j : A ↪→
X is a cofibration if and only if there exist

(a) a neighborhood U of A in X and a deformation H : U × I −→ X to A,

relative to A, namely such that

H(x, 0) = 0 for all x ∈ U ,
H(a, t) = a for all a ∈ A, t ∈ I ,
H(x, 1) ∈ A for all x ∈ U .

(b) a continuous function φ : X −→ I such that A = φ−1(0) and φ(x) = 1 for

all x /∈ U .

Proof: If j is a cofibration, then by Proposition 4.3.3, there is a retraction r :

X × I −→ X × {0} ∪A× I and let r1 and r2 be the components of r in X and I,

respectively. Define U , H, and φ by

U = {x ∈ X | r1(x, 1) ∈ A} ,
H = r1|U×I ,

φ(x) = sup
t∈I
|t− r2(x, t)|
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First notice that U is a neighborhood of A since it can be seen as r−1(A× (0, 1]),

and A × (0, 1] is open in X × {0} ∪ A × I. Further, H(x, 0) = r1(x, 0) = x, since

r(x, 0) = (x, 0), H(a, t) = a, since r(a, t) = (a, t), and H(x, 1) ∈ A, since x ∈ U , by

definition of U . Moreover, φ(x) supt∈I |t − r2(x, t)| = 0 if and only if r2(x, t) = t.

Thus t > 0 and so x ∈ A.

Conversely, assume that we have U , H, and φ as in the statement of the

theorem. Since A ⊂ X is closed, it is enough to construct a retraction r : X×I −→
X × {0} ∪A× I. Define it by

r(x, t) =



(x, 0) if φ(x) = 1 ,

(H(x, 2(1− φ(x))t), 0) if 1
2 ≤ φ(x) < 1 ,

H
(
x, t

2φ(x) , 0
)
, if 0 < φ(x) ≤ 1

2 and 0 ≤ t ≤ 2φ(x) ,

(H(x, 1), t− 2φ(x)) , if 0 < φ(x) ≤ 1
2 and 2φ(x) ≤ t ≤ 1 ,

(x, t) , if φ(x) = 0 .

It is an easy exercise to show that r is continuous. To see that it is well defined,

notice that if t > 2φ(x), then since x ∈ U , we have H(x, 1) ∈ A; moreover, if

φ(x) = 0, then we must have x ∈ A. To verify that r is a retraction, notice that

r(x, 0) = (x, 0) and r(a, t) = (H(a, t′), t) = (a, t) (for some value of t′). ⊓⊔

The following result relates fibrations and cofibrations. It is a consequence of

one of the previous results.

4.3.8 Theorem. Let p : E −→ X be a Hurewicz fibration and let A be a strong

deformation retract of X and there is a function φ : X −→ I such that A = φ−1(0).

Then given maps f : X −→ X and g : A −→ E such that p ◦ g = f ◦ j, where
j : A ↪→ X is the inclusion map, there is a map h : X −→ E that lifts f , i.e. such

that p ◦ h = f , and extends g, i.e., h ◦ j = g. In a diagram

(4.3.9)

A
g //� _

j

��

E

p

��
X

f
//

h
>>~

~
~

~
E

Furthermore, the map h is unique up to homotopy relative to A.

Proof: By assumption, there is a retraction r : X −→ A and a deformation H :

idX ≃ j◦r rel A. If h such that h◦j = g exists, then h◦H : h ≃ h◦j◦r = g◦r rel A.

This proves the last assertion of the theorem.

Define K : X × I −→ X by

K(x, t) =

{
H(x, t

φ(x)) if t < φ(x) ,

H(x, 1) if t ≥ φ(x) .

One easily shows that K is continuous. Since p is a Hurewicz fibration, there is

a lifting K̃ : X × I −→ E of f ◦ K : X × I −→ X, namely p ◦ K̃ = f ◦ K
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and K̃(x, 0) = gr(x) for any x ∈ X. The desired lifting h : X −→ E is given by

h(x) = K̃(x, φ(x)). ⊓⊔

Notice that if we are interested in cofibrations where the space X is a CW-

complex and A is a subcomplex, the previous result holds also for Serre fibrations.

A consequence of the last result is the next.

4.3.10 Theorem. Let p : E −→ X be a Hurewicz fibration and j : A ↪→ X a

cofibration (where A ⊂ X is closed). Given a homotopy H : X × I −→ X and a

map f : X × {0} ∪ A × I −→ E such that p ◦ f = H|X×{0}∪A×I , there exists a

lifting of H, H̃ : X × I −→ E such that p ◦ H̃ = H and H̃|X×{0}∪A×I = f . In a

diagram

(4.3.11)

X × {0} ∪A× I f //
� _

��

E

p

��
X × I

H
//

H̃

88pppppp
E

Proof: By Proposition 4.3.4,X×{0}∪A×I is a strong deformation retract ofX×I.
By Theorem 4.3.7, one can construct a function ψ : X −→ I such that ψ−1(0) = A.

Define φ : X × I −→ I by φ(x, t) = tψ(x). Thus φ−1(0) = X × {0} ∪A× I. ⊓⊔

4.3.12 Theorem. Suppose that A is closed in X and let j : A ↪→ X be the

inclusion map. Then these two statements are equivalent:

(a) Given a Hurewicz fibration p : E −→ B and a commutative diagram

A
g //

j
��

E

p

��
X

f
//

h
>>}

}
}

}
B,

there exists a lifting h : X −→ E such that p ◦ h = f and h ◦ j = g.

(b) The map j is a cofibration and a homotopy equivalence.

If (a) and (b) hold, then the lifting h of f is unique up to a homotopy relative to

j(A).

Proof: We prove first (b) ⇒ (a). Since j is a cofibration, by Theorem 4.3.8 (a)

follows from (b).

Conversely, to prove (a) ⇒ (b) recall 4.1.5 2 that the map π : M(I, Y ) −→ Y

given by π(σ) = σ(0) is a Hurewicz fibration for any space Y . Let f : X −→ Y

and H : A × I −→ Y such that for any a ∈ A, f(a) = H(a, 0). Then by Lemma

1.4.20, H corresponds to a map Ĥ : A −→M(I, Y ) such that π ◦ Ĥ = f |A. Hence

by 4.3.12, H̃ exists as desired. Hence A ↪→ X is a cofibration. ⊓⊔



4.4 Topological homotopy groups 75

4.3.13 Remark. If in the previous result X is a CW-complex and j : A −→ X

is the inclusion of a subcomplex, then the result holds for a Serre (instead of a

Hurewicz) fibration p : E −→ B.

4.4 Topological homotopy groups

In this section we define the homotopy groups of a pointed space and we construct

the long exact sequence of homotopy groups determined by a Serre fibration.

We start considering the nth cube In, which is the product of n copies of the

unit interval I = [0, 1], and its boundary ∂In which consists of points such that at

least one of their coordinates is ether 0 or 1.

4.4.1 Definition. Let X be a pointed space with base point x0. We define

πn(X,x0) as the set of homotopy classes of maps of pairs α : (In, ∂In) −→
(X, {x0}). The homotopies between two such maps of pairs must of course send

∂In to the base point x0.

We define an operation in πn(X,x0) as follows. Let α, β : (In, ∂In) −→ (X, {x0})
represent two elements; define

α ∗ β(s1, s2, . . . , sn) =
{
α(2s1, s2, . . . , sn) if 0 ≤ s1 ≤ 1

2 ,

β(2s1 − 1, s2, . . . , sn) if 1
2 ≤ s1 ≤ 1 .

It is an exercise to verify that the homotopy class [α ∗ β] depends only on

the homotopy classes [α] and [β] so that we have a well defined sum operation in

πn(X,x0) given by [α]+ [β] = [α∗β]. Furthermore, define an identity element 0 to

be the homotopy class of the constant map cx0 which sends In to the base point

x0, and an inverse element to [α], −[α] = [α], where

α(s1, s2, . . . , sn) = (1− s1, s2, . . . , sn) .

The next lemma will be useful in what follows.

4.4.2 Lemma. Given two maps f, g : I −→ I such that f(0) = g(0) and f(1) =

g(1), then f ≃ g rel ∂I. Thus in particular, if f(0) = 0 and f(1) = 1, then

f ≃ idI rel ∂I and if f(0) = 0 and f(1) = 0, then f ≃ c0 rel ∂I.

Proof: Define a homotopy H : I × I −→ I by H(s, t) = (1− t)f(s) + tg(s). Then

H : f ≃ g rel ∂I. (See Figure 4.5.) ⊓⊔

We shall use Lemma 4.4.2 to prove a general associativity result. We shall write

the expression

α1 ∗ α2 ∗ · · · ∗ αk ,
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f

idI

g

g

f

(a) (b)

Figure 4.5

without parentheses, which, if it is not stated otherwise, means the element

(α1 ∗α2 ∗ · · · ∗αk)(s1, s2, . . . , sn) =


α1(ks1, s2, . . . , sn) if 0 ≤ s1 ≤ 1

k ,

α2(ks1 − 1, s2, . . . , sn) if 1
k ≤ s1 ≤

2
k ,

...
...

αk(ks1 − k + 1, s2, . . . , sn) if k−1
k ≤ s1 ≤ 1 .

4.4.3 Lemma. Given maps α1, α2, ... , αk : (I
n, ∂In) −→ (X,x0) one has

(α1 ∗ · · · ∗ αr) ∗ (αr+1 ∗ · · · ∗ αk) ≃ α1 ∗ · · · ∗ αk rel ∂I × In−1

Proof: Let f : I −→ I be the piecewise linear function such that f(0) = 0, f(12) =
r
k , and f(1) = 1 (see Figure 4.6), which by Lemma 4.4.2 is homotopic to idI relative

to ∂I. We clearly have

(α1 ∗ · · · ∗ αr) ∗ (αr+1 ∗ · · · ∗ αk)(s1, s2, . . . , sn) = (α1 ∗ · · · ∗ αk)(f(s1), s2, . . . , sn) .

Hence the result. ⊓⊔

4.4.4 Theorem. The set πn(X,x0) with the sum operation, identity element and

inverse elements is a group.

Proof: By Lemma 4.4.3, the operation is associative. We prove now that 0+ [α] =

[α] = [α] + 0. Let f : I −→ I and g : I −→ I be piecewise linear functions

such that f(0) = 0, f(12) = 0, and f(1) = 1, and g(0) = 0, g(12) = 1, and

g(1) = 1 (see Figure 4.7). Then (cx0 ∗ α)(s1, s2, . . . , sn) = α(f(s1), s2, . . . , sn) and

α ∗ cx0(s1, s2, . . . , sn) = α(g(s1), s2, . . . , sn)), and the result follows from 4.4.2.

We prove now that [α]+[α] = 0 = [α]+[α]. Let now f : I −→ I and g : I −→ I

be piecewise linear functions such that f(0) = 0, f(12) = 1, and f(1) = 0, and

g(0) = 1, g(12) = 0, and g(1) = 1 (see Figure 4.8). Then (α ∗ α)(s1, s2, . . . , sn) =
α(f(s1), s2, . . . , sn) and α ∗α(s1, s2, . . . , sn) = α(g(s1), s2, . . . , sn). Thus the result

follows from 4.4.2, since f ≃ c0 : I −→ I rel ∂I and g ≃ c1 rel ∂I. ⊓⊔
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( 1
2
, r
k
)

Figure 4.6

Figure 4.7

We have written + for the group operation. This we shall do only if n ≥ 2,

since in this case the groups are abelian. This follows from the next general result.

Before we state it, we shall say two operations in W are mutually distributive up

to homotopy if

(a ∗ b) • (c ∗ d) ≃ (a • c) ∗ (b • d) for all a, b, c, d ∈W .

We say that ∗ and • have a common bilateral identity element up to homotopy if

there is an element e ∈W such that

a ∗ e ≃ e ∗ a ≃ a • e ≃ e • a ≃ a for all a ∈W .

We say that the multiplications aremutually distributive, resp. they have a common

bilateral unit if we can replace ≃ by = in the corresponding conditions.

4.4.5 Lemma. Let W be a space equipped with two continuous multiplications ∗,
• such that

(a) ∗ and • have a common bilateral identity element up to homotopy, and
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Figure 4.8

(b) ∗ and • are mutually distributive.

Then ∗ and • are homotopic, as well as being commutative and associative up to

homotopy.

Proof: Take a, b, c, d ∈ G and let e ∈ W be the common identity element up to

homotopy. Therefore,

a ∗ b ≃ (a • e) ∗ (e • b) ≃ (a ∗ e) • (e ∗ b) ≃ a • b ,

and so ∗ and • are homotopic. Moreover,

a • b ≃ a ∗ b ≃ (e • a) ∗ (b • e) ≃ (e ∗ b) • (a ∗ e) ≃ b • a ≃ b ∗ a ,

and so the multiplications are commutative up to homotopy. Finally,

a ∗ (b ∗ c) ≃ (a • e) ∗ (b • c) ≃ (a ∗ b) • (e ∗ c) ≃ (a ∗ b) ∗ c ,

and so the multiplications are associative up to homotopy. ⊓⊔

In our case, if n ≥ 2, we can define a second operation on πn(X,x0) as follows.

Let α, β : (In, ∂In) −→ (X, {x0}) represent two elements; define

α • β(s1, s2, . . . , sn) =
{
α(s1, 2s2, . . . , sn) if 0 ≤ s2 ≤ 1

2 ,

β(s1, 2s2 − 1, . . . , sn) if 1
2 ≤ s2 ≤ 1 .

The operations ∗ and • are mutually distributive up to homotopy. Namely, let

α, β, γ, δ : (In, ∂In) −→ (X, {x0}) represent four elements in πn(X,x0). Then

((α ∗ β) • (γ ∗ δ))(s1, s2, . . . , sn) =
(α ∗ β)(s1, 2s2, . . . , sn) =

{
α(2s1, 2s2, . . . , sn), 0 ≤ s1 ≤ 1

2 , 0 ≤ s2 ≤
1
2

β(2s1 − 1, 2s2, . . . , sn),
1
2 ≤ s1 ≤ 1 , 0 ≤ s2 ≤ 1

2

(γ ∗ δ)(s1, 2s2 − 1, . . . , sn) =

{
γ(2s1, 2s2 − 1, . . . , sn), 0 ≤ s1 ≤ 1

2 ,
1
2 ≤ s2 ≤ 1

δ(2s1 − 1, 2s2 − 1, . . . , sn),
1
2 ≤ s1 ≤ 1 , 1

2 ≤ s2 ≤ 1
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and on the other hand

((α • γ) ∗ (β • δ))(s1, s2, . . . , sn) =
(α • γ)(s1, 2s2, . . . , sn) =

{
α(2s1, 2s2, . . . , sn), 0 ≤ s1 ≤ 1

2 , 0 ≤ s2 ≤
1
2

γ(2s1, 2s2 − 1, . . . , sn), 0 ≤ s1 ≤ 1
2 ,

1
2 ≤ s2 ≤ 1

(β • δ)(s1, 2s2 − 1, . . . , sn) =

{
β(2s1 − 1, 2s2, . . . , sn),

1
2 ≤ s1 ≤ 1 , 0 ≤ s2 ≤ 1

2

δ(2s1 − 1, 2s2 − 1, . . . , sn),
1
2 ≤ s1 ≤ 1 , 1

2 ≤ s2 ≤ 1

Thus clearly both expressions are equal. It is also easy to see that the constant

map is a two-sided identity element up to homotopy for both operations. Hence

we conclude the following.

4.4.6 Proposition. If n ≥ 2, then the groups πn(X,x0) are abelian. ⊓⊔

4.4.7 Note. If n = 1, then π1(X,x0) is the so-called fundamental group. It is

not necessarily abelian and thus if we take elements a, b ∈ π1(X,x0) we write the

operation simply by ab.

4.4.8 Remark. Given a map of pairs α : (In, ∂In) −→ (X,x0), then it defines

a pointed map α : In/∂In −→ X, where the quotient space In/∂In has as base

point the point onto which ∂In collapsed. Fixing a homeomorphism In/∂In ≈ Sn,
then α determines a pointed map α′ : Sn −→ X. Conversely, given a pointed map

α′ : Sn −→ X, it determines a map of pairs α : (In, ∂In) −→ (X,x0). Thus we can

view the homotopy groups πn(X,x0) as the pointed homotopy sets [Sn, X]∗ and

the operation is given as follows. If α′, β′ : Sn −→ X are two pointed maps, take

the quotient map q : Sn −→ Sn ∨ Sn which collapses the equator Sn−1 to a (base)

point and define α′ ∗ β′ = (α′, β′) ◦ q (see Figure 4.9).

Sn

β′

X

α′

q

Figure 4.9 The sum of α′ and β′ in [Sn, X]∗

4.4.9 Proposition. Given two points x0, x1 ∈ Xand a path γ : x0 ≃ x1, there is

an isomorphism φγ : πn(X,x1) ∼= πn(X,x0). Consequently, if X is path connected,

πn(X,x0) does not depend on x0 and we may write πn(X) instead.
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Proof: Consider the canonical inclusion In ↪→ In+1 which maps (s1, s2, . . . , sn) to

(s1, s2, . . . , sn, 0). Then I
n ⊂ ∂In+1 and we may put Jn = ∂In+1 − In (see Figure

4.10, where Jn is upside down).

Let K be the interval [14 ,
3
4 ] and consider the complement . There is a home-

omorphism η : In −→ Jn which maps Kn to In (enlarging and translating), and

In−Kn to ∂In× I so that every radial segment inside In−Kn maps affinely onto

I as shown in Figure 4.10).

α : X
φ p

Jn

γ

β

Figure 4.10 The isomorphism φγ : πn(X,x1) −→ πn(X,x0)

Given β : (In, ∂In) −→ (X,x1), consider the map α : (In, ∂In) −→ (X,x0)

given by composing η with the map ψ : Jn −→ X defined as

ψ(s, t) =

{
β(s) if (s, 1) ∈ In × {1}
γ(t) if (s, t) ∈ ∂In × I .

Now define φγ([β]) = [α]. It is a routine exercise to show that φγ is an isomorphism.

(Hint: If one takes γ(t) = γ(1− t), then φγ is the inverse isomorphism.) ⊓⊔

Figure 4.11 illustrates the effect of φγ to a representative β of an element in

π1(X, y).

4.4.10 Remark. One may define another isomorphism φγ : πn(X,x1) −→ πn(X,x0).

Assume, as before, that β : (In, ∂In) −→ (X,x1) represents an element in πn(X,x1).

Recall 4.3.5, where we show that the inclusion ∂In ↪→ In is a cofibration. Thus

the extension problem depicted in the diagram

∂In �
� //� _

j0
��

In� _

�� β

��

∂In × I �
� //

Γ

//

In × I

$$H
H

H
H

H

X ,

where Γ(s, t) = γ(t), has a solution H. Define α : In −→ X by α(s) = H(s, 1).

Then α ≃ β and α represents an element in πn(X,x0). Let φγ be defined by

φγ([β]) = [α].
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x

y

γ

β(In)

α(In)

Figure 4.11 The effect of φγ on β

4.4.11 Exercise. In the previous exercise prove the following.

(a) Any two α1 and α2 obtained as above are homotopic relative to ∂In, thus

φγ is well defined.

(b) φγ is bijective.

(c) φγ is a group isomorphism.

4.4.12 Definition. Let (X,A, x0) be a pointed pair of spaces with base point

x0 ∈ A. For n ≥ 1 we define πn(X,A, x0) as the set of homotopy classes of maps

of triples (In, ∂In, Jn−1) −→ (X,A, {x0}), where Jn−1 = ∂In − In−1 is as above

and the homotopies map ∂In into A and Jn−1 to the base point x0.

We define an operation in πn(X,A, x0) for n ≥ 2 using the same formulas as

for πn(X,x0), where now the last coordinate sn does not play the same role as the

previous ones, since it can only be different from one if (s1, s2, . . . , sn−1) ∈ ∂In−1.

Hence we may use only either of the coordinates s1, s2, . . . , sn−1 to define the

operation in πn(X,A, x0) and we have at least two of them which are mutually

distributive if n ≥ 3. Thus we may prove similarly the following result.

4.4.13 Theorem. If n ≥ 2 the set πn(X,A, x0) is a group, and it is abelian if

n ≥ 3. ⊓⊔

The following is a criterion for a map α : (In, ∂In, Jn−1) −→ (X,A, {x0}) to

represent the identity element 0 ∈ πn(X,A, x0).
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4.4.14 Proposition. An element [α] ∈ πn(X,A, x0) is equal to zero if and only if

α is homotopic relative to ∂In to a map α′ : (In, ∂In, Jn−1) −→ (X,A, {x0}) such
that α′(In) ⊂ A.

Proof: Assume first that α ≃ α′ rel ∂In, with α′(In) ⊂ A. If we now deform In to

a point, say by a homotopy H : In × I −→ In given by H(s, t) = (1− t)s, where
s = (s1, s2, . . . , sn) ∈ In. Then α ≃ 0 and thus [α] = 0 ∈ πn(X,A, x0).

Conversely, assume that [α] = 0. This means that there is a homotopy of triples

G : In× I −→ X such that G(s, 0) = α(s), G(s, 1) = x0, and G(∂I
n× I) ⊂ A, and

G(Jn−1× I) = {x0}. There is a retraction r : In× I −→ In×{0} ∪ ∂In× I. Then
define H : In × I −→ X by H = G ◦ r : In × I −→ A. Clearly for all s ∈ In we

have H(s, 0) = G(s, 0) = α(s), furthermore for all s ∈ ∂In and all t ∈ I we have

H(s, t) = G(s, t) ⊂ A. Thus H is a homotopy relative to ∂In which starts with α

and ends with a map α′ whose image lies in A. Figure 4.4 shows r. ⊓⊔

4.4.15 Exercise. Give an explicit formula for the retraction r : In × I −→ In ×
{0} ∪ ∂In × I used in the previous proof and depicted in Figure 4.4.

Given two pointed pairs (X,A, x0) and (Y,B, y0) and a base-point-preserving

map f : (X,A, x0) −→ (Y,B, y0), by mapping α : (In, ∂In, Jn−1) −→ (X,A, {x0})
to the composite f ◦ α : (In, ∂In, Jn−1) −→ (Y,B, {y0}), one obtains a homomor-

phism

f∗ : πn(X,A, x0) −→ πn(Y,B, y0) .

4.4.16 Exercise. Show that πn is a functor from the category of pointed pairs

of spaces and continuous maps Top2∗ to the category of groups Grp (or of abelian

groups Ab if n > 2), i.e. (id(X,A,x0))∗ = 1πn(X,A,x0) : πn(X,A, x0) −→ πn(X,A, x0)

and if f : (X,A, x0) −→ (Y,B, y0) and f : (Y,B, y0) −→ (Z,C, z0) are base-point-

preserving maps, then (g ◦ f)∗ = g∗ ◦ f∗ : πn(X,A, x0) −→ πn(Z,C, z0).

Notice that if one takes the pointed pair (X, {x0}, x0), then πn(X, {x0}, x0) =
πn(X,x0). Consider the inclusions i : (A, x0) ↪→ (X,x0) and j : (X, {x0}, x0) ↪→
(X,A, x0). Furthermore, given a map of triples α : (In, ∂In, Jn−1) −→ (X,A, {x0})
we may take its restriction α′ : (In−1, ∂In−1) ⊂ (∂In, Jn−1) −→ (A, {x0}). Then
the mapping [α] 7→ [α′] clearly defines a homomorphism ∂ : πn(X,A, x0) −→
πn−1(A, x0) which can be shown to be a homomorphism. The homomorphisms

induced by i and j together with ∂ fit into a long sequence of homomorphisms.

When there is no danger of confusion we shall omit the base points from the

notation. We have the following.

4.4.17 Theorem. The sequence

· · · −→ πn(A)
i∗−→ πn(X)

j∗−→ πn(X,A)
∂−→ πn−1(A) −→ · · · −→ π0(X)
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is exact. Notice that the last three terms of the sequence need not be groups.

Nonetheless the exactness makes sense.

Proof: We start checking the exactness at πn(X). First notice that if we take any

[α′] ∈ πn(A), then j∗i∗([α′] ∈ πn(X,A) is represented by the composite

α : (In, ∂In, Jn−1)
α′
−→ (A, {x0}, {x0}) ↪→ (X,A, {x0}) .

Thus α(In) ⊂ A and by the criterion 4.4.14, j∗i∗([α
′]) = [α] = 0 ∈ πn(X,A).

Therefore im (i∗) ⊆ ker(j∗). Conversely, if α : (In, ∂In) −→ (X, {x0}) is such that

j ◦α : (In, ∂In, Jn−1) −→ (X,A, {x0}) is nullhomotopic, then again by 4.4.14 j ◦α
is homotopic to a map α′ : (In, ∂In, Jn−1) −→ (X,A, {x0}) such that α′(In) ⊂ A.
Therefore α′ determines a map of pairs β : (In, ∂In) −→ (A, {x0}) such that

i∗([β]) = [α′] = [α]. Hence ker(i∗) ⊆ im (j∗) and the sequence is exact at πn(X).

Take now [α] ∈ πn(X), α : (In, ∂In) −→ (X, {x0}). We can consider α as a

map i ◦ α : (In, ∂In, Jn−1) −→ (X,A, {x0}) whose restriction β : (In−1, ∂In−1) ⊂
(∂In, Jn−1) −→ (A, {x0}) is constant. Hence ∂j∗([α]) = 0 and thus im (j∗) ⊆
ker(∂). Conversely, assume that α : (In, ∂In, Jn−1) −→ (X,A, {x0}) is such that

its restriction α′ : (In−1, ∂In−1) ↪→ (∂In, Jn−1)
α|−→ (A, {x0}) is nullhomotopic

via a homotopy K : In−1 × I −→ A such that K(s, 0) = α′(s) = α(s, 0) and

K(s, 1) = x0 = K(s′, t) for all s ∈ In−1, s′ ∈ ∂In−1, t ∈ I. We can view In−1 × I
as In−1 × {0} × I ⊂ In × I and In as In × {0} ⊂ In × I and take the retraction

r : In × I � (In−1 × {0} × I) ∪ (In × {0}) given by

r(s, t′, t) =

{
(s, t′ − t, 0) if t ≤ t′ ,
(s, 0, t− t′) if t ≥ t′ ,

where (s, t′, t) ∈ In−1 × I × I (see Figure 4.12, where (b) represents the retraction

seen from the side).

(a) (b)

α
K

(p, t)

r(p, t) (p′, t′)

r(p′, t′)

Figure 4.12 The retraction r : In × I −→ In × {0} ∪ In−1 × I

Take the composite K ′ : In × I r−→ In × {0} ∪ In−1 × I (α,K)−→ X, where the

second arrow means that we take α on the bottom In × {0}, while we take the

homotopy K on the vertical wall In−1 × I. Then we consider β to be the end of

the homotopy K ′, namely β : In −→ X is given by β(s) = K ′(s, 1). By definition,
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β(∂In) = {x0} and thus by restriction it determines β′ : (In, ∂In) 7→ (A, {x0}).
Hence j∗([β

′]) = [α] and so ker(∂) ⊂ im (j∗) and the sequence is exact at πn(X,A).

Let us take now an element [α] ∈ πn(X,A), α : (In, ∂In, Jn−1) −→ (X,A, {x0}).
i∗∂([α]) is represented by the restriction

α′ : (In−1, ∂In−1) ↪→ (∂In, Jn−1)
α|−→ (A, {x0}) ↪→ (X, {x0}) ,

We consider α : In = In−1 × I −→ X as a homotopy such that α(s, 0) = α′,

α(s, 1) = x0 = α(s′, t) for all s ∈ In−1, all s′ ∈ ∂In−1, and all t ∈ I. Thus α is a

nullhomotopy of α′ relative to ∂In−1 and thus i∗∂([α]) = [α′] = 0. Hence im (∂) ⊆
ker(i∗). Conversely, assume that β : (In−1, ∂In−1) −→ (A, {x0}) is such that the

composite β′ : (In−1, ∂In−1) −→ (A, {x0}) ↪→ (X, {x0}) is nullhomotopic. Let

H : In−1×I −→ X be a nullhomotopy, i.e. H(s, 0) = β(s), H(s, 1) = x0 = H(s′, t)

for all s ∈ In−1, all s′ ∈ ∂In−1, and all t ∈ I. Since In−1 × I = In, H can be seen

as a map α : (In, ∂In, Jn−1) −→ (X,A, {x0}), since α(In−1 ×{0}) = β(In−1) ⊂ A
and α(Jn−1) = x0. Hence [β] = ∂[α] and ker(i∗) ⊆ im (∂) and the sequence is

exact at πn−1(X). ⊓⊔

4.4.18 Exercise. Let B ⊂ A ⊂ X be a triple of pointed spaces. Show that there

is a long exact sequence

· · · −→ πn(A,B)
i∗−→ πn(X,B)

j∗−→ πn(X,A)
∂−→ πn−1(A;B) −→ · · · ,

where ∂ : πn(X,A) −→ πn−1(A) −→ πn−1(A,B), the first arrow being the con-

necting homomorphism of the pair (X,A) and the second being induced by the

inclusion (A, {x0}) ↪→ (A,B). (Hint: Either combine the long exact sequences

of the different pairs or adapt the proof of 4.4.17 to this case. Notice that both

sequences are equivalent.)

4.4.19 Theorem. Let K be a pointed simplicial set. There is a natural isomor-

phism πq(K)
∼=−→ πq(|K|).

4.4.20 Proposition. Given a Serre fibration p : E −→ X with fiber F over x0, p

induces an isomorphism p∗ : πn(E,F ) −→ πn(X,x0) for all n, that is as a map of

pairs, p : (E,F ) −→ (X,x0) is a weak homotopy equivalence.

Proof: Given an element a ∈ πn(X,x0) represented by a map α : (In, ∂In) −→
(X,x0), consider the lifting problem

Jn−1
� _

��

κx0 // E

p

��
In α

//

β
<<y

y
y

y
y

X

Since the inclusion Jn−1 ↪→ In is a cofibration and a homotopy equivalence, by

Theorem 4.3.12 (and Remark 4.3.13), the problem has a solution β : (In, ∂In, Jn−1) −→
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(E,F, {x0}). Thus b = [β] ∈ πn(E,F ) is such that p∗(b) = a and hence p∗ is sur-

jective.

Assume now that b ∈ πn(E,F ) is such that p∗(b) = 0. If b is represented by a

map β : (In, ∂In, Jn−1) −→ (E,F, {x0}), this means that α = p ◦β : (In, ∂In) −→
(X,x0) is nullhomotopic. Hence there is a homotopy H : In × I −→ X such that

H(s, 0) = pβ(s) and H(∂In × I ∪ In × {1}) = x0. Consider the following lifting

problem

In × {0} ∪ ∂In × I

j
��

(β,κe0 )// E

p

��
In × I

H
//

K

77ooooooo
X

Hence K is a homotopy of β to β′ relative to ∂In, such that β′(In) ⊂ F . Hence,

by 4.4.14, b = [β] = 0 and p∗ is injective. ⊓⊔

Hence we have the following consequence.

4.4.21 Theorem. Given a Serre fibration p : E −→ X with fiber F , there is a

natural long exact sequence

· · · −→ πn+1(X) −→ πn(F ) −→ πn(E) −→ πn(X) −→ πn−1(F ) · · · .

Proof: By Theorem 4.4.17 applied to the pair (E,F ) we have a long exact sequence,

where we may replace πn(E,F ) with πn(X,x0) for all n, namely

· · · //

&&MM
MMM

MM πn+1(E,F )
∂ //

p∗ ∼=��

πn(F, e0)
i∗ // πn(E, e0)

j∗ //

p∗ ((PP
PPP

P
πn(E,F )

∂ //

p∗ ∼=��

πn−1(F, e0) // · · ·

πn+1(X,x0)
∂◦p−1

∗

66mmmmmmm
πn(X,x0)

∂◦p−1
∗

66mmmmmmm

⊓⊔

4.4.22 Theorem. Let p : E −→ X be a Hurewicz fibration with fiber F = p−1(x0)

and contractible total space E. Then the holonomy θ : ΩX −→ F is a weak homo-

topy equivalence.

Proof: Let Γp : E ×X M(I,X) −→ M(I, E) be a PLM for p. Consider the path

fibration π : PX −→ X (see 4.1.5 1) whose fiber over x0 is ΩX and consider the

map η : PX −→ E given by η(σ) = Γp(e0, σ)(1). The restriction of η to the loop

space ΩX is the holonomy. Thus there is a commutative diagram

ΩX � � ι //

θ
��

PX
π // //

η

��

X

F � �

i
// E p

// // X .



86 4 Fibrations, cofibrations, and homotopy groups

The vertical arrows fit into the long exact sequences of homotopy groups of π and

p, namely, we have a commutative diagram

0 πn+1(PX)
π∗ //

η∗
��

πn+1(X)
∂
∼=

// πn(ΩX)

θ∗
��

ι∗ // πn(PX)

η∗
��

0

0 πn+1(E) p∗
// πn+1(X)

∂

∼= // πn(F ) i∗
// πn(E) 0 .

Hence ∂ on the top as well as on the bottom is an isomorphism and therefore

θ∗ : πn(ΩX) −→ πn(F ) is an isomorphism for all n. Thus θ is a weak homotopy

equivalence.

4.4.23 Note. The connecting homomorphisms ∂ : πn(X) −→ πn−1(ΩX) are iso-

morphisms because they lie between two zero-groups. That the one on the top

is an isomorphism is no surprise, since by the exponential law, πn−1(ΩX) =

π0(M∗(Sn−1,M∗(S1, X)) = [Sn, X]∗ = πn(X).

In this example, by using 4.4.21 and 4.2.5, we get an exact sequence

(4.4.13)
· · · −→ πq(Z) −→ πq(R) −→ πq(S1) −→ πq−1(Z) −→ · · ·

· · · −→ π1(R) −→ π1(S1) −→ π0(Z) −→ π0(R).
Since we have

πq(Z) =
{
Z if q = 0,

0 if q ̸= 0,

and

πq(R) = 0 if q ≥ 0 ,

we obtain the next result.

4.4.14 Theorem. The homotopy groups of S1 are given by

πq(S1) =
{
Z if q = 1,

0 if q ̸= 1. ⊓⊔

That is to say, we have proved that S1 is an Eilenberg–Mac Lane space of type

K(Z, 1) (see Chapter 8).

4.4.15 Exercise. Let p : E −→ X be a covering map where X is path connected

and locally path connected. To say that X is a locally path-connected space means

that for each point x ∈ X and each neighborhood U of x in X there is a neigh-

borhood V ⊂ U of x that is path connected. Let X be path connected. Prove

that for every map f : X −→ X and for all points x0 ∈ X and y0 ∈ p−1(f(x)),

there exists a unique lifting f̃ : X −→ E such that f̃(x0) = y0 if and only if

f∗π1(X,x0) ⊂ p∗π1(E, y0). (Hint: For each point x ∈ X let α : I −→ X be a

path such that α(0) = x0 and α(1) = x. Using 4.2.8, there exists a unique path

α̃ : I −→ E such that α̃(0) = y0 and p ◦ α̃ = α. We then define f̃ : X −→ E by

f̃(x) = α̃(1). Using the hypotheses, prove that f̃ is well defined and continuous.)
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For the following exercises recall the definition of the fundamental group π1(X) =

π1(X,x0) given in 4.4.7.

4.4.16 Exercise. Let p : E −→ X be a covering map.

(a) Prove that we have an action of the fundamental group of the base π1(X,x0)

on the fiber F = p−1(x0) such that if [α] ∈ π1(X,x0) and e ∈ F , then

e · [α] = α̃(1), where α̃ : I −→ E is the lifting of α satisfying α̃(0) = e (see

4.2.8). In other words, prove that e · 1 = e and that e · ([α][β]) = (e · [α]) · [β],
where 1, [α], [β] ∈ π1(X,x0) (that is, π1(X,x0) acts on F ). Moreover, if the

space E is path connected, prove that for every e1, e2 ∈ F there exists

[α] ∈ π1(X,x0) such that e1 · [α] = e2 (that is, the action is transitive).

(Hint: The action is defined by using the unique path-lifting property 4.2.8.

In order to prove that it is transitive, for any given e1 and e2 take a path α̃

from e1 to e2 and define α = p ◦ α̃.)

(b) Prove that the homomorphism p∗ : π1(E, e0) −→ π1(X,x0) is a mono-

morphism. (Hint: If α̃ : I −→ E is a closed path in E such that α̃(0) =

α̃(1) = e0 and such that α = p ◦ α̃ ≃ 0 in X, then there is a lifting of every

nullhomotopy of α, which in turn defines a nullhomotopy of α̃.)

(c) Assume that the space E is path connected and take e0 ∈ F . Prove that the

function [α] 7→ e0 ·[α] defines an isomorphism (as sets) between F and the set

of (right) cosets of p∗π1(E, e0) in π1(X,x0). (Hint: One has e0 · [α] = e0 · [β]
if and only if p∗π1(E, e0)[α] = p∗π1(E, e0)[β].)

(d) Suppose that E is simply connected, that is, π1(E) = 1. Conclude that

π1(X,x0) ∼= F as sets. A covering map p : E −→ X such that π1(E) = 1 is

called a universal covering map.

4.4.17 Exercise. Let p : R −→ S1 be the exponential map, namely, p(t) = e2πit.

Prove that p is a universal covering map, so that π1(S1) ∼= Z at least as sets. (See

Figure 4.13, and compare this with 4.2.12.)

4.4.18 Exercise. Let p : Sn −→ RPn for n > 1 be the canonical projection. Prove

that p is a universal covering map whose fiber F consists of two points. Conclude

that π1(RPn) = Z2.

4.4.19 Note. The results stated in Exercises 4.4.16(b) and (c) can be obtained

from the long exact homotopy sequence of a Serre fibration (see 4.4.21).
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Figure 4.13

4.4.1 The geometric realization of the singular simpli-
cial set

Recall the map ρX : |S(X)| −→ X defined by ρX([σ, s]) = σ(s), where σ : ∆n −→
X and s ∈ ∆n, introduced in the previous chapter. The following is a result of

Milnor.

4.4.20 Theorem. The map ρX : |S(X)| −→ X is a weak homotopy equivalence.

Proof: We must prove that ρX∗ : πn(|S(X)|) −→ πn(X) is an isomorphism for

all n. We start proving the bijection in the case n = 0. We must show that ρX

establishes a one-to-one correspondence between the path-components of |S(X)|
andX. To see that, we may assume without loss of generality thatX nonempty and

0-connected and it will be enough to prove that |S(X)| is also 0-connected. Take

a base point x0 ∈ X and let x̃0 be the unique 0-cell in |S(X)| which corresponds

to the singular simplex ∆0 −→ X, 1 7→ x0. Notice that since every (connected)

CW-complex has at least one 0-cell, every path component component of |S(X)|
contains a 0-cell. Now we show that for every 0-cell x̃ ̸= x̃0 in |S(X)| there is a

1-cell therein whose boundary is {x̃, x̃0}. To see this, consider a path in X joining

ρX(x̃) and x̃0. The path gives rise to a singular 1-simplex with the desired property.

Thus |S(X)| is 0-connected.

Now we prove that

ρX∗ : πn(|S(X)|, x̃0) −→ πn(X,x0)

is an isomorphism for every n > 0. First let f : Sn −→ X represent some element

of πn(X,x0). We consider the sphere Sn as the geometric realization |∂∆n+1| (see
2.2.8), such that the base point e0 ∈ |∂∆[n + 1]| corresponds to some 0-cell in

its CW-decomposition. According to Theorem 2.2.10, there is an adjoint to f ,
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f̂ : ∂∆[n + 1] −→ SX. Hence the geometric realization |f̂ | represents an element

in πn(|SX|, x̃0) which is clearly mapped by ρX to ρX ◦ |f̂ | = f (see the proof of

2.2.10). This proves that ρX∗ is surjective.

Since ρX∗ is a homomorphism, to prove that it is injective it is enough to show

that ker ρX∗ is trivial. To do this, we shall prove that if a map

f : (|∂∆[n+ 1]|, e0) −→ (|SX|, x̃0)

is such that the composite ρX ◦ f admits an extension G : (|∆[n + 1]|, e0) −→
(|SX|, x̃0), then f itself can also be extended over |∆[n+ 1]|. Hence we assume f

and G given, and let f̂ : ∂∆[n+1] −→ S(|SX|) and Ĝ : ∆[n+1] −→ SX be their

respective adjoint maps according to 2.2.10. Let H : S(|SX|)×∆[1] −→ S(|SX|)
be a simplicial homotopy relative to SX, which by Proposition 2.4.8 exists. Define

a simplicial map

f̃ : ∆[n+ 1]× Λ1[1] ∪ ∂∆[n+ 1]×∆[1] −→ S(|SX|)

by

f̃(s, ε1ω) = αSXĜ(s) and f̃(δi, t) = H(Ĝ(δi), t)

for s ∈ ∆[n+1], t ∈ ∆[1]n, and i ∈ n+ 1. The domain of its adjoint is homeomor-

phic to |∆[n + 1]| and agrees with f on the boundary. Therefore it is the desired

extension of f and ker ρX∗ = 0. Hence ρX∗ is injective. ⊓⊔
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Chapter 5 Elements of homological

algebra

In this chapter we give a brief introduction to homological algebra over a

principal ideal domain. We shall state results and omit proofs, and we refer the

reader to any of the many books on the topic, for instance [25] or [32].

The basic objects of homological algebra are R-modules. Since we are assuming

R to be a principal ideal domain, it is commutative by definition. Hence we make

no distinction between left and right R-modules. One of the main properties that

a principal ideal domain has is that given a free R-module M and a submodule

N ⊆M , then N is also a free module.

In most of our applications, R will be Z or a field.

5.1 The functors Tor and Ext

Given two R-modules M and N there are several functors: the well-known tensor

product M ⊗R N and Hom-product HomR(M,N) (see [25] or [32]), and their

derived functors TorR(M,N) and ExtR(M,N). In what follows, we shall define

these two.

5.1.1 Proposition. Given an R-module M there is a short exact sequence

(5.1.2) 0 −→ F2
β−→ F1

α−→M −→ 0

such that F1 and F2 are free modules. This sequence is called free resolution of M .

Proof: Take any set S of generators of M and define F1 as the free R-module

generated by S. If gs is the free generator of F1 corresponding to the generator

s ∈ S, then define α(gs) = s and extend α to all of F1. To finish the proof take

F2 = ker(α) and let β : F2 −→ F1 be the inclusion. Since F2 is free because it is a

submodule of F1 which is free, we obtain the desired short exact sequence. ⊓⊔

5.1.3 Definition. Given two R-modules M and N we define the R-modules

TorR(M,N) and ExtR(M,N) as follows. By the previous proposition, there is a

short exact sequence of R-modules (5.1.2), where F1 and F2 are free. Even though

91
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β is injective, the homomorphism β ⊗ 1N is not necessarily injective, unless, for

instance, N is a free module. Define TorR(M,N) to be the kernel of

F2 ⊗N
β⊗1N // F1 ⊗N .

Furthermore, the homomorphism β∗ = Hom(β, 1N ) is not necessarily surjective,

unless, for instance, N is free. Define ExtR(M,N) to be the cokernel of

HomR(F1, N)
β∗
−→ HomR(F2, N) .

5.1.4 Proposition. The R-modules TorR(M,N) and ExtR(M,N) are well de-

fined, that is, they do not depend on the free resolution (5.1.2). Furthermore

TorR(M,N) is a covariant bifunctor inM and N and ExtR(M,N) is a contravari-

ant functor in M and covariant in N .

Proof: Let φ : M −→ M ′ be any homomorphism of R-modules and consider free

resolutions

(5.1.5) 0 −→ F2
β−→ F1

α−→M −→ 0

(5.1.6) 0 −→ F ′
2

β′
−→ F ′

1
α′
−→M ′ −→ 0

If gs ∈ F1 is a free generator, take any element g′s ∈ α′−1(φα(gs)) (it exists because

α′ is surjective) and define f1 as the homomorphism determined by f1(gs) = g′s.

Then clearly α′ ◦ f1 = f ◦ α. By restriction, f1 determines a homomorphism f2 :

F2 −→ F ′
2 such that β′ ◦ f2 = f1 ◦ β. Thus we have a commutative diagram

(5.1.7)

0 // F2
β //

f2
��

F1
α //

f1
��

M //

φ

��

0

0 // F ′
2

β′
// F ′

1
α′

//M ′ // 0

Now define homomorphisms

φ∗ = f2 ⊗ 1n : TorR(M,N) = ker(β ⊗ 1N ) −→ ker(β′ ⊗ 1N ) = TorR(M
′, N) ,

φ∗ = f∗2 : ExtR(M
′, N) = coker (β′∗) −→ coker (β∗) = ExtR(M,N) .

5.1.8 Exercise. Consider a short exact sequence of R-modules 0 −→ A −→
B −→ C −→ 0 and take any R-module D.

(a) Show that A ⊗R D −→ B ⊗R D −→ C ⊗R D −→ 0 is exact. Show with an

example that the first arrow need not be injective.

(b) Show that 0 −→ HomR(C,D) −→ HomR(B,D) −→ HomR(A,D) is exact.

Show with an example that the last arrow need not be surjective.



5.1 The functors Tor and Ext 93

5.1.9 Exercise. Consider a short exact sequence 0 −→ F2
β−→ F1

α−→ M −→ 0

of R-modules, where F1 and F2 are free R-modules, and let N be any R-module.

(a) Show that the sequence 0 −→ TorR(M,N) −→ F2 ⊗R N −→ F1 ⊗R N −→
M ⊗R N −→ 0 is exact.

(b) Show that the sequence 0 −→ HomR(M,N) −→ HomR(F1, N) −→ HomR(F2, N) −→
ExtR(M,N) −→ 0 is exact.

Now we prove that TorR(M,N) and ExtR(M,N) are independent of the choices.

Assume first that we have instead of diagram (5.1.7) the diagram

(5.1.10)

0 // F2
β //

f ′2
��

F1
α //

f ′1
��

M //

φ

��

0

0 // F ′
2

β′
// F ′

1
α′

//M ′ // 0

where we just replaced f1 and f2 by f ′1 and f ′2. Then α′(f1 − f ′1) = 0, that is

im (f1 − f ′1) ⊆ ker(α′) = im (β′). Take a free generator gs of F1 and its image

f1(gs) − f ′1(gs). Since this last lies in im (β′), take an element x′s ∈ F ′
2 such that

β′(x′s) = f1(gs)− f ′1(gs) and define φ : F1 −→ F ′
2 by φ(gs) = x′s on the generators.

Thus

β′ ◦ φ = f1 − f ′1 .

Hence f2⊗ 1N − f ′2⊗ 1N = 0 on ker(β ⊗ 1N ) and f
∗
2 − f ′∗2 = 0 on coker (β∗). Thus

f2 ⊗ 1N and f∗2

do not depend on the choice of f1 and f2.

We already saw that given free resolutions of M and M ′ respectively, there are

well-defined homomorphisms

φ∗ : TorR(M,N) −→ TorR(M
′, N) and φ∗ : ExtR(M

′, N) −→ ExtR(M,N) .

Clearly, by definition, the constructions are functorial (on the resolutions), namely

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, 1M∗ = 1TorR(M,N) and (ψ ◦ φ)∗ = φ∗ ◦ ψ∗, 1∗M = 1ExtR(M,N).

Now we may compare the values of Tor and Ext using two different resolutions

of M by taking φ = 1M . As a consequence, there are homomorphisms going both

ways whose composite is the identity. Thus Tor and Ext do not depend on the

resolution and are functors of M . One can also easily see that both are covariant

functors of N . ⊓⊔

5.1.11 Remark. IfM is a free R-module, then one may take F1 =M and F2 = 0.

Hence in this case, TorR(M,N) = ExtR(M,N) = 0. In particular, if R is a field,

every module M is free and TorR(M,N) and ExtR(M,N) are always trivial.

In what follows, if R = Z, we omit the subindex R in Tor and Ext.
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5.1.12 Exercise. Show the next.

(a) Ext(Zn,Z) ∼= Zn.

(b) Tor(Zm,Zn) ∼= Ext(Zm,Zn) ∼= Zk, where k is the greatest common divisor

of m and n.

(c) TorR(M,N⊕N ′) ∼= TorR(M,N)⊕TorR(M,N ′), ExtR(M,N⊕N ′) ∼= ExtR(M,N)⊕
ExtR(M,N ′).

(d) TorR(M ⊕ M ′, N) ∼= TorR(M,N) ⊕ TorR(M
′, N), ExtR(M ⊕ M ′, N) ∼=

ExtR(M,N)⊕ ExtR(M
′, N).

5.2 Chain complexes and homology

Chain complexes constitute the foreplay to homology. We shall study them in this

section.

5.2.1 Definition. A chain complex of R-modules D is a family of R-modules

Dn together with boundary homomorphisms ∂n : Dn −→ Dn1 such that for all n,

∂n ◦ ∂n+1 = 0. Thus if we consider Zn(D) = ker(∂n) and Bn(D) = im (∂n+1), we

have that Bn(D) ⊆ Zn(D) and we define the homology groups of D by

Hn(D) = Zn(D)/Bn(D) .

We shall denote the homology classes by [d] ∈ Hn(D) if d ∈ Zn(C).

Let D be a chain complex and let C be a chain subcomplex of D, namely, for

each n, we have Cn ⊂ Dn is a submodule and the boundary homomorphisms of C

are the restrictions of those of D, i.e. the following square commutes:

Cn
∂Cn //

� _

��

Cn−1� _

��
Dn

∂Dn

// Dn−1 .

One has a chain quotient complex D/C given by (D/C)n = Dn/Cn and ∂
D/C
n :

(D/C)n −→ (D/C)n−1 induced by ∂Dn . In what follows we shall write A instead

of D/C, so that we have a short exact sequence of chain complexes 0 −→ C −→
D −→ A −→ 0.

5.2.2 Theorem. Let 0 −→ C
i−→ D

q−→ A −→ 0 be a short exact sequence of

chain complexes. Then there is a long exact sequence of homology groups

· · · −→ Hn+1(D)
q∗−→ Hn+1(A)

δ−→ Hn(C)
i∗−→ Hn(D)

q∗−→ Hn(A) −→ · · · .
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Proof: We have the following diagram

0

��

0

��

0

��

0

��
· · · // Cn+2

in+2

��

∂n+2 // Cn+1

in+1

��

∂n+1 // Cn

in
��

∂n // Cn−1

in−1

��

// · · ·

· · · // Dn+2

qn+2

��

∂n+2 // Dn+1

qn+1

��

∂n+1 // Dn

qn

��

∂n // Cn−1

in−1

��

// · · ·

· · · // An+2

��

∂n+2 // An+1

����

∂n+1 // An

��

∂n // An−1

��

// · · ·

0 0 0 0

We must define d. Consider a cycle a ∈ An+1, i.e. ∂n+1(a) = 0. Since qn+1 is

surjective, there is an element d ∈ Dn+1 such that qn+1(d) = a. Take d′ = ∂n+1(d).

By the commutativity of the corresponding square, qn(d
′) = 0, therefore, there is an

element c ∈ Cn such that in(c) = d′. By the commutativity of the corresponding

square and the injectivity of in−1, ∂n(c) = 0, i.e. c is a cycle. Define δ([a]) =

[c]. If a1 and a2 are two cycles which represent the same class, then a1 − a2 =

∂n+2(a
′) for some a′ ∈ An+2. There is a d

′′ ∈ Dn+2 such that qn+2(d
′′) = a′. Hence

qn+1∂n+2(d
′′) = a1 − a2. Now we have that ∂n+1∂n+2(d

′′) = 0, so that, since in is

injective, the only element in An mapping to 0 is 0. Thus δ(a1 − a2) = 0 and so δ

is well defined. These facts are depicted in the following diagrams.

c_
��

d � //
_

��

d′

a

0_

��
d′′ � //
_

��

∂(d′′) � //
_

��

0

a′ � // a1 − a2

Thus we have the long sequence of the statement. We must show its exactness.

First take a homology class [d] ∈ Hn+1(D). Since d is a boundary, i.e. d = ∂n+2(d
′′),

if we take [a] = q∗([d]) = [qn+1(d)] ∈ Hn+1(A), by the description given above to

obtain δ([a]) we have that d′ = ∂n+1(d) = ∂n+2(d
′′) = 0, and since in is injective,

c = 0. Hence δi∗([d]) = 0 and so im (δ) ⊂ ker(i∗). Conversely, if δ([a]) = 0, then

c = ∂n+1(c
′). If we take d as before, then ∂n+1(d− in+1(c

′)) = d′ − ∂n+1in+1(c
′) =

d′ − in∂n+1(c
′) = d′ − in(c) = d′ − d′ = 0. Thus d − in+1(c

′) is a cycle that

determines an element [d − in+1(c
′)] ∈ Hn+1(D) such that q∗([d − in+1(c

′)]) =

[qn+1(d − in+1(c
′))] = [qn+1(d)] = [a]. Consequently ker(δ) ⊂ im (q∗) and the

sequence is exact at Hn+1(A) for all n.

Now take a homology class [a] ∈ Hn+1(A), then i∗δ([a]) = i∗([c]) = [in(c)],

where c is as described above. But in(c) = d′ = ∂n+1(d), hence it is a boundary and

so [in(c)] = 0 ∈ Hn(D). Thus im (δ) ⊂ ker(i∗). Conversely, if i∗([c]) = 0 ∈ Hn(D),

then in(c) = ∂n+1(d) for some d ∈ Dn+1. Thus, if a = qn+1(d), then by definition
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of δ, δ([a]) = [c]. Hence ker(i∗) ⊂ im (δ) and the exactness at Hn(C) holds for all

n.

If we take [c] ∈ Hn(C), then q∗i∗([c]) = [qnin(c)] = 0, since qn ◦ i − n = 0.

Thus im (i∗) ⊂ ker(q∗). Conversely, if q∗([d]) = 0, then qn(d) = ∂n+1(a) for some

a ∈ An+1. Since qn+1 is surjective, there is d′ ∈ Dn+1 such that qn+1(d
′) = a.

Consider qn(d − ∂n+1(d
′)) = qn(d) − qn∂n+1(d

′) = qn(d) − ∂n+1qn+1(d
′) = 0.

Therefore, there is a cycle a′ ∈ An such that d − ∂n+1(d
′) = in(a

′) and hence

i∗([a
′]) = [in(a

′)] = [d − ∂n+1(d
′)] = [d]. Thus ker(q∗) ⊂ im (i∗) and the sequence

is exact at Hn(D) for all n. ⊓⊔

5.2.3 Definition. Let f, g : C −→ D be two chain homomorphisms between

chain complexes. A chain homotopy between f and g is a family of homomorphisms

Pn : Cn −→ Dn+1 such that ∂Dn+1 ◦ Pn + Pn−1 ◦ ∂Cn = fn − gn : Cn −→ Dn. If such

a chain homotopy exists, then we say that f and g are chain homotopic. We write

P : f ≃ g.

5.2.4 Theorem. If f, g : C −→ D are chain homotopic chain homomorphisms,

then f∗ = g∗ : Hn(C) −→ Hn(D) for all n. Let P be a chain homotopy between f

and g.

Proof: Recall that given a cycle c ∈ Cn, then f∗([c]) = [f(c)] and g∗([c]) = [g(c)].

Since there is P : f ≃ g, we have that for each n and each cycle c in Cn,

fn(c)− gn(c) = ∂Dn+1Pn(c) + Pn−1∂
C
n (c). Thus f∗([c])− g∗([c]) = [fn(c)− gn(c)] =

[∂Dn+1Pn(c)] + [Pn−1∂
C
n (c)] = 0. ⊓⊔

5.3 The Künneth and the universal coefficients for-

mulae

Consider a chain complex D of R-modules

· · · −→ Dn+1
∂n+1−→ Dn

∂n−→ Dn−1 −→ · · · −→ D0

and define complexes Z(D) and B(D) given at n by Zn(D) = ker(∂n) and Bn(D) =

im (∂n+1) and whose differentials are zero. Then we have a short exact sequence

of complexes

(5.3.17) 0 −→ Z(D)
i−→ D

∂−→ B(D) −→ 0 .

5.3.18 Definition. Given chain complexes A and B one defines the tensor prod-

uct A⊗B as the chain complex given at n by

(A⊗B)n =
⊕
k+l=n

Ak ⊗Bl

with the differential ∂n :
⊕

k+l=nAk ⊗Bl −→
⊕

k+l=n−1Ak ⊗Bl given by

∂n(a⊗ b) = ∂k(a)⊗ b⊕ (−1)ka⊗ ∂l(b) .
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If C and D are chain complexes, we can tensor each term of (5.3.17) with C

to obtain a sequence of chain complexes

(5.3.19) C ⊗R Z(D)
1⊗i−→ C ⊗R D

1⊗∂−→ C ⊗R B(D) −→ 0 .

It is an exercise to show that this is an exact sequence of chain complexes as well

as to prove the following.

5.3.20 Lemma. If C or D is R-free, then

0 −→ C ⊗R Z(D)
1⊗i−→ C ⊗R D

1⊗∂−→ C ⊗R B(D) −→ 0

is an exact sequence of chain complexes. ⊓⊔

5.3.21 Exercise. Let 0 −→ C
α−→ D

β−→ E −→ 0 be an exact sequence of chain

complexes and chain homomorphisms. Show that there is a long exact sequence

· · · ∂−→ Hn(C)
α∗−→ Hn(D)

β∗−→ Hn(E)
∂−→ Hn−1(C) −→ · · · ,

where ∂[e], [e] ∈ Zn(E)/Bn(E), is given as follows. Let e = β(d). Then β(∂(d)) = 0.

Hence ∂(d) = α(c). Define ∂[e] = [c] ∈ Zn−1(C)/Bn−1(C). Show furthermore that

c ∈ Zn−1(C) and that the class [c] depends only on the given class [e].

If we apply the previous exercise to the short exact sequence of chain complexes

of 5.3.20, we obtain a long exact sequence

· · · −→ Hn(C ⊗R Z(D))
(1⊗i)∗−→ Hn(C ⊗R D)

(1⊗∂)∗−→ Hn(C ⊗R B(D))
∂−→

−→ Hn−1(C ⊗R Z(D)) −→ · · · ,
which will be useful in computing the homology of an arbitrary tensor product

C ⊗D of chain complexes.

5.3.22 Lemma. Assume that C is an R-free chain complex with all differentials

equal to zero, and that D is an arbitrary chain complex. Then for every n

Hn(C ⊗R D) = C ⊗R Hn(D) .

Proof: The differential of the chain complex C⊗D is ±1⊗∂ and, since C is R-free,

we have short exact sequences

0 −→ C ⊗R Z(D)
1⊗i−→ C ⊗R D

1⊗∂−→ C ⊗R B(D) −→ 0

0 −→ C ⊗R B(D) −→ C ⊗R D −→ C ⊗R D/Z(D) −→ 0

Hence im (1⊗ ∂) = C ⊗R B(D) and ker(1⊗ ∂) = C ⊗ Z(D).

On the other hand, since we have a short exact sequence

0 −→ B(D) −→ Z(D) −→ H(D) −→ 0

and C is R-free, we obtain a short exact sequence

0 −→ C ⊗R B(D) −→ C ⊗R Z(D) −→ C ⊗R H(D) −→ 0 .

⊓⊔



98 5 Elements of homology theory

Hence, by the previous lemma, if C is R-free, then

H(Z(C)⊗R D) = Z(C)⊗R H(D) and H(B(C)⊗R D) = B(C)⊗R H(D) .

Consider the homomorphism

∂ : (B(C)⊗R H(D))k+1 −→ (Z(C)⊗R H(D))k

as defined in Exercise 5.3.21, namely if c ⊗ [d] ∈ B(C) ⊗R H(D), take c′ ∈ C so

that ∂(c′) = c. Hence (∂ ⊗ 1)(c′ ⊗ [d]) = c⊗ [d].

Now, since c′ ⊗ d ∈ C ⊗R D, we have

∂(c′ ⊗ d) = ∂(c′)⊗ d± c′ ⊗ ∂(d) = c⊗ d ,

since d ∈ Z(D). Thus c ⊗ d is in the image of Z(C) ⊗R D −→ C ⊗R D and

∂(c⊗ [d]) is its homology class in H(Z(C)⊗R D). Consequently ∂ = j ⊗ 1, where

j : B(C) −→ Z(C) is the inclusion. To obtain ker(∂) = ker(j ⊗ 1) and coker (∂) =

ker(j ⊗ 1), notice that 0 −→ B(C) −→ Z(C) −→ H(C) −→ 0 is a free resolution

of H(C). Therefore, by Exercise 5.1.9 we have an exact sequence

0 −→ TorR(H(C),H(D)) −→ B(C)⊗R H(D) −→ Z(C)⊗R H(D) −→
−→ H(C)⊗R H(D) −→ 0 .

The following holds.

5.3.23 Theorem. (Algebraic Künneth formula for homology) If C is an R-free

chain complex, then there is a natural exact sequence

(5.3.24) 0 −→ H(C)⊗R H(D)
ν−→ H(C ⊗R D)

∆−→ TorR(H(C),H(D)) −→ 0 ,

where ν([c]⊗ [d]) = [c⊗ d] and ∆ has degree −1.

Proof: The first part follows from the previous considerations. Furthermore

ν([c]⊗ [d]) = (i⊗ 1)∗(c⊗ [d]) = [i(c)⊗ d] = [c⊗ d] .

Finally, ∆ has degree −1, i.e. it lowers the grading in 1, since ∂⊗1 has degree −1.
The naturality is clear. ⊓⊔

5.3.25 Note. A more explicit expression for (5.3.24) is as follows

(5.3.26)
0 −→

⊕
i+j=nHi(C)⊗R Hj(D) −→ Hn(C ⊗R D) −→

−→
⊕

i+j=n−1TorR(Hi(C),Hj(D)) −→ 0 .

5.3.27 Corollary. If both C and D are R-free chain complexes, then there is an

isomorphism

(5.3.24)

Hn(C ⊗R D) ∼=

 ⊕
i+j=n

Hi(C)⊗R Hj(D)

⊕
 ⊕
i+j=n−1

TorR(Hi(C),Hj(D))

 ,

which in general is not natural.
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Proof: We have to show that the short exact sequence (5.3.26) splits. That is, we

construct a homomorphism

γ : Hn(C ⊗R D) ∼=

 ⊕
i+j=n

Hi(C)⊗R Hj(D)


such that γ ◦ ν = 1.

First notice that if C is R-free, then the short exact sequence 0 −→ Z(C) −→
C −→ B(C) −→ 0 splits, since B(C) is also free (exercise). Thus for each n,

Cn ∼= Zn(C)⊕Bn−1(C).

By the assumption, C and D are free and therefore Z(C) and Z(D) are sum-

mands therein. Let α : C −→ Z(C) and β : D −→ Z(D) be the projections

(left-inverse to the inclusions). Composing with the quotient homomorphisms, they

induce epimorphisms

φ : C � H(C) and D � H(D) .

Thus we have an epimorphism

φ⊗ ψ : C ⊗R D � H(C)⊗R H(D) .

Clearly φ⊗ ψ determines a homomorphism γ such that γ ◦ ν = 1. ⊓⊔

5.3.25 Theorem. (Algebraic universal coefficients theorem for homology) If C is

an R-free chain complex and A is an R-module, there is an exact sequence

0 −→ Hn(C)⊗R A −→ Hn(C ⊗R A)
∆−→ TorR(Hn−1(C), A) −→ 0

which splits (nonnaturally).

Proof: See A as a chain complex D by taking D0 = A and Dn = 0 for n ̸= 0. The

result follows from 5.3.23 and 5.1.12. ⊓⊔

There is a dual version of the previous. First recall that a cochain complex of

R-modules C is a family of R-modules Cn together with boundary homomorphisms

δn : Cn −→ Cn+1 such that for all n, δn+1 ◦ δn = 0. Thus if we consider Zn(C) =

ker(δn) and Bn(C) = im (δn−1), we define the cohomology groups of C by

Hn(C) = Zn(C)/Bn(C) .

We have the following.

5.3.26 Theorem. (Algebraic Künneth formula for cohomology) If C is an R-free

cochain complex, then there is a natural exact sequence

(5.3.33)

0 −→ H∗(C)⊗R H∗(D)
ν−→ H∗(C ⊗R D)

∆−→ TorR(H
∗(C),H∗(D)) −→ 0 ,

where ν([c]⊗ [d]) = [c⊗ d] and ∆ has degree −1. Furthermore, this exact sequence

splits, though not naturally. ⊓⊔



100 5 Elements of homology theory

5.3.34 Note. A more explicit expression for (5.3.33) is as follows

(5.3.35)
0 −→

⊕
i+j=nH

i(C)⊗R Hj(D) −→ Hn(C ⊗R D) −→

−→
⊕

i+j=n+1TorR(H
i(C),Hj(D)) −→ 0 .

5.3.36 Corollary. If both C and D are R-free cochain complexes, then there is

an isomorphism

(5.3.37)

Hn(C ⊗R D) ∼=

 ⊕
i+j=n

H i(C)⊗R Hj(D)

⊕
 ⊕
i+j=n+1

TorR(H
i(C),Hj(D))

 ,

which in general is not natural. ⊓⊔

5.3.38 Theorem. (Algebraic universal coefficients theorem for cohomology) If C

is an R-free cochain complex and A is an R-module, there is an exact sequence

0 −→ Hn(C)⊗R A −→ Hn(C ⊗R A)
∆−→ TorR(H

n+1(C), A) −→ 0

which splits (nonnaturally). ⊓⊔

We say that an R-free chain complex C is of finite type if each Cn is finitely

generated. In this case, the R-modules Cn = HomR(Cn, R) are R-free (and finitely

generated). Thus we have an R-free cochain complex such that δn : Cn −→ Cn+1

is given by α 7→ α ◦ ∂n+1. We denote it by C∗. Thus we have the following.

5.3.39 Corollary. Let C and D be R-free chain complexes of finite type and con-

sider the R-free cochain complexes C∗ and D∗ given by Cn = HomR(Cn, R) and

Dn = HomR(Dn, R). Then there is a natural exact sequence

(5.3.39)
0 −→

⊕
i+j=nH

i(C∗)⊗R Hj(D∗) −→ Hn(C∗ ⊗R D∗) −→

−→
⊕

i+j=n+1TorR(H
i(C∗),Hj(D∗)) −→ 0 .

⊓⊔



Chapter 6 Dold-Thom topological groups

In this chapter we shall construct and analyze certain topological groups

whose homotopy groups yield homology groups...

6.1 The abelian group F (S;L)

In what follows, L will denote an abelian group (additive) with the discrete topol-

ogy and S will be a pointed set, with base point x0.

6.1.1 Definition. Define

F (S;L) = {u : S −→ L | u(x0) = 0 and supp (u) is finite} ,

where the support of u is given by supp (u) = {x ∈ S | u(x) ̸= 0}. Given u, v ∈
F (S;L), define their sum u+ v by

(u+ v)(x) = u(x) + v(x) ,

the negative −u by (−u)(x) = −u(x), and as the zero take the constant function

with value zero. Thus, clearly, F (S;L) has the structure of an abelian group.

Given a pointed function f : S −→ T , define f∗ : F (S;L) −→ F (T ;L) by

f∗(u)(y) =
∑

f(x)=y u(x). Since the support of u is finite, this sum is finite and

thus f∗ is well defined. Obviously, f∗(u) has finite support as well.

6.1.2 Proposition. The function f∗ : F (S;L) −→ F (T ;L) is a group homomor-

phism.

Proof: Just observe that f∗(u + v)(y) =
∑

f(x)=y(u + v)(x) =
∑

f(x)=y(u(x) +

v(x)) =
∑

f(x)=y u(x) +
∑

f(x)=y v(x) = f∗(u)(y) + f∗(v)(y). ⊓⊔

In fact, the assignment

S 7−→ F (S;L) and f : S −→ T 7−→ f∗ : F (S;L) −→ F (T ;L)

is a functor. We have the following.

101
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6.1.3 Proposition. If f = idS : S −→ S, then f∗ = 1F (S;L) : F (S;L) −→
F (S;L). Furthermore, if f : S −→ T and g : T −→ U are pointed functions, then

(g ◦ f)∗ = g∗ ◦ f∗ : F (S;L) −→ F (U ;L).

Proof: The first assertion is obvious. For the second, take u ∈ F (S;L). Then

(g∗ ◦ f∗)(u)(z) = g∗(f∗(u))(z) =
∑
g(y)=z

f∗(u)(y) =
∑
g(y)=z

∑
f(x)=y

u(x)

=
∑

gf(x)=z

u(x) = (g ◦ f)∗(u)(x) .

⊓⊔

Thus we have a functor F (−;L) : Set∗ −→ Ab, whereSet∗ denotes the category

of pointed sets.

6.1.4 Exercise. Show that given a pointed set S, the assignment L 7−→ F (S;L)

is a functor from the category Ab to itself.

Given l ∈ L and x ∈ S, x ̸= x0, denote by lx ∈ F (S;L) the function given by

(lx)(x′) =

{
l if x′ = x ,

0 if x′ ̸= x .

Given any u ∈ F (S;L), it can be written as u = l1x1 + · · · + lkxk if supp (u) =

{x1, . . . , xk} and u(xi) = li, i = 1, . . . , k and li = u(xi). Alternatively, one may

write

u =
∑
x∈S

lxx ,

understanding that lx ̸= 0 only for finitely many indexes x. In other words, lx =

u(x).

In any of these expressions, we have for a pointed function f : S −→ T that

f∗(u) = l1f(x1) + · · ·+ lkf(xk) and f∗(u) =
∑
x∈S

lxf(x) .

6.1.5 Exercise. Show that indeed the formulas above are equivalent to the orig-

inal definition 6.1.1.

6.1.6 Exercise. Show that F (S;Z) is the free abelian group generated by (the

set) S − {x0}.

In some occasions it will be convenient to write
∑k

i=1 lixi for an element u ∈
F (S;L) where the xis are not necessarily different and some may even be the base

point. Such a sum we call unreduced and it means that one should add up all
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coefficients li such that xi = x for some x ∈ S. Furthermore, if some xi = x0 (the

base point), then we understand the term lixi as zero. If all xi in the sum are

different from each other and from the base point, then we say that the sum is

reduced.

One may filter F (S;L) as follows:

(6.1.7) · · · ⊆ F k−1(S;L) ⊆ F k(S;L) ⊆ F k+1(S;L) ⊆ · · · ⊆ F (S;L) ,

where

F k(S;L) =

{
k∑
i=1

lixi ⊂ F (S;L) | li ∈ L , xi ∈ S , i = 1, . . . , k

}
.

6.2 The simplicial abelian group F (K;L)

Proposition 6.1.3 in the previous section shows that F (−;L) : Set∗ −→ Ab is a

covariant functor. By Proposition 2.1.4, we have the next.

6.2.1 Definition. Given a simplicial pointed set K, namely a contravariant func-

tor K : ∆ −→ Set∗, composing with the functor F (−;L) : Set∗ −→ Ab we have

another functor F (K;L) = F (−;L) ◦K : ∆ −→ Ab, which is a simplicial abelian

group. In other words, the obtained simplicial abelian group F (K;L) is given by

F (K;L)n = F (Kn;L) and is such that if µ : m −→ n is a morphism in ∆ then we

put µF (K;L) = µK∗ : F (Kn;L) −→ F (Km;L).

6.2.2 Definition.

(a) Assume that K is a simplicial pointed set and that Q ⊆ K is a simplicial

pointed subset, namely Q is a simplicial set and for each n, Qn is a subset

of Kn. Furthermore, the inclusion functions in : Qn ↪→ Kn determine a

morphism of simplicial sets i : Q ↪→ K. In this case, one can also define

a simplicial quotient set K/Q by (K/Q)n = Kn/Qn, i.e. Qn collapses to

one point in Kn for each n. If µ : m −→ n is a morphism in ∆ then we

take the function µK/Q : (K/Q)n −→ (K/Q)m induced by the function

µK : Kn −→ Km. The fact that Q ⊂ K is a simplicial subset guarantees that

µK/Q is well defined.

(b) Assume that F is a simplicial abelian group and that G ⊆ F is a simplicial

subgroup, namely G is a simplicial group and for each n, the group Gn is

a subgroup of Fn. Moreover, the inclusion homomorphisms i : Gn ↪→ Fn

determine a homomorphism of simplicial groups i : G ↪→ F . In this case, one

can also define a simplicial quotient group F/G by (F/G)n = Fn/Gn, i.e. the

quotient group of cosets of Gn in Fn for each n. If µ : m −→ n is a morphism

in ∆ then we take the homomorphism µF/G : (F/G)n −→ (F/G)m induced
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by the homomorphism µF : Fn −→ Fm. The fact that G ⊂ F is a simplicial

subgroup guarantees that µF/G is well defined.

Then we have the next.

6.2.3 Proposition. Assume that Q ⊆ K is a simplicial pointed subset. Then there

are an inclusion of simplicial groups F (Q;L) ⊆ F (K;L) and an isomorphism of

simplicial groups

φ : F (K;L)/F (Q;L)
∼=−→ F (K/Q;L) ,

such that the following triangle commutes:

F (K;L)
q

uukkkk
kkkk p∗

((QQQ
QQQQ

F (K;L)/F (Q;L) φ
// F (K/Q;L) ,

where p : K � K/Q is the quotient morphism which collapses Qn to a point for

each n.

Proof: The composite F (Q;L)
i∗
↪→ F (K;L)

p∗� F (K/Q;L) is clearly zero, where

i : K ↪→ Q is the inclusion morphism. Namely, if and u : Q −→ L is an element of

F (Q;L), then p∗i∗(u) = (p ◦ i)∗(u), and if x = p(x), then

(p ◦ i)∗(u)(x) =
∑

pi(y)=x

u(y) = 0 ,

because since y ∈ Q, pi(y) is the base point of K/Q. Hence p∗ factors through the

epimorphism p : F (K;L) � F (K;L)/F (Q;L) thus yielding the diagram of the

statement. Conversely, if p∗(u) = 0, this means that for all x ∈ K,
∑

p(x)=x u(x) =

0. This is true if either u(x) = 0 for all x /∈ Q or x ∈ Q, since in this case x ∈ K/Q
is the base point. Thus u = i∗(v), where v = u|Q. ⊓⊔

Since by 2.5.3 the morphism F (K;L) � F (K;L)/F (Q;L) is a Kan fibration,

then F (K;L) � F (K/Q;L) is a Kan fibration too, and by Theorem 3.4.3, we

obtain the next.

6.2.4 Proposition. There is a natural long exact sequence

· · · i∗−→ πn(F (K;L))
p∗−→ πn(F (K/Q;L))

∂−→ πn−1(F (Q;L)) −→ · · ·

−→ π1(F (K/Q;L))
∂−→ π0(F (Q;L))

i∗−→ π0(F (K;L))
p∗−→ π0(F (K/Q;L)) −→ 0

6.3 The topological abelian group F (X;L)

Let X be a pointed k-space with base point x0 ∈ X and let L be an abelian group.

Now we shall consider the group F (X;L) as defined in the first section, but we

shall use the topology of X to endow F (X;L) with a topology which makes it into

a topological group in K-Top.
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6.3.1 Definition. Let X be a pointed space and L an abelian group. We topol-

ogize F (X;L) in two steps as follows:

(i) Consider the surjective map

πk : (L×X)k � F k(X;L)

given by πk(l1, x1; . . . ; lk, xk) = l1x1+· · · lkxk, where the kth power on the left

is the product in K-Top. Endow F k(X;L) with the identification topology.

Since (L×X)k is a k-space, by Theorem 1.4.10, the filtration term F k(X;L)

is a k-space.

(ii) Consider the filtration 6.1.7 and endow F (X;L) with the union topology. By

Proposition 1.4.11 F (X;L) becomes a k-space.

6.3.2 Proposition. The group F (X;L) is a topological group.

Proof: We must show that the map δ : F (X;L)× F (X;L) −→ F (X;L) given by

δ(u, v) = u− v is continuous. To do this, consider the commutative square

(L×X)k × (L×X)m
δ̃ //

πk×πm
��

(L×X)k+m

πk+m

��
F k(X;L)× Fm(X;L)

δ
// F k+m(X;L) ,

where

δ̃((l1, x1; . . . ; lk, xk), (l
′
1, x

′
1; . . . ; l

′
m, x

′
m)) = (l1, x1; . . . ; lk, xk,−l′1, x′1; . . . ;−l′m, x′m) ,

which is obviously continuous, since L is discrete. The product map πk × πk is an

identification by 1.4.24, and since πk+m ◦ δ̃ is continuous, so is δ too. ⊓⊔

6.3.3 Proposition. A continuous pointed map f : X −→ Y defines a continuous

group homomorphism f∗ : F (X;L) −→ F (X;L).

Proof: By 6.1.2, it is enough to verify the continuity of f∗. To do this, notice that

the commutative diagram

(L×X)k
(1L×f)k //

πk
��

(L× Y )k

πk
��

F k(X;L)
f∗

// F k(Y ;L)

implies that f∗ : F k(X;L) −→ F k(Y ;L) is continuous for every k. But since

F k(X;L) has the union topology, f∗ : F (X;L) −→ F (Y ;L) is continuous as well.

⊓⊔
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6.3.4 Proposition. If f0, f1 : X −→ Y are continuous pointed maps which are

pointed homotopic, then the homomorphisms f0∗, f1∗ : F (X;L) −→ F (Y ;L) are

homotopic.

Proof: A pointed homotopy H : X × I −→ Y defines for each k a commutative

square

(L×X)k × I H̃ //

πk×idI
��

(L× Y )k

πk
��

F k(X;L)× I
H∗

// F k(Y ;L) ,

where H̃((l1, x1; . . . ; lk, xk), t) = (l1,H(x1, t); . . . ; lk,H(xk, t)). ThusH∗ : F
k(X;L)×

I −→ F k(Y ;L) is continuous for every k, and since F (X;L)×I has the topology of

the union of the spaces F k(X;L)×I, H∗ : F (X;L)×I −→ F (Y ;L) is a continuous

homotopy of homomorphisms from f0∗ to f1∗. ⊓⊔

6.3.5 Corollary. If X and Y have the same pointed homotopy type, then so do

F (X;L) and F (Y ;L). In particular, if X is contractible, then so is F (X;L). ⊓⊔

6.3.6 Lemma. The geometric realization |F (K,L)| is an abelian topological group

such that [v, t] + [v′, t] = [v + v′, t].

Proof: Consider the projections pi : F (K,L) × F (K,L) −→ F (K,L), i = 1, 2,

and the induced maps |pi| : |F (K,L) × F (K,L)| −→ |F (K,L)|, and define η :

|F (K,L)× F (K,L)| −→ |F (K,L)| × |F (K,L)| by

η[(v, v′), t] = (|p1|[(v, v′), t], |p2|[(v, v′), t])
= ([p1(v, v

′), t], [p2(v, v
′), t])

= ([v, t], [v′, t]) .

By 2.3.3, η is a homeomorphism. The group structure + in |F (K,L)| is then given

by the diagram

|F (K,L)| × |F (K,L)| η−1
//

+ **UUU
UUUU

UUUU
UUUU

U
|F (K,L)× F (K,L)|

|µ|
��

|F (K,L)| ,

where µ : F (K,L)× F (K,L) −→ F (K,L) is the simplicial group structure.

The following result relates the simplicial groups F (K;L) with the topological

groups F (X;L).

6.3.7 Theorem. The topological groups F (|K|, L)| and |F (K,L)| are naturally

isomorphic.
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Proof: Take

φ : F (|K|, L) −→ |F (K,L)|

given by

φ(u) =
∑

[σ,t]∈|K|

[u[σ, t]σ, t] ,

where u : |K| −→ L, σ ∈ Kn, and t ∈ ∆n (thus u[σ, t]σ ∈ F (Kn, L)). Using

Lemma 6.3.6 one shows that φ is a homomorphism. Thus we only need to check

that φ|Fk(|K|,L) is continuous. Consider the diagram

(L× |K|)k //______

��

|F (K,L)|k

sum

��
Fk(|K|, L)

φ|Fk(|K|,L)

// |F (K,L)| ,

where the map on the top is the product of the maps given by the next diagram.

L× (
⊔
n(Kn ×∆n) //___

��

⊔
n(F (Kn, L)×∆n

��
L× |K| // F (|K|, L) ,

where the top map is given by (l, σ, t) 7→ (lσ, t).

To see that φ is an isomorphism of topological groups, we define its inverse

ψ : |F (K,L)| −→ F (|K|, L) as follows. Take v ∈ F (Kn, L); then

ψ[v, t] =
∑
σ∈Kn

v(σ[σ, t]) .

To see that ψ is well defined, take v =
∑r

i=1 liσi; then fK∗ (v) =
∑r

i=1 lif
K(σi).

Thus

ψ[fK∗ (v), t] =

r∑
i=1

[fK(σi), t] =

r∑
i=1

[σi, f#(t)] = ψ[v, f#(t)] .

To see that ψ is continuous, consider the diagram

⊔
n(F (Kn, L)×∆n //___

��

SP∞ F (|K|, L)

sum

��
|F (K,L)|

ψ
// F (|K|, L) ,

where the top arrow given by (
∑

i li, σi), t) 7→ ⟨l1[σ1, t], . . . ⟩ is obviously continuous.

Moreover, ψ is a homomorphism. Namely, given [v, t], [v′, t′] ∈ |F (K,L)|, by
Lemma 6.3.6, there exist unique elements, w,w′, t′′ such that [v, t] = [w, t′′],



108 6 Dold-Thom topological groups

[v′, t′] = [w′, t′′]. Thus

ψ([v, t] + [v′, t′] = ψ([w, t′′] + [w′, t′′])

= ψ[w + w′, t′′]

=
∑
σ

(w + w′)(σ)[σ, t′′]

= ψ[w, t′′] + ψ[w′, t′′] = ψ[v, t] + ψ[v′, t′] .

In generators, we have that ψφ(l[σ, t]) = ψ[lσ, t] = l[σ, t], thus ψ ◦ φ is the

identity. On the other hand, φψ[v, t] = φ(
∑

σ∈Kn
v(σ[σ, t]) =

∑
σ∈Kn

[v(σ)σ, t] =

[
∑

σ∈Kn
v(σ)σ, t] = [v, t], where the next to the last equality follows by Lemma

6.3.6.

6.3.1 The exactness property of the group F (X;L)

We consider a pair pointed CW-complexes A ↪→ X and an abelian group L. One

has the short exact sequence of simplicial groups

F (S(A);L) ↪→ F (S(X);L) � F (S(X)/S(A);L) ,

which by 2.5.3 is a Kan fibration.

Taking the geometric realization, by ??, we have a Hurewicz fibration

|F (S(A);L)| ↪→ |F (S(X);L)|� |F (S(X)/S(A);L)| .

By 6.3.7, we have (natural) isomorphisms of topological groups

|F (S(A);L)| ∼= F (|S(A)|;L) ,

|F (S(X);L)| ∼= F (|S(X)|;L) ,

|F (S(X)/S(A);L)| ∼= F (|S(X)/S(A)|;L)

By Proposition 2.3.5, there is a (natural) homeomorphism

|S(X)/S(A)| ≈ |S(X)|/|S(A)| ,

so that the last isomorphism yields |F (S(X)/S(A);L)| ∼= F (|S(X)|/|S(A)|;L).
Hence we have a Hurewicz fibration

(6.3.7) F (|S(A)|;L) ↪→ F (|S(X)|;L) � F (|S(X)|/|S(A)|;L) .

Indeed, we have the following commutative diagram in which the top row is a

Hurewicz fibration.

F (|S(A)|;L) �
� //

ρA∗ ≃
��

F (|S(X)|;L) // //

ρX∗ ≃
��

F (|S(X)|/|S(A)|;L)

ρX∗ ≃
��

F (A;L) �
� // F (X;L) // // F (X/A;L) .

Thus we obtain the following.
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6.3.8 Theorem. Given a pair of CW-complexes A ⊆ X, there is a long exact

sequence of homotopy groups

(6.3.9)

· · ·πq+1(F (X/A;L)) −→ πq(F (A;L)) −→ πq(F (X;L)) −→ πq(F (X/A;L) −→ · · · .

⊓⊔

6.3.2 The dimension property of the group F (X;L)

Consider a CW-complex X and the sequence F (X;L)
i∗
↪→ F (CX;L)

p∗� F (ΣX;L),

which by 6.3.8 has a long exact sequence. We have the holonomy θ : ΩF (ΣX;L) −→
F (X;L), where ΣX is the reduced suspension of X given by CX/X. We also

have the path fibration ΩF (X;L)
ι
↪→ PF (X;L)

π� F (X;L), which by 4.1.5 1 is

a Hurewicz fibration. Since the contractibility of CX implies that F (CX;L) is

contractible, similarly to the proof of 4.4.22, we obtain the next.

6.3.10 Proposition. The holonomy θ : ΩF (ΣX;L) −→ F (X;L) induces isomor-

phisms in homotopy groups. ⊓⊔

6.3.11 Corollary. There are homotopy equivalences L = F (S0;L) ≃ ΩF (S1;L) ≃
· · · ≃ ΩkF (Sk;L) ≃ · · · .
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Chapter 7 The homotopical homology

groups

In this chapter we shall define and analyze homotopical homology groups

...

7.1 Ordinary homology

We start this section with the abstract definition of an ordinary homology theory.

As a matter of fact, there are two approaches to the topic. One is through the

concept of an ordinary reduced homology theory, defined in the category of pointed

spaces K-Top∗, and the other is through the concept of an ordinary (unreduced)

homology theory defined in the category of pairs of spaces K-Top2.

Given a pair of pointed spaces (X,A), we construct the reduced cone of A,

denoted by CA, by A×I/A×{1}∪{x0}×I, which is naturally a pointed space with

the vertex {A×{1}} as base point. We may construct also X ∪CA by identifying

in the topological sum X ⊔ CA the point (a, 0) ∈ CA with the point a ∈ X. This

is clearly a functor K-Top2 −→ K-Top∗ which also sends homotopic maps of pairs

to homotopic maps of pointed spaces. It is a convention to define the cone of the

empty set as one point, denoted ∗, and thus, if A = ∅, then X∪CA = X+ = X⊔∗.

7.1.1 Definition. An ordinary reduced homology theory H̃∗ with coefficients in

an abelian group L for some category of pointed k-spaces K-Top∗ consists of a

family of covariant functors H̃q : K-Top∗ −→ Ab and a natural transformation

σX : H̃q(X) −→ H̃q+1(ΣX) such that the following axioms hold:

(i) Homotopy. If f0, f1 : X −→ Y are homotopic maps of pointed spaces, then

f0∗ = f1∗ : H̃q(X) −→ H̃q(Y ) .

(ii) Exactness. If i : A ↪→ X and j : X ↪→ X ∪ CA denote the inclusion maps

of pointed spaces, then the following is an exact sequence:

H̃q(A)
i∗−→ H̃q(X)

j∗−→ H̃q(X ∪ CA) .

111
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(iii) Suspension. The natural transformation σX : H̃q(X) −→ H̃q+1(ΣX) is an

isomorphism for all X. It is called the suspension isomorphism.

(iv) Dimension. For the 0-sphere S0 one has

H̃q(S0) =
{
L if q = 0

0 if q ̸= 0 .

Next we define the concept of an ordinary unreduced homology. In what follows,

K-Top2 will denote the category of pairs (X,A) of k-spaces and continuous maps

of pairs f : (X,A) −→ (Y,B) and we may consider several smaller categories T

and their corresponding categories of pairs T2 which includes all pairs of the form

(X, ∅) for X in T. For simplicity, for these pairs we put (X, ∅) = X.

7.1.2 Definition. An ordinary (unreduced) homology theory H∗ with coefficients

in an abelian group L for K-Top2 consists of a family of covariant functors Hq :

K-Top2 −→ Ab and natural transformations ∂ : Hq(X,A) −→ Hq−1(A) such that

the following axioms hold:

(i) Homotopy. If f0, f1 : (X,A) −→ (Y,B) are homotopic maps of pairs of

spaces, then

f0∗ = f1∗ : Hq(X,A) −→ Hq(Y,B) .

(ii) Exactness. If i : A ↪→ X and j : X ↪→ (X,A) denote the inclusion maps,

then the following is an exact sequence:

· · · −→ Hq+1(X,A)
∂−→ Hq(A)

i∗−→ Hq(X)
j∗−→ Hq(X,A)

∂−→ Hq−1(A) −→ · · · .

(iii) Excision. If (X,A) is a pair of spaces in T2 and U ⊂ A◦, then the inclusion

map i : (X − U,A− U) ↪→ (X,A) induces an isomorphism

i∗ : Hq(X − U,A− U) −→ Hq(X,A) .

(iv) Dimension. If ∗ denotes the one-point space, then

Hq(∗) =
{
L if q = 0

0 if q ̸= 0 .

We shall see that both the reduced and the unreduced homology theories are

equivalent, in the sense that each of them determines the other.
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7.1.3 Definition.

(a) Given an unreduced homology theory H∗ and a pointed space X with base

point x0, put by definition

H̃q(X) = Hq(X, {x0}) .

(b) Given a reduced homology theory H̃∗ and a pair of spaces (X,A), put by

definition

Hq(X,A) = H̃q(X+ ∪ C(A+)) .

7.1.4 Proposition. If the pointed spaces are well-pointed, then constructions (a)

and (b) above are inverse of each other, up to isomorphism.

Proof: First we show that construction (a) followed by construction (b) yields the

same functor of pointed spaces with which we started:

H̃′
q(X) = Hq(X, {x0}) = H̃q(X+ ∪ C{x+0 }) ,

where we denote by H̃′∗ the resulting functor after both constructions. Since X

is well pointed, the map X+ ∪ C{x+0 } � X which collapses the cone to the base

point x0 is a homotopy equivalence, so that H̃q(X+ ∪ C{x+0 }) ∼= H̃q(X).

Conversely we show that construction (b) followed by construction (a) produces

the same functor of pairs with which we started

H′
q(X,A) = H̃q(X+ ∪ C(A+)) = Hq(X+ ∪ C(A+), ∗) ,

where we denote byH′
∗ the resulting functor after both constructions. Since C(A+)

is contractible, a comparison of the long exact sequences of both pairs shows that

the inclusion (X+ ∪ C(A+), ∗) ↪→ (X+ ∪ C(A+), C(A+)) induces isomorphisms

in homology. By excision, the inclusion (X+ ∪ Z1/2(A
+), Z1/2(A

+)) ↪→ (X+ ∪
C(A+), C(A+)) also induces isomorphisms in homology. Finally, the vertical col-

lapsing of the cylinders (X+∪Z1/2(A
+), Z1/2(A

+)) � (X,A) is a homotopy equiv-

alence of pairs. Thus we have an isomorphism Hq(X+ ∪ C(A+), ∗) ∼= Hq(X,A).
⊓⊔

7.2 Singular homology

In this section we shall construct the classical singular homology.

LetX be any topological space andA a subspace. We start recalling the singular

simplicial set S(X) : ∆ −→ Set given by

S(X)(n) = Sn(X) = {α : ∆n −→ X | α is continuous}
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with its face and degeneracy maps given by

di(α) = α ◦ δi# : ∆n−1 −→ X , si(α) = α ◦ σi# : ∆n+1 −→ X .

We consider the simplicial abelian group obtained from S(X) applying the functor

F (−;L), namely

S(X;L) = F (S(X);L) .

By 2.5.2 we have that S(X;L) has the structure of a chain complex with bound-

ary ∂n : Sn(X;L) = F (Sn(X);L) −→ Sn−1(X;L) = F (Sn−1(X);L). If L = Z
we simply write S(X) instead of S(X;Z). The proof of the following result is

straightforward.

7.2.1 Proposition.

(a) The abelian group Sn(X) is the free group generated by all singular n-simplices

α : ∆n −→ X.

(b) There is an isomorphism Sn(X;L) ∼= Sn(X)⊗ L. ⊓⊔

Furthermore we have a chain subcomplex S(A;L) and therewith we also have

a chain quotient complex S(X,A;L) = S(X;L)/S(A;L). Thus we have a short

exact sequence of chain complexes

0 −→ S(A;L) −→ S(X;L) −→ S(X,A;L) −→ 0 .

7.2.2 Definition. The homology groups of the chain complex (S(X,A;L), ∂n)

are the so-called singular homology groups with coefficients in L which we shall

denote by

HS
n (X,A;L) = Hn(S(X,A;L)) .

If we denote

HS
n (X;L) = HS

n (X, ∅;L) and HS
n (A;L) = HS

n (A, ∅;L) ,

then by Theorem 6.3.1 we have that the following.

7.2.3 Theorem. The long homology sequence is exact

(7.2.4) · · ·−→ HS
n+1(X;L)

j∗−→HS
n+1(X,A;L)

∂−→HS
n (A;L)

i∗−→HS
n (X;L)−→· · · ,

where j∗ is induced by the inclusion j : X = (X, ∅) ↪→ (X,A) and i∗ is induced by

the inclusion i : A ↪→ X. This is the long exact singular homology sequence of a

pair (X,A). ⊓⊔

Thus HS
∗ satisfies the exactness axiom.

On the other hand, we have the next.
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7.2.5 Theorem. If f, g : (X,A) −→ (Y,B) are homotopic maps of pairs, then

they induce the same homomorphisms in homology

f∗ = g∗ : HSn(X,A;L) −→ HSn(Y,B;L) for all n .

Thus HS
∗ satisfies the homotopy axiom.

For the proof one may use the homotopy between f and g to construct a chain

homotopy between f∗ and g∗ : S(X,A;L) −→ S(Y,B;L) (see [22]). ⊓⊔

If we consider the 0-sphere S0 consisting of two points, then Sn(S0) consists

also of two elements, thus S(S0;L) = F (S0;L) = L, since one point always goes to

0 while the other may take all values in L. Since Hn(∗;L) = H̃n(S0;L), we have

the following.

7.2.6 Theorem.

HS
n (∗;L) ∼=

{
L if n = 0 ,

0 if n > 0 .

⊓⊔

Thus HS
∗ satisfies the dimension axiom.

7.3 Ordinary homotopical homology

In what follows we shall see how the topological groups F (X;L) define an ordinary

reduced homology theory in the category of pointed regular CW-complexes RCW.

7.3.1 Definition. Let X be a pointed regular CW-complex. Define

H̃q(X;L) = πq(F (X;L)) .

Furthermore, we define a natural transformation

σX : H̃q(X;L) −→ H̃q+1(ΣX;L)

by considering the map h : F (X;L) −→ ΩF (σX;L) defined by

h(
∑
x∈X

lxx)(t) =
∑
x∈X

lx(x ∧ t)

(see ??) and recalling that the functor Σ is left adjoint of the functor Ω and that

ΣSq = Sq+1. Namely

πq(F (X;L))
σX //______________ πq+1(F (ΣX;L))

[Sq, F (X;L)]∗
hX∗

// [Sq,ΩF (ΣX;L)]∗ ∼=
// [ΣSq, F (X;L)]∗.
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7.3.2 Definition. Let (X,A) be a CW-pair, namely a CW-complex X and a

subcomplex A. Define

Hq(X,A;L) = πq(F (X/A;L) .

7.3.3 Theorem. The functors Hn(−;L) together with the connecting homomor-

phisms ∂ : Hq(X,A;L) −→ Hq−1(A;L) constitute an ordinary homology theory in

the category of CW-pairs.

Proof: We have to prove the four axioms. Assume first that f0, f1 : (X,A) −→
(Y,B) are homotopic maps of pairs. Then they determine homotopic pointed maps

f0, f1 : X/A −→ Y/B and by Proposition 6.3.4, the induced homomorphisms

f0∗, f1∗ : Hq(X,A;L) −→ Hq(Y,B;L) are equal. Thus the homotopy axiom holds.

Assume now that we have a CW-pair (X,A) and the associated pair (X+, A+).

From the exact sequence (6.3.9) applied to the pair (X+, A+) and replacing it with

(X,A) where convenient, we obtain a long exact sequence

· · · −→ Hq+1(X,A;L)
∂−→ Hq(A;L)

i∗−→ Hq(X;L)
j∗−→ Hq(X,A;L)

∂−→ · · · .

Hence the exactness axiom holds.

Assume that we have a pair of CW-complexes (X,A) and U such that U ⊂
A◦ and (X − U,A − U) is again a CW-pair. Then the quotient spaces X/A and

(X − U)/(A − U) coincide and the topological groups F (X/A;L) and F ((X −
U)/(A− U);L) are equal. Hence the excision axiom holds.

Finally notice that ∗+ = S0. Since L = F (S0;L) is discrete, we have that

Hq(∗;L) = πq(F (S0;L)) =
{
L if q = 0

0 if q ̸= 0

and therefore the dimension axiom holds too. ⊓⊔

7.3.4 Remark. There is a relative Whitehead theorem (see [2]), which states the

following. If φ : (X ′, A′) −→ (X,A) is a weak homotopy equivalence of pairs (i.e.,

it is a weak homotopy equivalence X ′ −→ X and a weak homotopy equivalence

A′ −→ A), then it induces a weak homotopy equivalence φ : X ′/A′ −→ X/A. As

a consequence, we have a homotopy equivalence

|S(X)|/|S(A)| −→ X/A ,

as used above.

We shall now prove that our homotopical homology theory is additive. To prove

that, we need the following concept. Let Xα, α ∈ Λ, be a family of pointed G-

spaces and let L be a Z[G]-module. Then we have (algebraically) the direct sum

F =
⊕

α∈Λ F (Xα, L). In order to furnish it with a convenient topology, take

Fn = {(uα) ∈ F | #{α ∈ Λ | uα ̸= 0} ≤ n} .
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Then obviously Fn ⊂ Fn+1, and
∪
n F

n = F . For each n, there is a surjection⨿
α1,...,αn∈Λ

(Xα1 × L)× · · · × (Xαn × L) � Fn .

Endow Fn with the identification topology and F with the topology of the union

of the Fns. One clearly has the following.

7.3.5 Lemma. There is an isomorphism of topological groups⊕
α∈Λ

F (Xα, L) ∼= F (
∨
α∈Λ

Xα, L))

induced by the inclusions Xα ↪→
∨
Xα.

Proof: The inverse is given by the restrictions F (
∨
Xα, L) −→ F (Xα, L), u 7→

u|Xα . ⊓⊔

Since obviously πq(
⊕

α F (Xα, L)) ∼=
⊕

α πq(F (Xα, L)), as a consequence, we

have the next.

7.3.6 Theorem. There is an isomorphism H̃q(
∨
αXα;L) ∼=

⊕
α H̃q(Xα;L). ⊓⊔

Consider a (pointed) Hurewicz fibration F
i
↪→ E

p
� B. Let Γ : E×BBI −→ EI

be a path-lifting map for p. Define a map θΓ : ΩB −→ F by

θΓ(λ) = Γ(e0, λ)(1) ,

where ΩB = Map∗(S1, B). The map θΓ is called the holonomy of p determined by

Γ.

On the other hand, consider the Hurewicz fibration F (X;L)
i∗
↪→ F (CX;L)

p∗�
F (ΣX;L) and define h : F (X;L) −→ ΩF (ΣX;L), where ΣX is the reduced

suspension of X, given by the smash-product X ∧ S1, by

h(u)(s) =
∑

u(x)(x ∧ s) .

McCord [35] shows that this is a homomorphism and a homotopy equivalence.

7.3.7 Theorem. The maps h : F (X;L) −→ ΩF (ΣX;L) and θΓ : F (ΣX;L) −→
F (X;L) are homotopy inverse.

Proof: Consider the Hurewicz fibration F (X;L)
i∗
↪→ F (CX;L)

p∗� F (ΣX;L) and

for simplicity rename it to F
i
↪→ E

p
� B.

Consider ρ : F = F (X;L) −→ EI given by ρ(u)(s) =
∑

x∈X u(x)[x, s], where

[x, s] ∈ CX = X ∧ I. Take the adjoint map

ρ̂ : F (X;L)× I −→ E .
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ρ̂(u, 0) = 0 and p∗ρ̂(u, s) = p∗
∑
u(x)[x, s] =

∑
u(x)(x ∧ s).

Define β(u, s) = Γ(0, h(u))(s).

We have p∗β(u, s) = p∗Γ(0, h(u))(s) = h(u)(s). Consider the homotopy H :

(F (X;L)× I)× I −→ E determined by

H((u, s), 0) = ρ̂(u, s) , H((u, s), 1) = Γ(0, h(u))(s) , H((u, 0), t) = 0 and

p∗H((u, s), t) = h(u)(s) ∀t .

Now consider the homotopy H : F (X;L)× I −→ E given by

H(u, t) = H((u, 1), t) .

Then

H(u, 0) = H((u, 1), 0) = ρ̂(u, 1) = u ,

H(u, 1) = H((u, 1), 1) = Γ(0, h(u))(1) = θΓ(h(u)) ,

p∗H(u, t) = p∗H((u, 1), t) = h(u)(1) = 0 .

Hence one has thatH lands always in the fiber and thus it restricts toH : F (X;L)×
I −→ F (X;L). Therefore we have

H : idF (X;L) ≃ θΓ ◦ h : (F (X;L), 0) −→ (F (X;L), 0) .

Since h is a homotopy equivalence [35], this proves that θ is the inverse homotopy

equivalence. ⊓⊔



Chapter 8 The homotopical cohomology

groups

In this chapter we shall define and analyze homotopical homology groups

...

8.1 Eilenberg–Mac Lane spaces

We start considering the spaces S1 or more generally, F (Sq;L) introduced in the

previous chapter. First notice that

πq(S1) ∼=
{
Z if q = 1

0 if q ̸= 1
and πq(F (Sn;L)) ∼=

{
L if q = n

0 if q ̸= n .

(see [2, 4.5.13] and 7.3.3). This suggests the following.

8.1.1 Definition. A topological space A is said to be an Eilenberg–Mac Lane

space of type (L, n) or, more briefly, to be a K(L, n), if it satisfies

πq(A) ∼=
{
L if q = n,

0 if q ̸= n.

Thus we have the next.

8.1.2 Theorem. For any abelian group L and any n, the topological groups F (Sn;L)
are Eilenberg–Mac Lane spaces of type (L, n). ⊓⊔

8.2 Ordinary cohomology

8.2.1 Definition. Let (X,A) be a CW-pair (which means that X is a CW-

complex and A ⊂ X is a subcomplex), and let L be an abelian group. We define

the nth cohomology group of (X,A) with coefficients in L as

Hn(X,A;L) = [X ∪ CA;F (Sn;L)]∗ , n ≥ 1 ,

where we are considering pointed homotopy classes (and the base point ∗ ofX∪CA
is obvious). If A = ∅, then X ∪ CA = X+ = X ⊔ ∗. In this case, we write

119
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Hn(X;L) = [X+;F (Sn;L)]∗ = [X,F (Sn;L)], where the last expression denotes

the free (that is, not pointed) homotopy classes of maps from X to F (Sn;L).
Since F (Sn;L) has a natural abelian group structure, the sets Hn(X,A;L) have

an induced abelian group structure.

8.2.2 Remark. Since A ↪→ X is a cofibration, the quotient map q : X ∪ CA −→
X/A is a homotopy equivalence (see [2, 4.2.3]). Therefore, one can define the

cohomology groups by

Hn(X,A;L) = [X/A;F (Sn;L)]∗ , n ≥ 0 ;

(here the base point ∗ of X/A is {A}).

Notice that in the the case n = 0 we have that F (S0;L) = L (with the discrete

topology).

8.2.3 Exercise. Show that H0(X,A;L) ∼=
∏
L, with as many factors as there

are path-connected components C of X satisfying C ∩ A = ∅. In particular, if X

is path connected, then H0(X;L) ∼= L.

More generally, we have the following additivity property.

8.2.4 Exercise. Let (X,A) =
⨿
λ∈Λ(Xλ, Aλ). Show that

Hn(X,A;L) ∼=
∏
λ

Hn(Xλ, Aλ;L) .

(Hint: An element x ∈ Hn(X,A;L) is represented by a pointed map

f :
∨
λ

(Xλ/Aλ) −→ F (Sn;L) ,

which in turn, by the universal property of the wedge, corresponds to a family

of maps fλ : Xλ/Aλ −→ F (Sn;L), each one of which represents an element xλ ∈
Hn(Xλ, Aλ;L).)

If f : (X,A) −→ (Y,B) is a map of CW-pairs, then the associated map on the

quotient spaces f : X/A −→ Y/B induces a homomorphism

f∗ : Hn(Y,B;L) −→ Hn(X,A;L).

Just as in the case of homology, these cohomology groups and their induced

homomorphisms have the following properties.

8.2.5 Functoriality. If f : (X,A) −→ (Y,B) and g : (Y,B) −→ (Z,C) are maps

of CW-pairs, then

(g ◦ f)∗ = f∗ ◦ g∗ : Hn(Z,C;L) −→ Hn(X,A;L) .

Also, if id(X,A) : (X,A) −→ (X,A) is the identity, then

id∗(X,A) = 1Hn(X,A;L) : H
n(X,A;L) −→ Hn(X,A;L) .
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8.2.6 Homotopy. If f0 ≃ f1 : (X,A) −→ (Y,B) (a homotopy of pairs), then

f∗0 = f∗1 : Hn(Y,B;L) −→ Hn(X,A;L).

8.2.7 Excision. Let (X;X1, X2) be a CW-triad, that is, X1 and X2 are subcom-

plexes of X such that X = X1 ∪ X2. Then the inclusion j : (X1, X1 ∩ X2) −→
(X,X2) induces an isomorphism

j∗ : Hn(X,X2;L) −→ Hn(X1, X1 ∩X2;L), n ≥ 0.

8.2.8 Exactness. Suppose that (X,A) is a CW-pair. Then we have an exact se-

quence

· · · −→ Hq(A;L)
δ−→Hq+1(X,A;L) −→ Hq+1(X;L) −→

−→ Hq+1(A;L)
δ−→Hq+2(X,A;L) −→ · · · .

Here δ, called the connecting homomorphism, is a natural homomorphism, which

means that given any map of pairs f : (Y,B) −→ (X,A) the following diagram is

commutative:

Hq(A;L)
δ //

(f |B)∗

��

Hq+1(X,A;L)

f∗

��
Hq(B;L)

δ
// Hq+1(Y,B;L) .

8.2.9 Dimension. For the space ∗ containing exactly one point we have that

H i(∗;L) =
{
L if i = 0,

0 if i ̸= 0.

Proof: The properties of Functoriality 8.2.5 and Homotopy 8.2.6 follow immedi-

ately from the definitions.

In order to prove property 8.2.7 it is enough to note that the conditions imposed

on X, X1, and X2 imply that

X/X2 and X1/X1 ∩X2

are homeomorphic.

In order to prove the property of Excision 8.2.8 we first define

δ : Hq(A;L) −→ Hq+1(X,A;L)

by using the composite

X/A
p // X+ ∪ CA+ p′ // ΣA+ ,

where X+ ∪CA+ is the unreduced cone of (X,A) defined alternatively as X ⊔A×
I/ ∼, where X ⊃ A ∋ a ∼ (a, 0) ∈ A× I and (a, 1) ∼ (a′, 1) in A× I. Analogously,
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ΣA+ is the unreduced suspension of A. Here p is the homotopy inverse of the

homotopy equivalence defined by the composite

X+ ∪ CA+ −→ X+ ∪ CA+/CA+ ≈ X/A ,

and p′ is the quotient map

X+ ∪ CA+ −→ X+ ∪ CA+/X+ ≈ ΣA+.

So δ is defined by

Hq(A;L) = [A+;F (Sq;L)]∗ ∼= [A+; ΩF (Sq+1;L)]∗

∼= [ΣA+;F (Sq+1;L)]∗
p∗◦p′∗−−−−−→[X/A;F (Sq+1;L)]∗

= Hq+1(X,A;L).

Exactness 8.2.8 is now obtained by applying the exact sequence of Corollary

3.3.10 in [2]. Specifically, since we have as above thatHq(X;L) = [ΣX+;F (Sq+1;L)]∗,

it follows that the piece of that sequence corresponding to the inclusion i : A ↪→ X

is given as

[ΣX+, F (Sq+1;L)] −→ [ΣA+, F (Sq+1;L)] −→ [Ci, F (Sq+1;L)] −→

−→ [X+, F (Sq+1;L)] −→ [A+, F (Sq+1;L)] ,

where we omit the base point for simplicity. This in turn changes into

Hq(X;L) −→ Hq(A;L) −→ Hq+1(X,A;L) −→

−→ Hq+1(X;L) −→ Hq+1(A;L)

by using the isomorphisms proved above and the fact that Ci ≃ X/A.

Grouping together these pieces for q ≥ 0 we obtain the desired exact sequence.

In order to prove the Dimension property 8.2.9 it suffices to apply the definition

of F (Si;L). So we have

H i(∗;L) = [S0, F (Si;L)] = π0(F (Si;L)) =
{
L if i = 0,

0 if i ̸= 0,

since F (Si;L) is discrete and equal to L if i = 0, while it is path connected if i > 0.

⊓⊔

All given axioms of Functoriality, Homotopy, Exactness and Dimension

are the so-called Eilenberg–Steenrod axioms for an ordinary (unreduced) cohomol-

ogy theory.

The next result establishes the so-called wedge axiom for cohomology (cf. 8.2.4).

8.2.10 Proposition. If X =
∨
λ∈ΛXλ, then

H̃q(X;L) ∼=
∏
λ∈Λ

H̃q(Xλ;L) .
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Proof: This follows immediately from the definition of the reduced cohomology

groups and ??. ⊓⊔

8.2.11 Exercise. Let (X,A) =
⨿
(Xλ, Aλ). Prove that for all q,

Hq(X,A;L) ∼=
∏
λ

Hq(Xλ, Aλ;L) .

This is the so-called additivity axiom for cohomology.

8.2.12 Exercise. Prove that if f : (X,A) −→ (Y,B) is a weak homotopy equiv-

alence of pairs of topological spaces, then

f∗ : H
q(Y,B) −→ Hq(X,A)

is an isomorphism for all q. This is the so-called weak homotopy equivalence axiom

for cohomology.

These cohomology groups defined for arbitrary pairs of topological spaces ob-

viously satisfy the axioms of functoriality, homotopy, exactness, and dimension,

which we have introduced above. But in this case we have the following excision

axiom.

8.2.13 Excision. (For excisive triads) Let (X;A,B) be an excisive triad; that is,

X is a topological space with subspaces A and B such that
◦
A ∪

◦
B = X, where

◦
A and

◦
B denote the interiors of A and B, respectively. Then the inclusion j :

(A,A ∩B) −→ (X,B) induces an isomorphism

Hn(X,B;L) −→ Hn(A,A ∩B;L), n ≥ 0.

Proof: In order to show that we have this property we take a CW-approximation

of A ∩ B, say φ : Ã ∩B −→ A ∩ B, and extend it to an approximation of A, say

φ1 : Ã −→ A, and to an approximation of B, say φ2 : B̃ −→ B, in such a way that

Ã ∩B = Ã ∩ B̃. Thus we can define a map φ̃ : X̃ = Ã ∪ B̃ −→ A ∪ B = X such

that φ̃|Ã = φ1, φ̃|B̃ = φ2, and φ̃|Ã ∩B = φ. Using the hypothesis
◦
A ∪

◦
B = X

we can now prove that φ̃ is a weak homotopy equivalence; that is, φ̃ is a CW-

approximation of X (see [?, 16.24]). Using this result it is clear that the excision

axiom for excisive triads follows from the excision axiom (8.2.7) for CW-triads. ⊓⊔

8.2.14 Exercise. Prove that the excision axiom for excisive triads is equivalent

to the following axiom. Suppose that (X,A) is a pair of spaces and that U ⊂ A

satisfies U ⊂
◦
A. Then the inclusion i : (X − U,A − U) −→ (X,A) induces an

isomorphism Hn(X,A;L) ∼= Hn(X−U,A−U ;L) for all n ≥ 0. (It is precisely this

version that gives us the name “excision,” because it allows us to “excise” from

bothX and A a piece “well” contained inside of A without altering the cohomology

of the pair.)
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Since [Sn,K(L, q)] = πn(K(L, q)) holds, the next result follows.

8.2.15 Proposition. Suppose that n > 0. Then we have

Hq(Sn;L) =
{
L if q = 0, n,

0 if q ̸= 0, n. ⊓⊔

Let X be a pointed space with base point x0. Then for every n ≥ 0 the inclusion

i : ∗ −→ X defined by i(∗) = x0 induces an epimorphism

i∗ : Hn(X;L) −→ Hn(∗;L),

which is split by the monomorphism

r∗ : Hn(∗;L) −→ Hn(X;L)

induced by the unique map r : X −→ ∗.

8.2.16 Definition. We call H̃n(X;L) = ker(i∗) the nth reduced cohomology group

of the pointed space X with coefficients in the group L.

So there is a short exact sequence

0 −→ H̃n(X;L) −→ Hn(X;L) −→ Hn(∗;L) −→ 0

that splits, and therefore

Hn(X;L) = H̃n(X;L)⊕Hn(∗;L).

Consequently, by the dimension axiom 8.2.9, we have

Hn(X;L) =

{
H̃0(X;L)⊕ L if n = 0,

H̃n(X;L) if n ̸= 0.

From now on, if it does not cause confusion, we shall write only Hn(X) (re-

spectively, H̃n(X)) instead of Hn(X;L) (respectively, H̃n(X;L)).

8.2.17 Exercise. Prove that if X is a pointed space with base point x0, then for

every n we have

H̃n(X) = Hn(X,x0).

(Hint: The exact sequence of the pair (X,x0) decomposes into short exact se-

quences

0 −→ Hn(X,x0) −→ Hn(X) −→ Hn(x0) −→ 0

that split.)



7.1 Ordinary cohomology 125

8.2.18 Exercise. Assume that X is contractible. Prove that

Hq−1(A) ∼= Hq(X,A)

if q > 1, and

H̃0(A) ∼= H1(X,A) .

8.2.19 Exercise. Take A ⊂ B ⊂ X and assume that the inclusion A ↪→ B is a

homotopy equivalence. Prove that the inclusion of pairs (X,A) ↪→ (X,B) induces

an isomorphism

Hq(X,B) −→ Hq(X,A)

for all q.

The dimension axiom implies that the one-point space, or more generally any

contractible space, has trivial reduced cohomology. Specifically, we have the next

assertion.

8.2.20 Proposition. Let D be a contractible space. Then we have H̃n(D) = 0 for

all n. ⊓⊔

Proposition 8.2.15 can be rewritten in terms of reduced cohomology as follows.

8.2.21 Proposition. Suppose that n > 0. Then we have

H̃q(Sn;L) =
{
L if q = n,

0 if q ̸= n. ⊓⊔

8.2.22 Exercise. Let X be a pointed space with base point x0. Prove that

H̃q(X;Z) = [X;K(Z, q)]∗ and thereby conclude that

H̃q(X;Z) ∼= H̃q+1(ΣX;Z).

(Hint: Apply the exact homotopy sequence to X
f−→ ∗ −→Cf = ΣX.)

8.2.23 Exercise. Suppose that αk : Sn −→ Sn is the map given in Definition

??. Prove that α∗
k : H̃n(Sn;Z) −→ H̃n(Sn;Z) corresponds to multiplication by

k. (Hint: Prove this by applying the previous exercise and using induction on n.)

More generally, verify that the result remains true for any coefficient group L

(where multiplication by k is to be understood by viewing L as a module over the

integers Z).

8.2.24 Exercise. Prove the following assertions:

(a) All the arrows in the sequence
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Hr(X,A)−→Hr({1} × (X,A))
j∗←−

←−Hr(S0 ×X ∪ D1 ×A, {0} ×X ∪ D1 ×A) δ−→

−→Hr+1(D1 ×X, S0 ×X ∪ D1 ×A) = Hr+1((D1, S0)× (X,A))

are isomorphisms, where j is the obvious inclusion. We call the composition

of these isomorphisms

α : Hr(X,A;L) −→ Hr+1((D1, S0)× (X,A);L)

the suspension isomorphism.

(b) The suspension isomorphism defined in part (a) is a natural isomorphism,

that is, it commutes with the homomorphisms induced by maps of pairs.

(c) This suspension isomorphism is in a sense another version of the homomor-

phism of Exercise 8.2.22. Explain.



Chapter 9 Products in homotopical

homology and cohomology

In this chapter we shall define different products in homotopical homology

and cohomology and analyze their properties.

9.1 A pairing of the Dold–Thom groups

The main construction needed for products is given as follows. Assume given two

spaces X and Y and m,

9.1.1 Lemma. The map ε : F (X;L) −→ L given by
∑m

i=1 lixi 7→
∑m

i=1 li is well

defined and continuous. In particular, ε : F (S0;L) −→ L is an isomorphism.

Proof: This follows easily from the fact that the restriction εn : Fn(X;L) −→ L of

ε is continuous, since its composite with the identification (X ×L)n −→ Fn(X;L)

is obviously continuous. ⊓⊔

The functor F has a well-defined continuous pairing,

(9.1.2) µX,Y : F (X;L)× F (Y ;M) −→ F (X ∧ Y, L⊗M) ,

given by  m∑
i=1

lixi,

n∑
j=1

mjyj

 7−→ (m,n)∑
(i,j)=(1,1)

(li ⊗mj)(xi ∧ yj) .

If, in particular, L =M = R is a commutative ring with 1, with m : R⊗R −→ R

as the ring multiplication, then composing (9.1.2) with m∗, we obtain another

pairing,

(9.1.3) µX,Y : F (X;R)× F (Y ;R) −→ F (X ∧ Y ;R) .

Using (9.1.2), one obtains products in homology and cohomology. We shall be

interested in the following pairings. First recall the homeomprphism Sm ∧ Sn ≈
Sm+n. Thus one has the Eilenberg–Mac Lane space pairing

(9.1.4) µm,n : F (Sm;L)× F (Sn;M) −→ F (Sm+n;L⊗M) .

127
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which for any two pointed spaces X and Y induces a pairing

× : [X, ∗;F (Sm;L), 0]∗ × [Y ;F (Sn;M)]∗ −→ [X ∧ Y ;F (Sm+n;L⊗M)]∗ ,

given by [α]⊗ [β] 7→ [γ], where

γ(x ∧ y) = µm,n(α(x), β(y)) .

This can be translated, by definition of the cohomology groups, into

(9.1.5) × : H̃m(X;L)⊗ H̃n(Y ;M) −→ H̃m+n(X ∧ Y ;L⊗M) .

One can easily verify that this pairing is well defined. If, in particular, L =M = R

is a commutative ring with 1, we obtain the pairing,

(9.1.6) × : H̃m(X;R)⊗ H̃n(Y ;R) −→ H̃m+n(X ∧ Y ;R) .

9.1.7 Definition. The product × given in (9.1.5) and (9.1.6) is called the exterior

product or cross product in cohomology. Sometimes we write ×-product.

If X = Y and we take the diagonal map ∆ : X −→ X∧X, we obtain a pairing

(9.1.8) ⌣: H̃m(X;R)⊗ H̃n(X;R)
×−→ H̃m+n(X ∧X;R)

∆∗
−→ H̃m+n(X;R) .

9.1.9 Definition. The product ⌣ given in (9.1.8) is called the interior product

or cup product in cohomology. Sometimes we write ⌣-product.

There is a close relationship between the cross product and the cup product

(in the unreduced case). We saw in (9.1.8) how to obtain the cup product from the

cross product. one can obtain the cross product from the cup product too. We put

both relationships in the following, result, where we take Hq(W ;R) = H̃q(W+;R).

9.1.10 Proposition.

(a) The composite Hm(X;R)⊗Hn(X;R)
×−→ Hm+n(X×X;R)

∆∗
−→ Hm+n(X;R),

where ∆ : X −→ X×X is the diagonal map, yields the cup product. In other

words, if a ∈ Hm(X;R) and a′ ∈ Hn(X;R), then

a ⌣ a′ = ∆∗(a× a′) ∈ Hm+n(X;R) .

(b) The composite Hm(X;R)⊗Hn(Y ;R)
π∗
1⊗π∗

2−→ Hm(X×Y ;R)X;R)⊗Hm(X×
Y ;R)X;R)

∪−→ Hm+n(X × Y ;R), where X
π1←− X × Y

π2−→ Y are the

projections, yields the cross product. In other words, if a ∈ Hm(X;R) and

b ∈ Hn(Y ;R), then

a× b = π∗1(a)⌣ π∗2(b) ∈ Hm(X × Y ;R)X;R) .
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We come back to the pairing given in (9.1.2) and put X = Sq and Y = X.

Taking smash products and the pairing, we obtain

[X+, F (Sq;R)]∗ × [Sk, F (X+;R)]∗ //

κ ++XXXXXXXXXXX
[X+ ∧ Sk, F (Sq;R) ∧ F (X+;R)]∗

[ΣkX+, F (ΣqX+;R)]∗ .

Composing κ with the homomorphism

[ΣkX+, F (ΣqX+;R)]∗ −→ [Sk, F (ΣqX+;R)]∗

induced by the pointed inclusion S0 −→ X+ that sends −1 to some point x−1 in

the path-connected space X, we obtain

Hq(X;R)⊗Hk(X;R) −→ H̃k(Σ
qX+;R) .

If q ≤ k, using σ−q, we desuspend q times to obtain

(9.1.9) ⌢: Hq(X;R)⊗Hk(X;R) −→ Hk−q(X;R) . .

9.1.10 Definition. The product ⌢ given in (9.1.9) is called the cap product in

homology. Sometimes we write ⌢-product.

Composing κ now with the homomorphism

[ΣkX+, F (ΣqX+;R)]∗ −→ [ΣkX+, F (Sq;R)]∗

induced by the pointed projection X+ −→ S0 that sends all points of the path-

connected space X to −1 we obtain

Hq(X;R)⊗Hk(X;R) −→ H̃q(ΣkX+;R) .

If k ≤ q, using σ−k, we desuspend k times to obtain

(9.1.10) ⌢: Hq(X;R)⊗Hk(X;R) −→ Hq−k(X;R) . .

9.1.11 Definition. The product ⌢ given in (9.1.9) is called the cap product in

cohomology. Sometimes we write ⌢-product.

Recall that H0(∗;R) = [S0;F (S0;R)]∗ = R. If k = q take the composite

η : Hq(X;R)⊗Hq(X;R) −→ H0(X;R) −→ H0(∗;R) = R ,

where the last arrow is induced by the pointed projection X+ −→ S0 and the

equality follows from the bijection ε : F (S0, R) −→ R given in Lemma 9.1.1.

9.1.12 Definition. The homomorphism η is theKronecker product ⟨−,−⟩, namely

⟨α, β⟩ = η(α⊗ β) .
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9.2 Properties of the products

In this section we shall prove the properties of the products. Before that, we extend

the products to the relative case.

9.2.1 Products for pairs of spaces

Let us extend the definition of the cup product to pairs of spaces. Recall that

given a pair of spaces (W,D) we can associate to it a pointed space by taking

the mapping cone of the inclusion D ↪→W , W ∪ CD. We defined Hq(W,D;R) =

H̃q(W ∪CD;R). One can prove that given two pairs of spaces (X,A) and (Y,B),

the cone of the inclusion A× Y ∪X ×B ↪→ X × Y satisfies

(X × Y ) ∪ C(A× Y ∪X ×B) ≈ (X ∪ CA) ∧ (Y ∪ CB) .

Since the product of pairs is given by (X,A)× (Y,B) = (X × Y,A× Y ∪X ×B),

we have the following

Hm(X,A;R)⊗Hn(Y,B;R)
× //_______ Hm+n((X,A)× (Y,B);R)

H̃m(X ∪ CA;R)⊗ H̃n(Y ∪ CB;R)

× ��

H̃m+n((X ∪ CA) ∧ (Y ∪ CB);R) ∼=
// H̃m+n((X × Y ) ∪ C(A× Y ∪X ×B);R)

which defines the exterior product for pairs or cross product for pairs in cohomology

× : Hm(X,A;R)⊗Hn(Y,B;R) −→ Hm+n((X,A)× (Y,B);R) .

We can now extend the interior product to pairs as follows. Take any A,A′ ⊂ X.

Then the diagram

Hm(X,A;R)⊗Hn(X,A′;R)
⌣ //______

×
��

Hm+n(X,A ∪A′;R)

Hm+n((X,A)× (X,A′);R) Hm+n(X ×X,A×X ∪X ×A′;R)

∆∗

OO

defines the interior product for pairs or cup product for pairs

⌣: Hm(X,A;R)⊗Hn(X,A′;R) −→ Hm+n(X,A ∪A′;R)

We start with the cup product.

9.2.2 Properties of the cup product

Before we start with the properties,
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9.2.1 Naturality. If f : (X;A,A′) −→ (Y ;B,B′) is a map of triads (which

means that f(A) ⊂ B and f(A′) ⊂ B′), then for all y ∈ Hp(Y,B) and all

y′ ∈ Hq(Y,B′) we have that

f∗(y ⌣ y′) = f∗(y)⌣ f∗(y′) ∈ Hp+q(X,A ∪A′) .

9.2.2 Associativity. For all

x ∈ Hp(X,A) , x′ ∈ Hq(X,A′) , and x′′ ∈ Hr(X,A′′)

we have that

x ⌣ (x′ ⌣ x′′) = (x ⌣ x′)⌣ x′′ ∈ Hp+q+r(X,A ∪A′ ∪A′′) .

9.2.3 Units. Suppose that 1X ∈ H0(X) is the element represented by the constant

map X −→ K(R, 0) = R that sends the entire space X to the element 1 ∈ R. Then
for all x ∈ Hq(X,A) we have that

1X ⌣ x = x ⌣ 1X = x ∈ Hq(X,A).

9.2.4 Stabilility. The following diagram is commutative:

Hp(A)⊗Hq(X,A′)

δ⊗id

��

id⊗i∗ // Hp(A)⊗Hq(A,A ∩A′)

⌣

��
Hp+q(A,A ∩A′)

Hp+q(A ∪A′, A′)

j∗

OO

δ
��

Hp+1(X,A)⊗Hs(X,A′)
⌣ // Hp+q+1(X,A ∪A′).

Here i and j are inclusions. Moreover, j∗ actually turns out to be an excision

isomorphism.

In particular, for the case A′ = ∅, we obtain the formula

δ(a ⌣ i∗x) = δa ⌣ x ∈ Hp+q+1(X,A)

for a ∈ Hp(A) and x ∈ Hq(X).

9.2.5 Commutativity. For all

x ∈ Hp(X,A) and x′ ∈ Hq(X,A′)

we have that

x ⌣ x′ = (−1)pqx′ ⌣ x ∈ Hp+q(X,A ∪A′) .
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The proof of these properties, except commutativity, basically reduces to the

uniqueness up to homotopy of the maps between Moore spaces that realize the

given group homomorphisms. We leave the details of the proof to the reader in the

following exercise, and only prove commutativity.

9.2.6 Exercise. Establish the properties of naturality, associativity, units, and

stability of the cup product in cohomology.

We shall prove commutativity in the particular case of R = Z. In order to do

it, we need some preparation. We start with the convention that in what follows

we take

Sp = S1 ∧ · · · ∧ S1︸ ︷︷ ︸
p

where S1 = I/∂I

and we write its elements as t1∧ · · · ∧ tp, where t ∈ S1 represents the class of t ∈ I.

9.2.7 Lemma. Let αi j : Sp −→ Sp be the map that interchanges two factors,

namely

αi j(t1 ∧ · · · ∧ ti ∧ · · · ∧ tj ∧ · · · ∧ tp) = t1 ∧ · · · ∧ tj ∧ · · · ∧ ti ∧ · · · ∧ tp ,

and let β : Sp −→ Sp be the map given by

β(t1 ∧ · · · ∧ tp) = 1− t1 ∧ t2 ∧ · · · ∧ tp .

Then αi j ≃ β for all i ̸= j.

9.2.8 Proposition. Put α = αi j. Then α∗ : SP Sp −→ SPSp is such that α∗ =

−idSP Sp.

Proof: By 9.2.7, α∗ ≃ β∗, and by the proof of ??, β∗ ≃ −idSP Sp . ⊓⊔

Define R : I × I −→ I and T : I × I −→ I by R(s, t) = (1− t)s and T (s, t) =

(1− t)s+ t and let H : SP Sp× I −→ SPSp be given as follows. Write the elements

of SPSp = SP(S1 ∧ Sp−1) as [(t1 ∧ τ1), . . . , (tk ∧ τk)], where ti ∈ S1 and τi ∈ Sp−1.

Then

H([(t1 ∧ τ1), . . . , (tk ∧ τk)], s) = [R(s, t1) ∧ τ1, . . . , R(s, tk) ∧ τk]−
− [T (s, t1) ∧ τ1, . . . , R(s, tk) ∧ τk]

H([(t1 ∧ τ1), . . . , (tk ∧ τk)], 0) = [0 ∧ τ1, . . . , 0 ∧ τk]− [t1 ∧ τ1, . . . , tk ∧ τk]
= −[t1 ∧ τ1, . . . , tk ∧ τk]

H([(t1 ∧ τ1), . . . , (tk ∧ τk)], 1) = [1− t1 ∧ τ1, . . . , 1− tk ∧ τk]
− [1 ∧ τ1, . . . , 1 ∧ τk]

= [1− t1 ∧ τ1, . . . , 1− tk ∧ τk] ,

where the minuses can be written, since SP Sp is an H-group by ??. Hence H0 =

−id and H1 = β∗. Thus −id ≃ β∗ ≃ α∗. ⊓⊔
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9.2.9 Corollary. Let ρ : Sp+q = Sp ∧ Sq −→ Sq ∧ Sp = Sp+q be the map given by

ρ(s ∧ s′) = s′ ∧ s. Then ρ∗ : SP Sp+q −→ SPSp+q is homotopic to (−1)pqid.

Proof: By the previous proposition, if one exchanges two coordinates, by α, then

α∗ ≃ −id. Since ρ is a composite of pq such alphas, then the result follows. ⊓⊔

We now prove the commutativity property of the cup-product.

9.2.10 Theorem. Given x ∈ H̃p(X) and x′ ∈ H̃q(X) one has x ⌣ x′ = (−1)pqx′ ⌣
x ∈ H̃p+q(X), where the groups are taken with Z-coefficients.

Proof: Since the coefficients are Z, the Eilenberg–Mac Lane spaces are given by

K(Z, n) = SP Sn for all n ∈ N.

Then x = [α] and x′ = [β], where α : X −→ SPSp and β : X −→ SPSq and

the cup product is given by x ⌣ x′ = [γ], where γ : X −→ SPSp+q is defined by

the composite

γ : X
∆ // X ∧X α∧β // SPSp ∧ SPSq

µp, q // SP Sp+q

i.e., x ⌣ x′ = [µp, q ◦ (α ∧ β) ◦∆]. The following is a commutative diagram.

X ∧X α∧β // SP Sp ∧ SPSq
µp, q // SPSp+q

ρ∗

��

X

∆

;;wwwwwwwww

∆ ##F
FF

FF
FF

FF

X ∧X
β∧α

// SP Sq ∧ SP Sp µq, p
// SPSq+p,

where ρ is as in Corollary 9.2.9, which is homotopic to (−1)pqid. This shows that

µq, p ◦ (β ∧ α) ◦∆ = ρ ◦ µp, q ◦ (α ∧ β) ◦∆ ≃ (−1)pqµp, q ◦ (α ∧ β) ◦∆

and taking homotopy classes we obtain

x ⌣ x′ = [µq, p ◦ (β ∧ α) ◦∆] = (−1)pq[µp, q ◦ (α ∧ β) ◦∆] = (−1)pqx′ ⌣ x .

⊓⊔
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Chapter 10 Transfer for ramified

covering maps

Given a map with certain properties, we may roughly say that a transfer is

a homomorphism in homology or cohomology, which goes in the opposite direction

as the homomorphism induced by the given map. Several properties are expected

from the transfer. In this chapter we shall define the transfer for ramified covering

maps. This will include also a transfer for ordinary covering maps. We follow [3].

10.1 Transfer for ordinary covering maps

First recall that a covering map is a (surjective) map p : E −→ X such that

each point x ∈ X has an evenly covered open neighborhood U , namely such that

p−1U =
⨿
i∈I Ũi and the restriction pi = p|

Ũi
: Ũi −→ U is a homeomorphism. We

say that p is n-fold if I = n = {1, 2, . . . , n}.

10.1.1 The pretransfer

In what follows, given a space Y , we shall denote by Y + the pointed space X⊔{∗}
and given a map g : Y −→ Z, we shall denote by g+ : Y + −→ Z+ the pointed

map given by g+(y) = g(y) if y ∈ Y and g+(∗) = ∗. Covering maps are usually

nonpointed maps; this way we turn them into pointed maps, although they are no

longer covering maps. Indeed they become ramified covering maps as we shall see

in the next section.

10.1.1 Definition. Let L be a discrete abelian group and let p : E −→ X be an

n-fold covering map. Define the pretransfer τp : F (X
+;L) −→ F (E+;L) by

τp(u)(e) = u(p+(e)) .

Recall that given the product En = E × · · · × E, dividing it by the action of

the symmetric group Σn acting by permutation of the coordinates, one obtains

the nth symmetric product SPnE; i.e. SPnE = En/Σn. We denote its elements

by ⟨e1, . . . , en⟩. If p : E −→ X is an n-fold covering map, then there is map

φp : X −→ SPnE, associated to p, which is defined by

φp(x) = ⟨e1, . . . , en⟩ ,

135
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where p−1(x) = {e1, . . . , en}. We have the next.

10.1.2 Proposition. The map φp : X −→ SPnE is continuous.

Proof: Take x ∈ X and consider a neighborhood V of φp(x) = ⟨e1, . . . , en⟩. We

may assume that there is an evenly covered neighborhood U of X such that the

neighborhood Ũ1 × · · · × Ũn of the point (e1, . . . , en) ∈ En maps into V . This is

possible, since the cubic neighborhoods of a point in En can be taken as small as

one wishes. Then clearly φp(U) ⊂ V and thus φp is continuous in x. ⊓⊔

As a consequence, we obtain the following.

10.1.3 Proposition. The pretransfer map τp : F (X
+;L) −→ F (E+;L) is a con-

tinuous homomorphism.

Proof: We first show that τp is a homomorphism. Take u, v ∈ F (X+ : L) and recall

that (u+ v)(x) = u(x) + v(x) ∈ L. Hence we have

τp(u+ v)(e) = (u+ v)(p+(e)) = u(p+(e)) + v(p+(e)) = τp(u)(e) + τp(v)(e) .

Hence τp(u+ v) = τp(u) + τp(v).

We can define the pretransfer on generators. If l ∈ L, e ∈ E, then we have that

τp : F (X
+, L) −→ F (E+, L) is given by

tp(lx) =

n∑
i=1

lei ,

where p−1(x) = {e1, . . . , en}.

Consider the map δ : L × X+ −→ Fn(E
+, L) given by δ(l, x) = τp(lx) and

α : L×X+ −→ (L× (E+)n)/Σn given by

α(l, x) = ⟨(l, e1), . . . , (l, en)⟩ ,

where p−1(x) = {e1, . . . , em}. Let jl : (E+)n/Σn −→ (L × E+)n/Σn be given by

jl⟨e1, . . . , en⟩ = ⟨(l, e1), . . . , (l, en)⟩. If il : X+ −→ L ×X+ is the inclusion at the

level l, then α ◦ il = jl ◦ φp. Hence α is continuous. Notice that the identification

(L× E+)n −→ Fn(E
+, L) factors as the composite

(L×E+)n � (L× E+)n/Σn
ρn� Fn(E

+, L) ,

where ρn⟨(l1, e1), . . . , (ln, en)⟩ =
∑n

i=1 liei. Therefore, ρn is continuous.

Since ρn ◦ α = δ, δ is continuous. In order to see that τp|Fr(X,L) is continuous,

consider the diagram

(L×X+)r
δr //

����

(Fn(E
+, L))r

sum

��
Fr(X

+, L)
τp|Fr(X+,L)

// F (E+, L) ,
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where sum is given by the operation on F (E+, L), which is continuous. Hence τp

is continuous, as desired. ⊓⊔

We shall show that this pretransfer has all expected properties. We start with

the essential property, which we call normality.

10.1.4 Proposition. The composite p∗ ◦ τp : F (X+;L) −→ F (X+;L) is multipli-

cation by n.

Proof: Take u ∈ F (X+;L). Then

p∗τp(u)(x) =
∑

e∈p−1(x)

τp(u)(e) =
∑

e∈p−1(x)

u(p(e)) =
∑

e∈p−1(x)

u(x) = nu(x) ,

since there are n elements e ∈ p−1(x). Thus p∗τp(u) = nu ⊓⊔

Another important property is the so-called pullback property. Consider an n-

fold covering map p : E −→ X and a map f : Y −→ X and take the induced

covering map f∗(p) : f∗(E) −→ Y , where f∗(E) = {(y, e) ∈ Y × E | f(y) = p(e)}
and f∗(p) is the projection on Y , i.e. f∗(p)(y, e) = y . Thus we have a pullback

diagram

f∗(E)

f∗(p)
��

f̃ // E

p

��
Y

f
// X ,

where f̃ : f∗(E) −→ E is the other projection, namely f̃(y, e) = y. By 4.2.11, we

know that f∗(p) is a covering map.

10.1.5 Proposition. Given a map f : Y −→ X, then f̃+∗ ◦ τf∗(p) = τp ◦ f+∗ , i.e.,

the following is a commutative diagram:

F (f∗(E)+;L)
f̃+∗ // F (E+;L)

F (Y +;L)

τf∗(p)

OO

f+∗

// F (X+;L) ,

τp

OO

Proof: First notice that τf∗(p) : F (Y +;L) −→ F (f∗(E)+;L) is given for v ∈
F (Y +;L) by

τf∗(p)+(v)(y, e) = v(f∗(p)+(y, e)) = v(y) .

Therefore we obtain

(f̃+∗ (τf∗(p)(v)))(e) =
∑

f̃+(y,e′)=e

τf∗(p)(v)(y, e
′)) =

∑
f+(y)=p+(e)

v(y) .
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On the other hand, we have

(τp(f
+
∗ (v)))(e) = f+∗ (v)(p+(e)) =

∑
f+(y)=p+(e)

v(y) .

⊓⊔

10.1.6 Remark. This pullback property is in fact a naturality property in the

following sense. We can consider the category of finite covering maps Cov, whose

objects are covering maps p : E −→ X and the morphisms p′ −→ p, where

p′ : E′ −→ X ′ is another covering map, are pairs of maps (f̃ ; f), so that they fit

into a general pullback diagram

E′

p′

��

f̃ // E

p

��
X ′

f
// X ,

namely a diagram where E′ is homeomorphic to f∗(E) such that the triangle

E′ φ

≈
//

p′   A
AA

AA
AA

A f∗(E)

f∗(p)||xx
xx
xx
xx

X ′

commutes and f̃ = projE ◦ φ. The composition is the obvious one. There are two

functors E ,X : Cov −→ Top∗ such that given an object p : E −→ X, E(p) =

E+, X (p) = X+ and given a morphism (f̃ ; f), E(f̃ ; f) = f̃+ and X (f̃ ; f) =

f+. In this context the pullback property states that the pretransfer is a natural

transformation

τ : F (X ;L) ·−→ F (E ;L) ,

where F (X ;L) denotes the composite functor F (−;L)◦X and similarly F (E ;L) =
F (−;L) ◦ X .

Another property of the pretransfer is the units property.

10.1.7 Proposition. For the identity covering map idX : X −→ X, the pretrans-

fer is the identity 1F (X+;L) : F (X
+;L) −→ F (X+;L).

Proof: The pretransfer τidX : F (X+;L) −→ F (X+;L) is given by τidX (u)(x) =

u(idX+(x)) = u(x), thus τidX = 1F (X+;L). ⊓⊔

10.1.8 Exercise. Show that the last property is a special case of the normality

property 10.1.4.
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The pretransfer has also an additivity property. Recall the additivity property

of the Dold-Thom groups 7.3.5, we have

(10.1.9) F (X ∧ Y ;L) ∼= F (X;L)⊕ F (Y ;L) .

Notice that (X ⊔ Y )+ = X+ ∧ Y +.

10.1.10 Proposition. Given an m-fold covering map p : E −→ X and an n-fold

covering map q : F −→ X, the map (p, q) : E ⊔F −→ X is an m+n-fold covering

map such that its pretransfer

τ(p,q) : F ((E ⊔ F )+;L) −→ F (X+;L)

is given by τ(p,q)(u, v) = τp(u) + τq(v), where (u, v) ∈ F (E+;L) ⊕ F (F+;L) and

we put F ((E ⊔ F )+;L) = F (E+;L)⊕ F (F+;L).

Proof: τ(p,q)(u, v)(e) = u(p+(e)) for e ∈ E+ and τ(p,q)(u, v)(e
′) = u(q+(e′)) for

e′ ∈ F+. Hence τ(p,q)(u, v) = τp(u) + τq(v). ⊓⊔

There is also a multiplicativity property. Recall the pairing given in 9.1.2 and

we have the next result, whose proof we leave to the reader as an exercise.

10.1.11 Proposition. Given an m-fold covering map p : E −→ X and an n-fold

covering map q : F −→ X, the map p × q : E × F −→ X × X is an mn-fold

covering map such that its transfer makes the following diagram commute:

F (X+;L)× F (X+;L)

τp×τq
��

µX,X // F ((X ×X)+;L)

τp×q

��
F (E+;L)× F (F+;L) µE,F

// F ((E × F )+;L) .

⊓⊔

In some other sense, the transfer is a contravariant functor. Namely, if one

takes the category of all spaces but restricts the morphisms to finite covering

maps p : Y −→ X, then the assignment p 7→ τp is a functor. One part was proved

in 10.1.7.

10.1.12 Proposition. Given an m-fold and an n-fold covering maps p : Y −→ X

and q : Z −→ Y , the composite p ◦ q : Z −→ X is an mn-fold covering map such

that

τp◦q = τq ◦ τp : F (X+;L) −→ F (Z+;L) .

Proof: Take u ∈ F (X+;L) and z ∈ Z. On the one hand we have

τp◦q(u)(z) = u((p ◦ q)(z)) = u(p(q(z)) ,

while on the other we have

(τq ◦ τp)(u)(z) = τp(u)(q(z)) = u(p(q(z))) ,

thus they are equal as desired. ⊓⊔
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10.1.2 The transfer in homology

Since the pretransfer τp : F (X
+;L) −→ F (E+;L) for a covering map p : E −→ X

is a continuous homomorphism, it induces a homomorphism in homotopy groups

τp∗ : πq(F (X
+;L)) −→ πq(F (E

+;L)). In other words we have a homomorphism

tp : Hq(X;L) −→ H̃q(E;L)

called the transfer.

10.1.13 Theorem. Given a covering map p : E −→ X, its transfer tp : Hq(X;L) −→
Hq(E;L) has the following properties:

(a) Normality: Given an n-fold covering map p : E −→ X, then

p∗ ◦ tp : H̃q(X;L) −→ H̃q(X;L) is multiplication by n .

(b) Naturality: Given a morphism of covering maps (f̃ , f) : p′ −→ p, where

p : E −→ X and p′ : E′ −→ X ′ are n-fold covering maps, one has

f̃∗ ◦ tp′ = tp ◦ f∗ : H̃q(X
′) −→ H̃q(E;L) .

10.2 Ramified covering maps

We start with the definition of a ramified covering map as given in [44]. As in the

previous section, we shall need the concept of nth symmetric product of a space

defined in 135.

10.2.1 Definition. An n-fold ramified covering map is a continuous map p :

E −→ X together with a multiplicity function µ : E −→ N such that the following

hold:

(i) The fibers p−1(x) are finite (discrete) for all x ∈ X.

(ii) For each x ∈ X,
∑

e∈p−1(x) µ(e) = n.

(iii) The map φp : X −→ SPnE given by

φp(x) = ⟨e1, . . . , , e1︸ ︷︷ ︸
µ(e1)

, . . . , em, . . . , , em︸ ︷︷ ︸
µ(em)

⟩ ,

where p−1(x) = {e1, . . . , em}, is continuous.
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10.2.2 Remark. Given an n-fold ramified covering map p : E −→ X with multi-

plicity function µ, one can construct an n-fold ramified covering map p+ : E+ −→
X+, where Y + = Y ⊔{∗} for any space Y and p+ extends p by defining p+(∗) = ∗
and the multiplicity function µ+ extends µ by setting µ+(∗) = n. More generally,

given a (closed) subspace A ⊂ X, one can construct an n-fold ramified covering

map p′ : E′ −→ X/A, where E′ = E/p−1A, p′ is the map between quotients and

the multiplicity function µ′ coincides with µ off p−1A and is extended by setting

µ′(∗) = n, if ∗ is the base point onto which p−1A collapses.

Another useful construction is the following. Let E = E ⊔X and p : E −→ X

be such that p|E = p and p|X = idX . Then p is an (n + 1)-fold ramified covering

map with the multiplicity function µ : E −→ N given by µ|E = µ and if x lies in

the added X, the µ(x) = 1.

On the other hand, given a map f : Y −→ X, as above 137, one can construct

the induced n-fold ramified covering map f∗(p) : f∗(E) −→ Y by taking the

pullback f∗(E) = {(y, e) ∈ Y × E | f(y) = p(e)} and f∗(p) = projY . The induced

multiplicity function f∗(µ) : f∗(E) −→ N is given by f∗(µ)(y, e) = µ(e).

10.2.3 Exercise. For each of the constructions given above prove that the cor-

responding maps fy are continuous.

10.2.4 Examples. Typical examples of ramified covering maps are the following:

1. Standard covering maps with finitely many leaves, as it is shown in 10.1.2.

2. Orbit maps E/Γ′ −→ E/Γ for actions of a finite group Γ on a space E and

Γ′ ⊂ Γ. They can be considered as [Γ : Γ′]-fold ramified covering maps by

taking µ(eΓ′) = [Γe : Γ
′
e], where Γe and Γ′

e denote the isotropy subgroups of

e ∈ E for the action of Γ and the restricted action of Γ′, and [Γ : Γ′] and

[Γe : Γ
′
e] denote the corresponding indexes. In fact, Dold [11] proves that all

ramified covering maps are of this form for Γ = Σn and Γ′ = Σn−1.

3. Branched covering maps on manifolds, namely open maps p : Md −→ Nd,

where Md and Nd are orientable closed topological manifolds of dimension

d, p has finite fibers and its degree is n. Indeed, in[6] it is proven that p is

of the form E/Γ′ −→ E/Γ, with [Γ : Γ′] = n, so that, by 2., p is in fact an

n-fold ramified covering map. An interesting special case of this is given in

[38] and [24], who show that for any closed orientable 3-manifold M3, there

is a branched covering map p :M3 −→ S3 of degree 3.

4. It will be of particular interest to consider the following example. Let B be a

space and and consider the twisted product Bn×Σnn, where n = {1, 2, . . . , n}
and ×Σn , given by identifying in the product a pair (b1, b2, . . . , bn; i) with the
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pair (bσ(1), bσ(2), . . . , bσ(n);σ(i)).Denote the elements of the quotient space by

⟨b1, b2, . . . , bn; i⟩. Take the map

πB : Bn ×Σn n −→
n
SPB ,

given by πB⟨b1, b2, . . . , bn; i⟩ = ⟨b1, b2, . . . , bn⟩. Then πB is an n-fold ramified

covering map with multiplicity function µB : Bn ×Σn n −→ N given by

µB⟨b1, b2, . . . , bn; i⟩ = #{j | bj = bi} (see [44]).

10.3 The homology transfer

We shall define now the homology transfer. Our spaces in this section will be com-

pactly generated weak Hausdorff spaces. As for the case of ordinary covering maps,

we shall define a pretransfer and after applying the homotopy-group functors, we

shall obtain the transfer. We shall study both at once.

10.3.1 Definition. Let p : E −→ X be an n-fold ramified covering map with

multiplicity function µ. Define the pretransfer

τp : F (X;L) −→ F (E;L) by τp(u) = ũ ,

where ũ(e) = µ(e)u(p(e)). In other words, if u =
∑n

i=1 lixi ∈ F (X;L), then

τp(u) =
∑

p(e)=xi
i=1,...,n

µ(e)lie .

10.3.2 Remark. The pretransfer τp : F (X;L) −→ F (E;L) is clearly a homo-

morphism of topological groups and it is thus convenient to see what it does to

generators. Namely, if lx is a generator, then the pretransfer satisfies

τp(lx)(e) = µ(e)lx(p(e)) =

{
µ(e)l if p(e) = x, i.e., if e ∈ p−1(x)

0 otherwise.

Hence, the only points where τp(lx) is nonzero are the elements of p−1(x) =

{e1, e2, . . . , er}, that is,

τp(lx)(e1) = µ(e1)l , τp(lx)(e2) = µ(e2)l , . . . , τp(lx)(er) = µ(er)l ,

and thus

τp(lx) = µ(e1)le1 + µ(e2)le2 + · · ·+ µ(er)ler .

We shall prove below that τp is continuous. Hence, on homotopy groups, the

map τp induces the homology transfer

tp : H̃q(X;L) −→ H̃q(E;L) .

We have the following.
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10.3.3 Proposition. Let p : E −→ X be an n-fold ramified covering map with

multiplicity function µ : E −→ N, where E and X are pointed spaces. Then the

pretransfer τp : F (X;L) −→ F (E;L) is continuous.

Proof: Since F (X;L) has the topology of the union of the subspaces

· · · ⊂ Fr(X;L) ⊂ Fr+1(X;L) ⊂ · · · ⊂ F (X;L) ,

τp is continuous if and only if the restriction τp|Fr(X;L) is continuous for each r ∈ N.
Since X×Y has the k-topology, we have a quotient map qr : (L×X)r � Fr(X;L)

for each r. Define δ : L × X −→ Fn(X;L) by δ(l, x) = τpq1(l, x) = τp(lx), and

α : L×X −→ (L×X)n/Σn by

α(l, x) = [(l, e1), . . . , (l, e1)︸ ︷︷ ︸
µ(e1)

, . . . , (l, em), . . . , (l, em)︸ ︷︷ ︸
µ(em)

] ,

where p−1(x) = {e1, . . . , em}. For each l ∈ L, let il : X −→ L × X be given by

il(x) = (x, l), and let jl : E
n/Σn −→ (L × X)n/Σn be given by jl[e1, . . . , en] =

[(l, e1), . . . , (l, en)]. Then α ◦ il = jl ◦φp, where φp : X −→ En/Σn. Since jl and φp

are continuous and L is discrete, α is continuous.

The quotient map qn factors through the quotient map q′n : (L × X)n �
(L×X)n/Σn, yielding the following commutative diagram,

(L×X)n
q′n // //

qn
����

(L×X)n/Σn

ρnvvvvnnn
nnn

nnn
nnn

Fn(X;L) ,

where ρn is also a quotient map.

Now, δ makes the following diagram commute,

(L×X)n/Σn

ρn
����

L×X

α
77ppppppppppp

δ
// Fn(X;L) ,

therefore, δ is continuous.

In order to show that τp|Fr(X;L) is continuous, consider the diagram

(L×X)r
δr //

qr
����

Fn(E;L)× · · · × Fn(E;L)∑r
i=1

��
Fr(X;L)

τp|Fr(X;L)

// F (E;L) ,

where
∑r

i=1 is the operation in F (E;L), which is a topological abelian group in

K-Top, and hence it is continuous. Since also δ is continuous, and qr is a quotient

map, τp|Fr(X;L) is continuous.
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10.3.4 Corollary. Let p : E −→ X be an n-fold ramified covering map with

multiplicity function µ : E −→ N, where E and X are pointed CW-complexes.

Then there is a homology transfer tp : H̃q(X;L) −→ H̃q(E;L). ⊓⊔

10.3.5 Remark. Besides the transfer tp defined above, for every integer k there

is another homology transfer kτ given by (kτ)p(ξ) = k · τp(ξ), ξ ∈ Hq(X;L). This

transfer, in turn, is determined by the pretransfer (kt)p : F (X;L) −→ F (E;L)

given by (kt)p(u) = k · τp(u), u ∈ F (X;L).

10.3.6 Example. For the ramified covering map πB : Bn ×Σn n −→ SPnB of

10.2.4, the homology transfer is given as follows. We first compute

τπB : F (
n
SPB;L) −→ F (Bn ×Σn n;L)

on the generators. Set

b = (b1, . . . , b1︸ ︷︷ ︸
i1

, b2, . . . , b2︸ ︷︷ ︸
i2

, . . . , br, . . . , br︸ ︷︷ ︸
ir

) ∈ Bn ,

where i1 + i2 + · · · ir = n. Then

π−1
B ⟨b⟩ = {⟨b1, i1⟩, ⟨b2, i1 + i2, ⟩ . . . , ⟨br, n⟩} .

Therefore,

τπB (l⟨x⟩) = µ⟨b, i1⟩l⟨b, i1⟩+ µ⟨b, i1 + i2⟩l⟨b, i1 + i2⟩+ · · ·+
+ µ⟨b, i1 + i2 + · · ·+ ir⟩l⟨b, i1 + i2 + · · · ir⟩

= i1l⟨b, i1⟩+ i2l⟨b, i1 + i2⟩+ · · ·+ irl⟨b, i1 + i2 + · · · ir⟩
= l ⟨b, i1⟩+ ⟨b, i1⟩+ · · · ⟨b, i1⟩︸ ︷︷ ︸

i1

+

+ ⟨b, i1 + i2⟩+ ⟨b, i1 + i2⟩+ · · ·+ ⟨b, i1 + i2⟩︸ ︷︷ ︸
i2

+ · · ·+

+ ⟨b, n⟩+ ⟨b, n⟩+ · · ·+ ⟨b, n⟩︸ ︷︷ ︸
ir

= l⟨b, 1⟩+ · · ·+ ⟨b, i1⟩+ ⟨b, i1 + 1⟩+ . . . ⟨b, i1 + i2⟩+ · · ·+
+ ⟨b, i1 + i2 + · · ·+ ir−1 + · · ·+ 1⟩+ ⟨b, n⟩

= l⟨b, 1⟩+ l⟨b, 2⟩+ · · ·+ l⟨b, n⟩ ,

hence

(10.3.7) τπB (l⟨b1, . . . , bn⟩) = l⟨b1, . . . , bn; 1⟩) + · · ·+ l⟨b1, . . . , bn;n⟩) .

Thus, in general, if β =
∑k

i=1 li⟨bi1, . . . , bin⟩, then

τπB (β) =

(k,n)∑
(i,l)=(1,1)

li⟨bi1, . . . , bin; l⟩ ,

since by varying l from 1 to n, the fiber elements over ⟨bi1, . . . , bin⟩, namely ⟨bi1, . . . , bin; l⟩,
are repeated µB⟨bi1, . . . , bin; l⟩ times.



10.3 The homology transfer 145

10.3.8 Remark. Given an n-fold ramified covering map p : E −→ X with multi-

plicity function µ : E −→ N, and a (closed) subspace A ⊂ X, we have the restricted

ramified covering map pA : EA −→ A, EA = pA, and the quotient ramified cov-

ering map p : E −→ X/A, as described in Remark 10.2.2. The following diagram

obviously commutes:

EA
� � //

pA

��

E // //

p

��

E

p

��
A � � // X // // X/A .

Thus the diagram above yields

F (A;L) //

τA
��

F (X;L) //

t
��

F (X/A;L)

t
��

F (EA;L) // F (E;L) // F (E;L) ,

where the horizontal arrows are obvious and τA, t, and t are the correspond-

ing pretransfers. Therefore, using t, we have a relative homology transfer tp :

Hq(X,A;L) −→ Hq(E,EA;L), and by the commutativity of the diagram, also

this transfer maps the long exact sequences of (X,A) into the long exact sequence

of (E,EA), provided that the inclusion A ↪→ X is a closed cofibration (in general

it is also true by constructing an adequate ramified covering over X ∪ CA).

The following theorems establish the fundamental properties of the transfer.

10.3.9 Theorem. The composite

p∗ ◦ tp : H̃q(X;L) −→ H̃q(X;L)

is multiplication by n.

The proof follows immediately from the following proposition.

10.3.10 Proposition. If p : E −→ X is an n-fold ramified covering map, then

the composite

F (X;L)
τp−→ F (E;L)

p∗−→ F (X;L)

is multiplication by n.
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Proof: If u =
∑n

i=1 lixi ∈ F (X;L), then

p∗τp(u) = p∗τp

( n∑
i=1

lixi

)
=

∑
p(e)=xi, i=1,...,n

µ(e)lixi

=

n∑
i=1

lixi
∑

p(e)=xi

µ(e)

= n

n∑
i=1

lixi = n · u .

The invariance under pullbacks is given by the following.

10.3.11 Theorem. Let p : E −→ X be an n-fold ramified covering map and

assume that f : X −→ Y is continuous. Then the following diagram commutes:

Hq(Y ;L)
tf∗(p) //

f∗
��

Hq(f
∗(E);L)

f̃∗
��

Hq(X;L)
tp

// Hq(E;L) ,

where f∗(p) : f∗(E) −→ Y is the n-fold ramified covering map induced by p :

E −→ X over f .

As for the previous theorem, the proof follows immediately from the next propo-

sition.

10.3.12 Proposition. If p : E −→ X is an n-fold ramified covering map and

F : X −→ Y is continuous, then the following diagram commutes.

F (Y ;L)
τF∗(p) //

F∗
��

F (F ∗(E);L)

F̃∗
��

F (X;L) τp
// F (E;L) .
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Proof: Let v =
∑n

i=1 giyi ∈ F (Y ;L). Then τF ∗(p)(v) ∈ F (F ∗(E);L) is such that

F̃∗
(
τF ∗(p)(v)

)
= F̃∗

 ∑
F∗(p)(y,e)=yi
i=1,...,n

F∗(µ)(y, e)gi(y, e)


=

∑
F∗(p)(y,e)=yi
i=1,...,n

µ(e)giF̃ (y, e)

=
∑

p(e)=F (yi)

i=1,...n

µ(e)gie

= τp (F∗(v)) .

Another property of the homology transfer that is useful is the following.

10.3.13 Proposition. Let f : Y −→ X be continuous and consider the commu-

tative diagram

Y n ×Σn n
fn×Σn1n //

πY
��

Xn ×Σn n

πX
��

SPn Y
SPn f

// SPnX .

Then the following diagram commutes:

F (Y n ×Σn n;L)
(fn×Σn1n)∗ // F (Xn ×Σn n;L)

F (SPn Y ;L)

τπY

OO

(SPn f)∗
// F (SPnX;L) .

τπX

OO

The proof is fairly routinary and follows easily using the description of the

transfers given in Example 10.3.6. ⊓⊔

Another property of the transfer is the following homotopy invariance.

10.3.14 Theorem. Let p : E −→ X be an n-fold ramified covering map. If f0, f1 :

Y −→ X are homotopic maps, then

f̃0∗ ◦ tp0 = f̃1∗ ◦ tp1 : H̃q(Y ;L) −→ H̃q(E;L) .

The proof is an immediate consequence of the next proposition.

10.3.15 Proposition. Let p : E −→ X be an n-fold ramified covering map. If

f0, f1 : Y −→ X are homotopic maps, then

f̃0∗ ◦ τp0 = f̃1∗ ◦ τp1 : F (Y ;L) −→ F (E;L) .
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Proof: If H : Y × I −→ X is a homotopy from f0 to f1, then Ĥ : F (Y ;L)× I −→
F (X;L) given by Ĥ(v, t) =

∑
y∈Y v(y)H(y, t) is a (continuous) homotopy from

f0∗ to f1∗. Thus, applying Proposition 10.3.12, we get

f0∗ ◦ τp0 = τp ◦ f0∗ ≃ τp ◦ f1∗ = f1∗ ◦ τp1 .

⊓⊔

In 10.3.10 we computed the composite p∗ ◦ τp. The opposite composite τp ◦ p∗
is also interesting. An immediate computation yields the following.

10.3.16 Proposition. Let p : E −→ X by an n-fold ramified covering map with

multiplicity function µ. Then the composite

F (E;L)
p∗−→ F (X;L)

τp−→ F (E;L)

is given by

τpp∗(v)(e) =
∑

p(e′)=p(e)

µ(e′)v(e′) ,

for any v ∈ F (E;L). ⊓⊔

In the case of an action of a finite group Γ on E and X = E/Γ, we have the

following consequence.

10.3.17 Corollary. For v ∈ F (E;L) one has τpp∗(v)(e) =
∑

γ∈Γ v(γe). There-

fore, the composite

F (E/Γ;L)
p∗−→ F (E;L)

τp−→ F (E/Γ;L)

is given by τpp∗(v) =
∑

γ∈Γ γ∗(v).

Proof: Just observe that the element γe is repeated in the sum µ(e) = |Γe| times.

The two previous results yield the following in homology.

10.3.18 Theorem. Let p : E −→ X by an n-fold ramified covering map with

multiplicity function µ. Then the composite

Hq(E;L)
p∗−→ Hq(X;L)

tp−→ Hq(E;L)

is given by tpp∗(y) = y′, where y′ = [v′] ∈ πq(F (E;L)), and

v′(s)(e) =
∑

p(e′)=p(e)

µ(e′)v(s)(e′)

where y = [v] ∈ πq(F (E;L)) and s ∈ Sq. ⊓⊔
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10.3.19 Corollary. For an action of a finite group Γ on E and X = E/Γ one

has that the composite

Hq(E;L)
p∗−→ Hq(E/Γ;L)

tp−→ Hq(E;L)

is given by tpp∗(y) =
∑

γ∈Γ γ∗(y).

10.3.20 Remark. Considering an action of H on E and a subgroup K ⊂ H, one

has different ramified covering maps as depicted in

E
q′Γ

||xx
xx
xx
xx
x

qΓ

""E
EE

EE
EE

EE

E/Γ′
qΓ

′
Γ

// E/Γ .

One may easily compute several combinations of the maps induced by these cov-

ering maps and their transfers.

Another interesting property of the transfer is the relationship given by com-

puting the transfer of the composition of two ramified covering maps. Before giving

it we need the following.

10.3.21 Definition. Let p : Y −→ X be an n-fold ramified covering map, with

multiplicity function µ : Y −→ N and let q : Z −→ Y be an m-fold ramified

covering map, with multiplicity function ν : Z −→ N. Then the composite p ◦ q :

Z −→ X is an mn-fold ramified covering map, with multiplicity function ξ : Z −→
N given by ξ(z) = ν(z)µ(q(z)). In order to verify that this composite is indeed an

mn-fold ramified covering map, consider the wreath product Σn ∫ Σm, defined as

the semidirect product of Σn and (Σm)
n, where Σn acts on (Σm)

n by permuting

the n factors. We have an action (Zm × · · · × Zm)× Σn ∫ Σm −→ Zm × · · · × Zm

given by (ζ1, . . . , ζn) · (σ, τ1, . . . , τn) = (ζσ(1) · τ1, . . . , ζσ(n) · τn), where ζi ∈ Zm.

Then we have the following diagram, where all maps are open

Zm × · · · × Zm q×···×q //

π

��

Zm/Σm × · · · × Zm/Σm

π′

��
(Zm)n/Σn ∫ Σm //________ SPn(SPm Z) .

One may easily show that π is compatible with π′ ◦ (q × · · · × q). Therefore,

there is a homeomorphism Xmn/Σn ∫ Σm ≈ SPn(SPm Z) and hence one has a

canonical quotient map ρ : SPn(SPm Z) −→ SPmn Z. Then one can easily verify

that φp◦q = ρ ◦ SPn(φq) ◦ φp : X −→ SPn(SPm Z)
ρ−→ SPmn Z. Thus φp◦q is

continuous.

The homology transfer behaves well with respect to composite ramified covering

maps.
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10.3.22 Theorem. The following hold:

τp◦q = τq ◦ τp : F (X;L)
τp−→ F (Y ;L)

τq−→ F (Z;L) ;

tp◦q = tq ◦ tp : Hk(X;L)
tp−→ Hk(Y ;L)

tq−→ Hk(Z;L) .

Proof: As before, the second formula follows from the first. So, if u ∈ F (X;L),

v ∈ F (Y ;L), w ∈ F (Z;L), then v = τp(u) if v(y) = µ(y)u(p(y)), and w = τq(v) if

w(z) = ν(z)v(q(z)). Hence (τqτp(u))(z) = τq(ν(z)v(q(z)) = ν(z)µ(q(z))u(pq(z)) =

ξ(z)u((p ◦ q)(z)) = typ ◦ q(u)(z).

10.3.23 Corollary. Given an n-fold ramified covering map p : E −→ X with

multiplicity function µ and an integer l, there is an ln-fold ramified covering map

pl : E −→ X such that pl = p and µl(e) = lµ(e), e ∈ E. Then τpl = lτp :

F (X;L) −→ F (E;L) and tpl = ltp : Hk(X;L) −→ Hk(E;L).

Proof: Consider the l-fold ramified covering map q : E −→ E such that q = idE

and ν(e) = l for all e ∈ E. Hence pl = p ◦ q. Then apply Theorem 10.3.22.

10.3.24 Remark. The ln-fold covering map pl obtained from p is a sort of spuri-

ous ramified covering map, since the multiplicity of p is artificially multiplied by l.

It is interesting to observacion that the previous result shows that the transfer of

this new ramified covering map pl is just the corresponding multiple of the trans-

fer of the original ramified covering map p. Thus on this sort of artificial ramified

covering maps, the transfer remains essentially unchanged.

10.4 The cohomology transfer

In this section we define the cohomology transfer and prove some of its properties.

10.4.1 Definition. Let p : E −→ X be an n-fold ramified covering map with

multiplicity function µ, where E and X are compactly generated weak Hausdorff

spaces of the same homotopy type of CW-complexes. Define its cohomology transfer

τp : Hq(E;L) = [E,F (Sq;L)] −→ [X,F (Sq;L)] = Hq(X;L)

by τp([α̃]) = [α], where α(x) =
∑

p(e)=x µ(e)α̃(e), x ∈ X. To see that the map α is

continuous and that its homotopy class depends only on the homotopy class of α̃,

observe that α is given by the composite

α : X
φp−→

n
SPE

SPn α̃−→
n
SPF (Sq, G) −→ F (Sq, G) ,

where the last map is given by the group structure on F (Sq;L); namely

⟨u1, . . . , un⟩ 7→
∑
x∈Sq

u1(x) + · · ·+
∑
x∈Sq

un(x) .
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Using the fact that X has the homotopy type of a CW-complex, similar arguments

to those used in the proof of 10.3.3 show that α is continuous.

We might write τpn instead of τp when we wish to remark the multiplicity n of

the ramified covering map p.

10.4.2 Remark. We might assume that E and X are paracompact spaces instead

of compactly generated weak Hausdorff spaces of the same homotopy type of a CW-

complex. In this case, the same definition yields a transfer that is a homomorphism

between Čech cohomology groups

τp : Ȟq(E;L) −→ Ȟq(X;L) ,

(see observacion ??), provided that L is an at most countable coefficient group.

10.4.3 Note. In order to define the cohomology transfer, the only property of

the Eilenberg-Mac Lane spaces given by F (Sq;L) required, is the fact that they

are (weak) topological abelian groups.

Similarly to the homology transfer, the cohomology transfer has the following

fundamental properties.

10.4.4 Theorem. The composite

tpn ◦ p∗ : Hk(X;L) −→ Hk(X;L)

is multiplication by n.

Proof: If [α] ∈ [X,F (Sk;L)], then τpp∗(α) = τp(α◦p) : X −→ F (Sk;L), and τp(α◦
p)(x) =

∑
p(e)=x µ(e)αp(e) =

(∑
p(e)=x µ(e)

)
α(x) = n · α(x). Thus τpp∗([α]) =

n · [α].

10.4.5 Theorem. Let p : E −→ X be an n-fold ramified covering map and assume

that F : Y −→ X is continuous. Then the following diagram commutes:

Hq(E;L)
τp //

F̃ ∗

��

Hq(X;L)

F ∗

��
Hq(F ∗(E);L)

τF
∗(p)

// Hq(Y ;L) ,

where F ∗(p) : F ∗(E) −→ Y is the n-fold ramified covering map induced by p :

E −→ X over F .

Proof: Let α̃ : E −→ F (Sq;L) represent an element in Hq(E;L). Then the map

y 7−→
∑

F∗(p)(y,e)=y

F ∗(µ)(y, e)α̃(y, e) =
∑

p(e)=F (y)

µ(e)α̃(y, e)

that represents τF
∗(p)F̃ ∗(α̃), clearly represents also F ∗τp([α̃]) ∈ Hq(Y ;L).
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In 10.4.4 we computed the composite τp ◦ p∗. The opposite composite p∗ ◦ τp

is also interesting. As it was the case for the homology transfer, an immediate

computation yields the following results for the cohomology transfer.

10.4.6 Proposition. Let p : E −→ X be an n-fold ramified covering map with

multiplicity function µ. Then the composite

Hq(E;L)
τp−→ Hq(X;L)

p∗−→ Hq(E;L)

is given as follows. Take [φ] ∈ Hq(E;L) = [E,F (Sq;L)], then p∗τp[φ] is repre-

sented by the map φ′ : E −→ F (Sq;L) given by

φ′(e) =
∑

p(e′)=p(e)

µ(e′)e′ .

⊓⊔

In the case of an action of a finite group Γ on E and X = E/Γ, we have the

following consequence.

10.4.7 Corollary. If ξ ∈ Hq(E;L), then

p∗τp(ξ) =
∑
γ∈Γ

γ∗(ξ) ∈ Hq(E;L), .

Proof: Just observe that in the sum the element γ∗(ξ) is repeated µ(e) = |Γe|
times.

Generalizations and further properties of the cohomology transfer are studied

in [?].

10.5 Some applications of the transfers

First we start considering a standard n-fold covering map p : E −→ X. In this

case, the pretransfer (and thus also the transfer in homology) has a particularly

nice definition. Since the multiplicity function µ : E −→ N is constant µ(e) = 1,

the transfer τp : F (X;L) −→ F (E;L) is given by

(10.5.1) typ(u)(e) = u(p(e)) .

This fact has a nice consequence.

10.5.2 Theorem. Let Γ be a finite group acting freely on a Hausdorff space E.

Then the orbit map p : E −→ E/Γ is a standard covering map, and its pretransfer

induces an isomorphism

typ : F (E/Γ;L)
∼=−→ F (E;L)Γ ,
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where the second term represents the fixed points under the induced Γ-action on

F (E;L). Consequently, the pretransfer yields an isomorphism

Hq(E/Γ;L)
∼=−→ πq(F (E;L)Γ) ,

for all q.

Proof: We assume that the projection p : E −→ E/Γ maps the base point to the

base point. The pretransfer τp is a monomorphism. Namely, if τp(u) = 0, then, by

(10.5.1), u(p(e)) = τp(u)(e) = 0 for all e ∈ E. Since p is surjective, u = 0.

On the other hand, obviously τp(u) ∈ F (E;L)Γ for all u ∈ F (E/Γ;L). To see

that it is an epimorphism, take any v ∈ F (E;L)Γ. Then v(e) = v(eγ) for all γ ∈ Γ,

and thus v determines a well-defined element u ∈ F (E/Γ;L) by u(eΓ) = v(e).

Then clearly τp(u) = v.

In what follows, we use the fundamental properties 10.3.9 and 10.3.19, and

10.4.4 and 10.4.7 of both the homology and the cohomology transfers to prove

some results about the homology and cohomology of orbit maps between orbit

spaces of the action of a topological group Γ and a subgroup Γ′ of finite index

on a compactly generated weak Hausdorff space of the same homotopy type of a

CW-complex (and a corresponding result in Čech cohomology for a paracompact

space).

Before starting we need to recall Dold’s definition of an n-fold ramified covering

map [11]. It is a finite-to-one map p : E −→ X together with a continuous map

ψp : X −→ SPnE such that

(i) for every e ∈ E, e appears in the n-tuple ψp(p(e)) = ⟨e1, . . . , en⟩, and

(ii) SPn(p)ψp(x) = ⟨x, . . . , x⟩ ∈ SPnX.

This definition is equivalent to Smith’s (see 10.2.1), by setting φp = ψp and defining

µ(e) as the number of times that e is repeated in ψp(p(e)).

We have the following interesting result.

10.5.3 Proposition. Let Γ be a topological group acting on a space Y on the right

and let Γ′ ⊂ Γ be a subgroup of finite index n. Then the orbit map p : Y/Γ′ −→ Y/Γ

is an n-fold ramified covering map.

Proof: There is a commutative diagram

Y × Γ //

��

Y

��
Y × (Γ/Γ′) ν

// Y/Γ′ ,
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where the top map is the action and the vertical maps are the quotient maps. Take

the adjoint map of ν, η : Y −→M(Γ/Γ′, Y/Γ′). The function space M(Γ/Γ′, Y/Γ′)

has a right Γ-action given as follows. For f : Γ/Γ′ −→ Y/Γ, take (f · γ)[γ1] =
f(γ[γ1]) = f [γγ1]. The map η is then Γ-equivariant and thus induces a map

η : Y/Γ −→M(Γ/Γ′, Y/Γ′)/Γ .

On the other hand, if we identify Γ/Γ′ with the set n = {1, . . . , n}, then we have

a homeomorphism

M(Γ/Γ′, Y/Γ′)/Γ ≈M(n, Y/Γ′)/Σn =
n
SP(Y/Γ′) .

Let ψp : Y/Γ −→ SPn(Y/Γ′) be η followed by the previous homeomorphism. Then

ψp satisfies conditions (i) and (ii) and thus p is an n-fold ramified covering map.

We apply the results 10.3.10 and 10.3.17 that we have for the pretransfer to

the n-fold ramified covering described above to obtain the following.

10.5.4 Proposition. Let Y be a space with an action of a topological group Γ

and let Γ′ ⊂ Γ be a subgroup of finite index n. Assume that R is a ring where the

integer n is invertible. Then p∗ : F (Y/Γ
′, R) −→ F (Y/Γ, R) is a split (continuous)

epimorphism. Moreover, if Γ is finite and its order m is invertible in R, then the

kernel of p∗ is the complement in F (Y/Γ′, R) of the invariant subgroup F (Y/Γ′, R)Γ

under the induced action of Γ. Thus in this case

F (Y/Γ, R) ∼= F (Y/Γ′, R)Γ ;

in particular, if Γ is finite and Γ′ is trivial, then m = n and

F (Y/Γ, R) ∼= F (Y,R)Γ .

Proof: By 10.3.10 applied to the n-fold ramified covering p : Y/Γ′ −→ Y/Γ, p∗◦typ :
F (Y/Γ′, R) −→ F (Y/Γ′, R) is multiplication by n, hence it is an isomorphism, and

consequently p∗ is a split epimorphism. Moreover, if Γ is finite of order m, by

10.3.17, we have that τp ◦ p∗ : F (Y/Γ′, R)Γ −→ F (Y/Γ′, R)Γ is multiplication

by m. So, if m is invertible in R, then p∗ : F (Y/Γ′, R)Γ −→ F (Y/Γ, R) is an

isomorphism.

As an immediate consequence of the result above, or applying 10.3.9 and

10.3.19, we obtain the following two well-known results (cf. [44, 2.5], [?], [9]).

10.5.5 Theorem. Let Y be a space with an action of a topological group Γ and let

Γ′ ⊂ Γ be a subgroup of finite index n. Assume that R is a ring where the integer

n is invertible. Then p∗ : Hq(Y/Γ
′;R) −→ Hq(Y/Γ;R) is a split epimorphism.
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Moreover, if Γ is finite and its order m is invertible in R, then the kernel of p∗ is

the complement of Hq(Y/Γ
′;R)Γ in Hq(Y/Γ

′;R). Thus in this case

Hq(Y/Γ;R) ∼= Hq(Y/Γ
′;R)Γ ;

and in particular,

Hq(Y/Γ;R) ∼= Hq(Y ;R)Γ .

⊓⊔

Similarly, 10.4.4 and 10.4.7 one has for cohomology the following.

10.5.6 Theorem. Let Y be a space with an action of a topological group Γ and let

Γ′ ⊂ Γ be a subgroup of finite index n. Assume that R is a ring where the integer

n is invertible. Then p∗ : Hq(Y/Γ;R) −→ Hq(Y/Γ′;R) is a split monomorphism.

Moreover, if Γ is finite and its order m is invertible in R, then the image of p∗ is

Hq(X;R)Γ. Thus in this case

Hq(Y/Γ;R) ∼= Hq(Y/Γ′;R)Γ ;

and in particular,

Hq(Y/Γ;R) ∼= Hq(Y ;R)Γ .

⊓⊔

10.5.7 Remark. One may take a paracompact space Y with an action of a topo-

logical group Γ and obtain for Čech cohomology an analogous result, namely

p∗ : Ȟq(Y/Γ;R) −→ Ȟq(Y/Γ′;R) is a split monomorphism, and

Ȟq(Y/Γ;R) ∼= Ȟq(Y/Γ′;R)Γ .

A nice application of the previous ideas is the following generalization of a

well-known result of Grothendieck [?] (in the case Y = EΓ).

10.5.8 Theorem. Let Γ be a compact Lie group and let Γ1 be the component of

1 ∈ Γ. Let R be a ring where n = [Γ,Γ1] is an invertible element. For an action of

Γ on a topological space Y , one has

Hq(Y/Γ;R) ∼= Hq(Y/Γ1;R)
Γ/Γ1 ,

Hq(Y/Γ;R) ∼= Hq(Y/Γ1;R)
Γ/Γ1 ,

Ȟq(Y/Γ;R) ∼= Ȟq(Y/Γ1;R)
Γ/Γ1 ,

the last two according to what kind of a space Y is. ⊓⊔
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10.6 Duality between the homology and cohomol-
ogy transfers

In this section we compare the homology transfer with the cohomology transfer.

Given an n-fold ramified cover p : E −→ X with multiplicity function µ :

E −→ N, we can extend it to the n-fold ramified covering map p+ : E+ −→ X+

as explained in observacion 10.2.2. Consider the cohomology transfer

τp : Hq(E;G) = H̃q(E+;G) −→ H̃q(X+;G) = Hq(X;G) ,

and consider also the homology transfer

tp : Hq(X;G) = H̃q(X
+;G) −→ H̃q(E

+;G) = Hq(E;G)

as given in Definition 10.3.1.

10.6.1 Theorem. Let p : E −→ X be an n-fold ramified covering map with mul-

tiplicity function µ : E −→ N and E path connected, and let tp : Hq(X;R) −→
Hq(E;R) and τp : Hq(E;R) −→ Hq(X;R) be its homology and cohomolgy trans-

fers. If ξ ∈ Hq(X;G) and ξ̃ ∈ Hq(E;G), then

⟨tp(ξ), ξ̃⟩E = ⟨ξ, τp(ξ̃)⟩X ∈ R ,

for the Kronecker products for E and X, respectively, and R a commutative ring

with 1 (see (??)).

Proof: We have to prove the commutativity of the following diagram:

[X+, F (Sq, R)]∗ × [Sq, F (X+, R)]∗
⌢ // [X+, F (S0, R)]∗

&&LL
LLL

LLL
LLL

L

[E+, F (Sq, R)]∗ × [Sq, F (X+, R)]∗

τp×1

OO

1×τp
��

R

[E+, F (Sq, R)]∗ × [Sq, F (E+, R)]∗ ⌢
// [E+, F (S0, R)]∗

88rrrrrrrrrrrr

By the naturality of the construction of the pretransfers and the definition of

the ⌢-product (see Proposition ??), it is fairly easy to check that this commuta-

tivity follows from the commutativity of the following:

[X+, F (X+, R)]∗ // [S0, F (X+, R)]∗

&&LL
LLL

LLL
LLL

L

[E+, F (X+, R)]∗

τp

OO

τp

��

R

[E+, F (E+, R)]∗ // [S0, F (E+, R)]∗

88rrrrrrrrrrrr
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Let δ : E+ −→ F (X+, R) be given by δ(e) =
∑m(e)

i=1 ri(e)xi(e), e ∈ E. Chasing

this element δ along the top of the diagram, one easily verifies that it maps to the

element

d =
∑

p(e)=x−1

µ(e)

m(e)∑
i=1

ri(e) ,

while chasing it along the bottom of the diagram, it maps to the element

d′ =

m(e−1)∑
i=1

ri(e−1)
∑

p(ei)=xi(e−1)

µ(ei) = n

m(e−1)∑
i=1

ri(e−1) .

Call ρ(e) =
∑m(e)

i=1 ri(e). Since ρ = ε ◦ δ, by 9.1.1 this defines a continuous map

ρ : E −→ R, but since E is path connected and R is discrete, ρ is constant with

value rδ ∈ R. Hence

d =
∑

p(e)=x−1

µ(e)ρ(e) = n · rδ and d′ = nρ(e−1) = n · rδ .

Thus d = d′ and the diagram commutes.

For simplicity, in what follows we omit the coefficient ring R in homology

and cohomology. For the Kronecker product ⟨−,−⟩Y : Hq(Y ) ⊗ Hq(Y ) −→ R

there are induced homomorphisms ΦY : Hq(Y ) −→ Hom(Hq(Y ), R) and ΨY :

Hq(Y ) −→ Hom(Hq(Y ), R) for every space Y , given by Φ(y)(η) = ⟨y, η⟩Y and

Ψ(η)(y) = ⟨y, η⟩Y , y ∈ Hq(Y ), η ∈ Hq(Y ).

10.6.2 Corollary. The following diagrams commute

Hq(E)
ΦE //

τp

��

Hom(Hq(E), R)

Hom(τp,1)

��
Hq(X)

ΦX

// Hom(Hq(X), R) ,

Hq(X)
ΨX //

τp

��

Hom(Hq(X), R)

Hom(τp,1)

��
Hq(E)

ΨE

// Hom(Hq(E), R) ,

the one on the right-hand side only if τp : Hq(E) −→ Hq(X) is a homomorphism

(which is rather seldom the case). ⊓⊔

10.6.3 Remark. Under suitable conditions Φ or Ψ are isomorphisms, in whose

case one of the transfers determines the other.

10.7 Comparison with Smith’s transfer

In this section we show that the transfer defined in [44] coincides with ours if we

take Z-coefficients. To that end, we first recall his definition of the transfer. It

makes use of a result of Moore, that we state below. Recall that the weak product
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∏̃∞
n=1Xn of a family of pointed spaces is the colimit over n of the directed system

of spaces

X1 ↪→ X1 ×X2 ↪→ X1 ×X2 ×X3 ↪→ · · · ,

where the inclusions are given by letting the last coordinate be the base point.

Moore’s result, as it appears in [?], is as follows.

10.7.1 Theorem. (Moore) A connected space X is weakly homotopy equivalent

to the weak product
∏̃
n≥1K(πn(X), n) of Eilenberg-Mac Lane spaces if and only if

the Hurewicz homomorphism hn : πn(X) −→ H̃n(X;Z) is a split monomorphism

for all n ≥ 1. ⊓⊔

Suppose that ρn : H̃n(X) = H̃n(X;Z) −→ πn(X) is a left inverse of hn. The

Kronecker product defined in Section 2 determines an epimorphism

H̃n(X;πn(X)) −→ Hom(H̃n(X), πn(X)) .

Let [ξn] ∈ H̃n(X;πn(X)) = [X,K(πn(X), n)]∗ be some preimage of ρn. Then the

family of pointed maps (ξn) defines the weak homotopy equivalence of the previous

theorem.

10.7.2 Corollary. If X is a connected topological abelian monoid of the same

homotopy type of a CW-complex, then there is a homotopy equivalence X −→∏̃
n≥1K(πn(X), n).

Proof: SinceX is a topological abelian monoid, there is a retraction r : F (X;N) −→
X given by the retractions

rn : Fn(X;N) −→ X , rn(x1 + x2 + · · ·+ xn) = x1 + x2 + · · ·+ xn .

Recall, on the other hand, that by the Dold-Thom theorem one has an isomorphism

πn(SP
∞X) ∼= H̃n(X), so that the inclusion i : X ↪→ SP∞X defines the Hurewicz

homomorphism (see [?]). Since r ◦ i = idX , the homomorphism ρn = r∗ : H̃n(X) =

πn(F (X;N)) −→ πn(X) provides a left inverse of the Hurewicz homomorphism

hn. Hence, by Moore’s theorem, we obtain the result.

10.7.3 Remark. Note that in the proof above, it is enough to assume that X is

a weak topological abelian monoid, i.e., that the product in X is continuous on

compact sets.

For any space E, the space F (E;N) is a weak topological abelian monoid. Thus

we have the following.

10.7.4 Corollary. For a connected space E of the same homotopy type of a CW-

complex, there is a natural homotopy equivalence wE : F (E;N) −→ K(H̃∗(E)) =∏̃∞
n=1K(H̃n(E), n). ⊓⊔
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The definition of Smith’s transfer is as follows. Given an n-fold ramified cover

p : E −→ X with multiplicity function µ : E −→ N, consider the following

composite:

p̂ : X
φp−→ Fn(E;N) −→ F (E;N) ≃−→ K(H̃∗(E)) .

This map defines a family of elements [p̂] ∈ H̃∗(X; H̃∗(E)). On the other hand,

the Kronecker product determines a homomorphism

ψ : H̃∗(X; H̃∗(E)) −→ Hom(H̃∗(X), H̃∗(E)) .

Smith’s transfer is the image p♯ : H̃∗(X) −→ H̃∗(E) of [p̂] under the homomor-

phism ψ.

10.7.5 Theorem. Let p : E −→ X be an n-fold ramified cover with multiplicity

function µ : E −→ N. Then p♯ = tp : H̃∗(X;Z) −→ H̃∗(E;Z), where tp is the

transfer in reduced homology.

Proof: Consider the following commutative diagram.

[E,F(E;N)]∗ //

τp

��

[E,F (E;N)]∗
∼= //

τp

��

H̃∗(E, H̃∗(E)) //

τp

��

Hom(H̃∗(E), H̃∗(E))

Hom(tp,1)

��

[X,Fn(E;N)]∗ // [X,F (E;N)]∗
∼= // H̃∗(X, H̃∗(E)) // Hom(H̃∗(X), H̃∗(E))

The two squares on the left-hand side, where τp represents the cohomology transfer,

commute obviously. The one on the right-hand side commutes by Corollary 10.6.2.

Take [i] ∈ [E,Fn(E;N)]∗, where i : E ↪→ Fn(E;N) is the canonical inclusion.

Chasing [i] down and then right on the bottom of the diagram, we obtain p♯, while

chasing it to the right on the top of the diagram and then down, we obtain tp. This

is true, because the image of [i] along the top row of the diagram is the identity

homomorphism 1 ∈ Hom(H̃∗(E), H̃∗(E)). This follows from the naturality of the

Kronecker product, since by Corollary 10.7.2, we have an explicit description of

the weak homotopy equivalence that defines the isomorphism in the middle arrow.
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