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Preface

Topology is qualitative geometry. Ignoring dimensions, several geometric

objects give rise to the same topological object. Homotopy theory considers even

more geometric objects as equivalent objects. For instance, in homotopy theory, a

solid ball of any dimension and a point are considered as equivalent, also a solid

torus and a circle are equivalent from the point of view of homotopy theory. This

loss of precision is compensated by the effectiveness of the algebraic invariants that

are defined in terms of homotopy.

The problem of deciding if two spaces are homeomorphic or not is, no doubt,

the central problem in topology. We call this the homeomorphism problem. It

was not until the creation of algebraic topology that it was possible to give a

reasonable answer to such a problem. Now it is not only because of the conceptual

simplicity of point-set topology and its adequate symbology, but thanks to the

powerful tool provided by algebra and its most convenient functorial relationship

to topology that this effectiveness is achieved. For instance, if two spaces have

different algebraic invariants, then they cannot be equivalent from the homotopical

viewpoint. Therefore, they cannot be homeomorphic either.

What we now know as algebraic topology was probably started with the Anal-

ysis Situs, Paris, 1895, and its five Compléments (Complements), Palermo, 1899;

London, 1900; Paris, 1902; Paris, 1902, and Palermo, 1904, of Henri Poincaré. In

the first, he notes that “geometry is the art of reasoning well with badly made

figures.” And further he says: “Yes, without doubt, but with one condition. The

proportions of the figures might be grossly altered, but their elements must not be

interchanged and must preserve their relative situation. In other terms, one does

not have to worry about quantitative properties, but one must respect the qualitative

properties, that is to say precisely those which are the concern of Analysis Situs.”

Indeed, other works of Poincaré contain as much interesting topology as the just

referred to. This is the case for his memoir on the qualitative theory of differential

equations, that includes the famous formula of the Poincaré index. This formula

describes in topological terms the famous Euler formula, and constitutes one of

the first steps in algebraic topology. In these works Poincaré considers already

maps on manifolds such as, for instance, vector fields, whose indexes determine
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viii Preface

the Euler characteristic in his index formula. It is Poincaré too who generalizes

the question on the classification of manifolds having in mind the classification

of the orientable surfaces considered by Moebius in Theorie der elementaren Ver-

wandtschaft (Theory of elementary relationship), Leipzig, 1863. This classification

problem was also solved by Jordan in Sur la déformation des Surfaces (On the

deformation of surfaces), Paris, 1866, who, by classifying surfaces solved an im-

portant homeomorphism problem.

Jordan studied also the homotopy classes of closed paths, that is, the first

notions of the fundamental group, inspired by Riemann, who already had ana-

lyzed the behavior of integrals of holomorphic differential forms and therewith the

concept of homological equivalence between closed paths.

This book has the purpose of presenting the topics that, from my own point of

view, are the basic topics of algebraic topology that some way should be learnt by

any undergraduate student interested in this area or affine areas in mathematics.

The design of the text is as follows. We start with a small Chapter 1, which

deals with some basic concepts of general topology, followed by four substantial

chapters, each of which is divided into several sections that are distinguished by

their double numbering (1.1, 1.2, 2.1, . . . ). Definitions, propositions, theorems,

remarks, formulas, exercises, etc., are designated with triple numbering (1.1.1,

1.1.2, . . . ). Exercises are an important part of the text, since many of them are

intended to carry the reader further along the lines already developed in order to

prove results that are either important by themselves or relevant for future topics.

Most of these are numbered, but occasionally they are identified inside the text

by italics (exercise).

After the chapter on basic concepts, the book starts with the concept of a

topological manifold, then one constructs all closed surfaces and stresses the im-

portance of algebraic invariants as tools to distinguish topological spaces. Other

low dimensional manifolds are analyzed; in particular, one proves that in dimen-

sion one the only manifolds are the interval, the circle, the half line, and the line.

Then using the Heegaard decomposition, it is shown how 3-dimensional manifolds

can be analyzed. We state (with no proof) the important Freedman theorem on

the classification of simply connected 4-manifolds and finish presenting other man-

ifolds that are important in different branches of mathematics, such as the Stiefel

and the Grassmann manifolds.

Further on, the elements of homotopy theory are presented. In particular, the

mappings of the circle into itself are analyzed introducing the important concept

of degree. Homotopy equivalence of spaces is introduced and studied, as a coarser

concept than that of homeomorphism.

The fundamental group is the first properly algebraic invariant introduced and
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then one gives the proof of the Seifert–van Kampen theorem that allows to compute

the fundamental group of a space if one knows the groups of some of its parts.

We use this important theorem to compute the fundamental groups of all closed

surfaces, as well as of some orientable 3-manifolds, whose Heegaard decomposition

is known. Thereafter, covering maps are introduced. This is an essential tool to

analyze, from a different point of view, the fundamental group.

In the last chapter a short introduction to knot theory is presented, where

one sees instances of the usefulness of the several algebraic invariants. On the one

hand, the Jones polynomial is presented, and on the other, as an application of

the fundamental group, the group of a knot is defined.

In this point I want recognize the big impact in this book of all experts that

directly or indirectly have influenced my education as a mathematician and as a

topologist. At the UNAM Guillermo Torres and Roberto Vázquez were decisive.

Later on, in my doctoral studies in Heidelberg, Germany, I had the privilege of

receiving directly the teaching of Albrecht Dold and Dieter Puppe; and indirectly,

through several German topology books, of other people, among which I owe a

mention to Ralph Stöcker and Heiner Zieschang’s [23], as well as to that of Tammo

tom Dieck [7].

Mexico City, Mexico Carlos Prieto

Winter 2010
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Introduction

The object of this book is to introduce algebraic topology. But the first ques-

tion is, what is topology? This is not an easy question to answer. Trying to define

a branch of mathematics in a concise sentence is complicated. However, we may

describe topology as that branch of mathematics that studies continuous defor-

mations of geometrical objects. The purpose of topology is to classify objects,

or at least to give methods in order to distinguish between objects that are not

homeomorphic; that is, between objects that cannot be obtained from each other

through a continuous deformation. It also provides techniques to study topological

structures in objects arising in very different fields of mathematics. The concepts of

“deformation,” “continuity,” and “homeomorphism” will be fundamental through-

out the text. However, even not having yet precise definitions, we shall introduce

in what follows several examples, that intuitively illustrate those concepts.

Figure 0.1 shows three topological spaces; namely, a sphere surface with its

poles deleted, another sphere with its polar caps removed (including the polar

circles), and a cylinder with its top and bottom removed (including the edges).

These three objects can clearly be deformed to each other; hence topology would

not distinguish them.

Figure 0.1 A sphere with no poles, a sphere with no polar caps and circles, and a
cylinder with no edges

Figure 0.2 shows the surface of a torus (a “doughnut”) and a sphere surface

with a handle attached. Each one of these figures is clearly a deformation of the

xiii



xiv Introduction

other. However, it is intuitively clear that the topological object shown in three

forms in Figure 0.1 cannot be deformed to the topological object shown in two

forms in Figure 0.2.

Figure 0.2 A torus and a sphere with one handle

Being a little more precise, we shall say that two objects (topological spaces)

will be homeomorphic when there exists a one-to-one correspondence mapping

points that are close in one of them to points that are close in the other. We can

add to the list of those spaces that are not homeomorphic to each other, that we

mentioned above, the following examples:

(a) Take N = {0, 1, . . . , n − 1}, M = {0, 1, . . . ,m − 1}, n < m. Considered as

topological spaces in any possible way, they will never be homeomorphic,

since a necessary condition in order for two spaces to be homeomorphic, is

that they have, as sets, the same cardinality.

(b) The same argument of (a) shows that a one-point set cannot be homeomor-

phic to an interval.

(c) More sophisticated arguments are required to show that a closed interval

is not homeomorphic to a cross; that is, the topological spaces depicted in

the upper part of Figure 0.3 are not homeomorphic to each other. A way of

deciding this could be the following: Whatever point that we delete from the

interval decomposes it in at most two connected portions. However, there

is one point in the cross that when deleted, decomposes it into four pieces

(components). For that reason, no point in the first space can exist that would

correspond to this special point in the second space under a homeomorphism.

Therefore, they cannot be homeomorphic.

(d) The surface of a torus is not homeomorphic to that of a sphere. This might

be shown if we observe that a circle (simple closed curve) can be drawn on

the surface of the torus that cannot be continuously contracted to a point.

However, it is very clear that any circle drawn in the surface of a sphere can
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Figure 0.3 An interval and a cross are not homeomorphic

be deformed to a point, as can be appreciated in Figure 0.4. Another way

of seeing this might be observing that any circle on the sphere is such that

when deleted, the sphere is decomposed in two regions, while the circle on

the torus does not have this property. (In other words, the famous theorem

of the Jordan curve holds on the sphere, while it does not hold on the torus.)

Figure 0.4 Any loop can be contracted on the sphere. A loop that does not contract
on the torus

(e) The Moebius band that can be obtained from a strip of paper twisting it

one half turn and then glueing it along its ends, is not homeomorphic to the

trivial band obtained from a similar strip by glueing its ends without twisting

it (see Figure 0.5).

The argument for showing this can be similar to that used in Example (d);

namely, there is a circle on the Moebius band, that if removed from the

band, does not disconnect it (it can be cut with scissors along the equator

and would not fall apart in two pieces). However, in the trivial band any
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Figure 0.5 The Moebius band and the trivial band

circle parallel to and different from the edges (or any other circle different

from the edges) when removed decomposes the band in two components (see

Figure 0.6).

The first exercises for the reader are the following:

(f) Take the Moebius band and cut it along the equator. What space do you

obtain? Will it be a Moebius band again? Or maybe will it be the trivial

band?

Figure 0.6 The Moebius band is not homeomorphic to the trivial band

(g) Similarly to the given construction of the Moebius band we may take a paper

strip and glue its ends, but this time after twisting a full turn. Will this space

be homeomorphic to the Moebius band? Or will this space be homeomorphic

to the trivial band? What is the relationship between this space and that of

(f) (see Figure 0.6.)

One of the central problems in topology consists, precisely, in studying topo-

logical spaces in order to be able to distinguish them. In all the previous examples

every time we have decided that two spaces are not homeomorphic, it has been on

the base of certain invariants that can be assigned to them. For instance, in (a)

this invariant is the cardinality, in (c) it is the number of components obtained
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after deleting a point, and in (d) and (e) it is the number of components obtained

after removing a circle. One of the objectives pursued by topology is to assign to

each space invariants that are relatively easy to compute and allow to distinguish

among them.

When we mentioned the intuitive concept of homeomorphism, we used the in-

tuitive concept of nearness of two points, that is, we talked about the possibility of

deciding if a point is close to a given point, or equivalently if it is in a neighborhood

of the given point. In the first chapters of this book we shall make this concept

precise.

A knot K is is a simple closed curve in the 3-space, i.e., it is the image k(S1)

under a “decent” inclusion k : S1 ↪→ R3 of the unit circle in the plane into the

3-dimensional Euclidean space as intuitively shown in Figure 0.7.

Figure 0.7 A knot in 3-space

Knot theory is an important field of mathematics with striking applications in

several ambits of science. The central problem of the theory consists in determining

when two given knots are equivalent; that is, when is it possible to deform inside

the space one knot to the other without breaking it apart. A quite recent result in

the theory proved by Gordon and Luecke [12] states that a knot K is determined

by its complement, that is, that two knots K and K ′ are equivalent if and only if

their complements R3 −K and R3 −K ′ are homeomorphic. In other words, they

transformed the problem of classifyng knots into a homeomorphism problem of

certain open sets in R3.
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Chapter 1 Basic concepts

In this introductory chapter we present some basic topics which will be

needed in the next chapters. They are common matter of point-set topology but,

for the sake of completeness, we put them here. Thus we shall study some special

examples of very basic topological spaces, we recall some special constructions

under the general framework of attaching spaces, and we study the elementary

aspects of group actions.

1.1 Some examples

In this section, we shall give the basic definitions needed for the theory of manifolds.

Before we start with the formal definitions, we come back to the homeomor-

phism problem described in the introduction. We shall ask the question if some of

the well-known topological spaces are homeomorphic or not.

Let us start with the so-called stereographic projection

(1.1.0) p : Sn −N −→ Rn ,

where N = (0, 0, . . . , 0, 1)∈ Sn ⊂ Rn+1, given by

p(x) =

(
x1

1− xn+1
, . . . ,

xn
1− xn+1

)
,

where x = (x1, x2, . . . , xn+1) ∈ Sn − N . The map p is a homeomorphism with

inverse given by

p−1(y) =

(
2y1

|y|2 + 1
, . . . ,

2yn
|y|2 + 1

,
|y|2 − 1

|y|2 + 1

)
,

where

y = (y1, . . . , yn) ∈ Rn .

The stereographic projection shows that Rn and Sn are “almost” equal, because

up to a point they are homeomorphic. However Rn and Sn are not homeomorphic.

For instance, in the case n = 0 this is clear since R0 is just one point, while S0

has two points. For n > 0, Rn is not compact because it is not bounded, while Sn
is compact, since it can be seen as a closed and bounded set in Rn+1 (as a matter

of fact, Sn is the one-point compactification of Rn, see [21, 6.3]).

1



2 1. Basic concepts

1.1.1 Exercise. Let now q : Sn − S −→ Rn be the stereographic projection, but

now from the south pole S = (0, 0, . . . , 0,−1) ∈ Sn ⊂ Rn+1. Notice that q is given

by

(1.1.1) q(x) =

(
x1

1 + xn+1
, . . . ,

xn
1 + xn+1

)
.

Show that the composite q◦p−1 : Rn−0 −→ Rn−0 is the inversion with respect to

the unit sphere Sn−1 ⊂ Rn−0, which is given by the map ι : Rn−0 −→ Rn−0, with

the property that the points y and ι(y) together with the origin O are collinear

and on the same side of O. Moreover, the product of their distances to O is 1,

namely |y| · |ι(y)| = 1 (see Figure 1.1). (Hint: It is enough to prove that for x ∈ Sn
the scalar product ⟨p(x), q(x)⟩ = 1.)

0
y

ι(y)

Figure 1.1 Inversion with respect to the unit circle

Questions such as to decide if there are homeomorphisms Bn ≈ Sn, Sm×Sn ≈
Sm+n, Rm ≈ Rn, Bm ≈ Bn, Sm ≈ Sn if m ̸= n in the last three cases, are much

more complicated and their solution can be obtained using more subtle methods.

They can be answered using the techniques of algebraic topology, which yields a

negative answer to each of the given questions.

In what follows, we shall state and prove an interesting result about homeo-

morphisms between subspaces of Rn.

1.1.2 Definition. A subset X of Rn is said to be convex if for any two points

x0, x1 ∈ X the line segment [x0, x1] that joins them lies in X, namely, for every

t ∈ I, the point (1− t)x0 + tx1 ∈ X.

1.1.3 Theorem. Let X be a convex compact subset of Rn whose interior X◦ is

nonempty. Then X is homeomorphic to the n-ball Bn by means of a homeomor-

phism, which maps the boundary ∂X homeomorphically onto Sn−1.
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Proof: Fix an interior point x0 ∈ X◦. Given any point x ∈ ∂X, it has the property

that it is the only boundary point which lies in the semiline that starts at x0 and

goes through x. Namely

{(1− t)x0 + tx | t > 0} ∩ ∂X = {x} .

Otherwise, X would not be convex. Take the map

ψ : ∂X −→ Sn−1 ,

given by ψ(x) = (x− x0)/|x− x0|. This is a continuous bijective map. Since both

spaces are compact Hausdorff, ψ is a homeomorphism. If we extend ψ radially we

get a homeomorphism

φ : X −→ Bn ,

given by φ((1− t)x0 + tx) = tψ(x), t ∈ I, as desired. ⊓⊔

1.1.4 Corollary. Let X ⊂ Rn be a nonempty, open, bounded, convex set. Then

X is an n-cell, that is, X ≈
◦
Bn.

Proof: The assumption implies that the closure X = X ∪∂X is a compact, convex

set with nonempty interior. Thus, by 1.1.3, there is a homeomorphism φ : X −→
Bn such that φ(∂X) = Sn−1. Hence, φ, by restriction, induces a homeomorphism

X = X − ∂X −→ Bn − Sn−1 =
◦
Bn. ⊓⊔

1.1.5 Exercise. Prove that the previous corollary equally holds if X ⊂ Rn is a

nonempty open convex set.

1.1.6 Examples.

(a) The cube In is a convex, compact subset of Rn, whose interior is nonempty.

Thus it is homeomorphic to Bn. Moreover, the open cube (0, 1)n is an n-cell.

(b) The product Bm × Bn is a convex, compact subset of Rm × Rn = Rm+n,

with nonempty interior. Thus it is homeomorphic to Bm+n. Also the product
◦
Bm ×

◦
Bn is an (m+ n)-cell (cf. 2.1.7).

1.1.7 Exercise. Show explicit homeomorphisms for 1.1.6 (a) and (b).

For the time being we shall state a deep theorem, the domain invariance the-

orem, whose proof will postponed to Chapter 3 (see Theorem 3.5.5). The result

has strong consequences in questions like the ones given above. As a consequence,

we shall deduce from the domain invariance theorem, two very interesting results,

the dimension and the boundary invariance theorems.
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1.1.8 Theorem. (Domain invariance) Take subsets X, Y ⊂ Rn such that X is

homeomorphic to Y . Then, if X is open in Rn, Y must be open too.

Notice that if we assume that there is a homeomorphism φ : Rn −→ Rn which

maps X onto Y , the result would be trivial. The statement of the theorem of

invariance of domain requires only the existence of a homeomorphism ψ : X −→ Y .

Indeed, the statement of the theorem is equivalent to saying that the property of

being open in Rn is a topological invariant of the subsets of Rn.

In what follows we shall deduce several consequences of Theorem 1.1.8.

1.1.9 Theorem. (Dimension invariance) If m ̸= n, then Rm ̸≈ Rn, Sm ̸≈ Sn and

Bm ̸≈ Bn.

Proof: Assume m < n. Then Rm ⊂ Rn is not open in Rn. However Rn ⊂ Rn is

open in Rn. Hence by Theorem 1.1.8, Rm and Rn cannot be homeomorphic.

If we assume that there is a homeomorphism φ : Sm ≈ Sn, then taking off

a point from each one of the spheres, say p from Sm and q = φ(p) from Sn, by
restriction we obtain a homeomorphism φ′ : Sm−p ≈ Sn−q. Via the stereographic

projections given in 1.1.0 and 1.1.1, φ′ determines a homeomorphism ψ : Rm ≈ Rn.

Therefore m = n by the first part of the proof.

Finally take m < n and a homeomorphism φ : Bm −→ Bn. Hence
◦
Bn ⊂ Rn is

open and homeomorphic to φ−1(
◦
Bn) ⊂ Bm ⊂ Rm ⊂ Rn, which is not open in Rn.

This contradicts 1.1.8. ⊓⊔

Another interesting application of the domain invariance theorem is the follow-

ing result.

1.1.10 Theorem. (Invariance of boundary) Let φ : Bn −→ Bn be a homeomor-

phism. Then φ(Sn−1) = Sn−1.

Proof: Take x ∈ Sn−1 and assume that y = φ(x) ∈
◦
Bn. Let ε > 0 be such that the

open ball B◦
ε (y) ⊂ Bn. The inverse image φ−1(B◦

ε ) ⊂ Rn is homeomorphic a B◦
ε

but since φ−1(B◦
ε ) ⊂ Bn and φ−1(B◦

ε ) ∩ Sn−1 ̸= ∅, this is not open in Rn, which

contradicts 1.1.8. ⊓⊔

1.1.11 Definition. A topological space B homeomorphic to Bn is called an n-ball

and a topological space S homeomorphic to Sn−1 is called an (n− 1)-sphere. Let

φ : B −→ Bn be a homeomorphism. The (n− 1)-sphere B• = φ−1(Sn−1) is called

the boundary of B. (As in more general cases, in what follows we shall denote B•

by ∂B.)
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1.1.12 Note. We abuse the language by naming “boundary” this subset of a ball.

However, this will not produce confusion since it corresponds to the boundary of

a Euclidean ball. Thus it is important to call the boundary of a subset A of a

topological space X boundary of A in X, to distinguish it from the “intrinsic

boundary” of a ball.

1.1.13 Proposition. The boundary concept of 1.1.11 is well defined.

Proof: If ψ : B −→ Bn is another homeomorphism, then by 1.1.10, ψ−1φ(Sn−1) =

Sn−1. Hence φ(Sn−1) = ψ(Sn−1) and the definition of B• given in1.1.11 is inde-

pendent of the choice of the homeomorphism φ. ⊓⊔

1.2 Special constructions

In this section, we shall analyze some special constructions which will play a role

in what follows. Consider the continuous maps

X A
foo g // Y .

1.2.1 Definition. The double attaching space is defined as the identification space

of X⊔Y , which we denote by Yg∪fX, given by identifying f(a) ∈ X with g(a) ∈ Y

for all a ∈ A. That is,

Yg ∪f X = X ⊔ Y/f(a) ∼ g(a) , a ∈ A .

Schematically it looks as shown in Figure 1.2.

1.2.2 Remark. The diagram

A
f //

g

��

X

i
��

Y
j

// Yg ∪f X

is a so-called cocartesian square. or pushout diagram The double attaching space

Yg ∪f X is also called the pushout of (f, g). It is characterized by the pushout

universal property (see Exercise 1.2.4):

(PO) If φ : X −→ Z and ψ : Y −→ Z are continuous maps such that φ◦f = ψ ◦g,
then there is a unique map ξ : Yg∪fX −→ Z such that ξ◦i = φ and ξ◦j = ψ.
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Y Yg ∪f X

A

�

X

f

g

Figure 1.2 The double attaching space

1.2.3 Examples.

(a) If A ⊂ Y and g : A ↪→ Y is the inclusion, then Yg∪fX is called the attaching

space of f : A −→ X and is denoted simply by Y ∪f X.

(b) If A = ∅, then Yg ∪f X = X ⊔ Y .

(c) If A ⊂ X, Y = {∗}, and f : A ↪→ X is the inclusion map, then Yg ∪f X =

X/A.

1.2.4 Exercise. Consider the maps X A
foo g // Y and their double attach-

ing space Yg ∪f X. Show that Yg ∪f X is indeed a pushout, namely show that it is

characterized by the property (PO) given above.

The construction of the attaching space is a very important construction, since

with it many associated constructions can be obtained, that play a relevant role

in several branches of topology. Many of them are based in a particular space

associated to a given topological space that we define in what follows.

1.2.5 Definition. Let f : X −→ Y be continuous and consider the diagram

X × I X?
_i0oo f // Y ,

where i0(x) = (x, 0). The attaching space Y ∪f (X × I) is called the mapping

cylinder of f and is denoted by Mf .



1.2 Special constructions 7

ZX

�

Y

f

Mf

Figure 1.3 The mapping cylinder

If Y = X and f = idX , then Mf = X × I, and this space is called simply the

cylinder over X and is denoted by ZX. The quotient space of the cylinder over X,

in which the top is collapsed to a point, ZX/X × {1} = X × I/X × {1} is called

the cone over X and is denoted by CX. There is a natural inclusion X ↪→ CX

given by x 7→ q(x, 0), where q : ZX −→ CX is the quotient map.

1.2.6 Definition. Let f : X −→ Y be continuous and consider the diagram

CX X?
_oo f // Y .

The attaching space Y ∪f CX is called the mapping cone of f and is denoted by

Cf .

CX

�

Y

f

Cf

Figure 1.4 The mapping cone

1.2.7 Exercise. Prove that CSn−1 ≈ Bn.

In what follows, we define a new space obtained from a given space, that plays

an important role in algebraic topology, mainly in homotopy theory.
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X

ΣX

Figure 1.5 The suspension

1.2.8 Definition. Take Y = ∗. The mapping cone of f : X −→ ∗, namely

∗ ∪f CX, is called the suspension of X and is denoted by ΣX.

1.2.9 Exercise. Prove that the suspension of a space X coincides with the quo-

tient of the cylinder ZX = X × I obtained by collapsing the top of the cylinder

X × {1} into a point, and the bottom of the cylinder X × {0} into another point.

1.2.10 Exercise. Prove that the suspension of a space X is homeomorphic to

the double attaching space corresponding to the diagram

CX X?
_oo � � // CX ,

or, equivalently, to the mapping cone of the inclusion X ↪→ CX.

Another interesting construction is the following.

1.2.11 Definition. Let f : X −→ X be continuous. The quotient space of the

cylinder over X, ZX, obtained after identifying the bottom of the cylinder with

the top through the identification (x, 0) ∼ (f(x), 1), is called the mapping torus of

f and is denoted by Tf .

1.2.12 Examples.

(a) If f = idX : X −→ X, then the mapping torus Tf is called torus of X and is

denoted by TX.

(b) If X = I, then TI is the trivial band or standard cylinder.

(c) If X = I, and f : I −→ I is such that f(t) = 1 − t, then Tf is the Moebius

band.

(d) IfX = S1, then TS1 is the standard torus and is denoted by T2.
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Figure 1.6 The trivial band

Figure 1.7 The Moebius band

(e) If X = S1 = {ζ = e2πit ∈ C | t ∈ I} and f : S1 −→ S1 is such that

f(e2πit) = e−2πit, then Tf is the Klein bottle.

1.2.13 Exercise. Prove that the trivial band is homeomorphic to the space ob-

tained from the square I × I by identifying each point (s, 0) with (s, 1), while

the Moebius band is homeomorphic to the space obtained from the square by

identifying (s, 0) with (1− s, 1).

Figure 1.8 The standard torus



10 1. Basic concepts

Figure 1.9 The Klein bottle

a a

Figure 1.10 The construction of the Moebius band

1.2.14 Exercise. Prove that the standard torus is homeomorphic to the space

obtained from the square I×I by identifying the points (s, 0) with (s, 1), and (0, t)

with (1, t), while the Klein bottle is obtained from the square by identifying (s, 0)

with (1 − s, 1), and (0, t) with (1, t). This is the classical definition of the bottle.

We shall see below in 1.2.20 a different way of defining it.

a a

b

b

Figure 1.11 The construction of the Klein bottle

1.2.15 Exercise. Prove that the Klein bottle is a quotient space of the Moebius

band. Describe the identification.
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1.2.16 Exercise. Let q : Sn−1 −→ RPn−1 be the quotient map such that q(x) =

q(−x), and let

Bn Sn−1? _ioo q // // RPn−1 .

Prove that RPn−1 ∪q Bn ≈ RPn.

1.2.17 Definition. Consider the diagram

Bn Sn−1? _ioo φ // // X .

The resulting attaching space X ∪φ Bn is said to be obtained by attaching a cell

of dimension n to the space X. Frequently this space is denoted by X ∪φ en. The

image of Bn, resp.
◦
Bn, in Y = X ∪φ Bn is called closed cell, resp. open cell de Y ,

and φ is called characteristic map of the cell of Y .

1.2.18 Exercise. Prove that RPn is obtained from RPn−1 by attaching a cell of

dimension n with the canonical map q : Sn−1 −→ RPn−1 as characteristic map.

Conclude that the projective space RPn is obtained by successively attaching cells

of dimensions 1, 2, . . . , n to the singular space {∗}; that is,

RPn = {∗} ∪ e1 ∪ e2 ∪ · · · ∪ en .

(Hint: RPn is obtained from Bn by identifying in its boundary Sn−1 = ∂Bn each

pair of antipodal points in one point.)

1.2.19 Exercise. Take Bn Sn−1? _oo � � // Bn . Prove that the corresponding

attaching space is homeomorphic to Sn, namely, Sn is obtained from Bn by at-

taching a cell of dimension n with the inclusion as characteristic map. Equivalently,

Sn is obtained from Sn−1 by attaching two cells of dimension n, each with idSn−1

as characteristic map. Conclude that the n-sphere can be decomposed as

Sn = S0 ∪ (e11 ∪ e12) ∪ (e21 ∪ e22) ∪ · · · ∪ (en1 ∪ en2 ) .

The procedure of decomposing a space and then putting it together again is

called cutting and pasting. We have the following.

1.2.20 Examples.

1. Consider the torus T2 embedded in 3-space in such a way that it is symmetric

with respect to the origin (namely, so that x ∈ T2 if and only if −x ∈ T2,

see Figure 1.12 (a)). We shall show using the method of cutting and pasting,

that if we identify each point x ∈ T2 with its opposite −x, then we obtain
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the Klein bottle. The result of this identification is the same as if we slice the

torus along the inner and outer equators and keep the upper (closed) part,

so that we obtain a ring (see Figure 1.12 (b)), and then identify with each

other antipodal points of the outer circle and those of the inner circle. This

is marked with double and single arrows. Now cut the ring into two halves

along the dotted lines. Up to a homeomorphism we obtain two rectangles,

where we use different types of arrows to codify what has to be identified

(see Figure 1.12 (c)). Flip the top rectangle (Figure 1.12 (d)) and identify

the edges marked with the single solid arrow (Figure 1.12 (e)). We obtain a

square such that after realizing the identifications marked therein, we obtain

the Klein Bottle (cf. Exercise 1.2.14).

(a) (b)

(c) (d) (e)

Figure 1.12 Cutting and pasting the torus

2. Consider the square I × I and identify on the boundary the points of the

form (1, t) with (1 − t, 1), and those of the form (0, 1 − t) with (t, 0). This

is illustrated in Figure 1.13 (a), where edge a is identified with edge a′ and

edge b with edge b′, preserving the counterclockwise orientation (cf. 2.2.16

below). Now cut the square along the diagonal form (0, 0) to (1, 1). Calling

the new edges c and c′, one obtains two triangles with sides a, b, c and a′, b′, c′

oriented as shown in Figure 1.13 (b). We may now glue both triangles along

the edges a and a′ preserving the orientations (turning and flipping the first
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triangle), and so we obtain a quadrilateral with edges b, c, b′, c′ shown in

Figure 1.13 (c). Clearly this quadrilateral is homeomorphic (via an affine

map) to a square with edges equally denoted shown in Figure 1.13 (d). Now

observe that in the resulting square one identifies the vertical sides with the

same orientation, namely (0, t) with (1, t), and the horizontal edges with

the opposite direction, namely (t, 0) with (1 − t, 1). The result of this last

identification is the Klein bottle defined in 1.2.14.

(a)

a

a′

b

b′

(b)

b′

a′

b

c′

(c)

c a

b′ c′

c
b

(d)

b′ b

c

c′

Figure 1.13 Cutting and pasting the Klein bottle

1.2.21 Exercise. Using the method of cutting and pasting, show that the result

of cutting the Moebius band along the equator yields the trivial band, namely a

space homeomorphic to S1 × I. Notice that if you realize that in the 3-space, one

obtains a band with a double twisting, as shown on Figure 1.14.

Figure 1.14 Cutting the Moebius band yields the trivial band

1.3 Path connectedness

A fundamental concept in algebraic topology is that of a path, which we shall

study thoroughly in Chapter 4. In what follows, as it is usual, we shall denote by
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I the real unit interval [0, 1] = {t ∈ R | 0 ≤ t ≤ 1}. Given a topological space X,

and two points x0, x1 ∈ X, a path in X from x0 to x1 is a map ω : I −→ X such

that ω(0) = x0 and ω(1) = x1. We denote this fact by ω : x0 ≃ x1. It is easy to

show that the relation ≃ is an equivalence relation. Hence a space X is decomposed

in equivalence classes, which we call path-components of X. We denote the set of

path-components of X by π0(X).

We start by recalling that a topological space X is connected if it is impossible

to find a separation (A,B) ofX, namely two nonempty disjoint open sets A,B ⊂ X

such that A∪B = X. Otherwise, X is disconnected and such a pair (A,B) is called

a disconnection of X. In symbols, a disconnection satisfies

X = A ∪B , A ∩B = ∅ , A ̸= ∅ ̸= B .

It is easy to show that X is disconnected if and only if there is a continuous

surjective map δ : X −→ {0, 1}.

1.3.1 Definition. A topological space X is said to be path connected if given any

two points x0, x1 ∈ X, there is a path in X from x0 to x1. In other words, X is

path connected if and only if it has one path-component.

1.3.2 Theorem. A subspace X ⊆ R is path connected if and only if X is an

interval (open, half-open, or closed) or it is a ray (open or closed).

Proof: Let X be an interval or a ray and assume it is not connected. Then there

is a continuous surjective map δ : X −→ {0, 1}. Let x0, x1 ∈ X be such that

δ(x0) = 0 and δ(x1) = 1. Since X is an interval, then it contains the interval

[x0, x1]. The intermediate value theorem implies that there is some x ∈ [x0, x1]

such that δ|[x0,x1](x) =
1
2 , which is a contradiction.

Conversely, letX be a nonempty connected subspace ofR. Assume that x0, x1 X

and that x0 < x < x1. If x /∈ X, then A = X∩(−∞, x) and B = X∩(x,+∞) form

a disconnection of X, which is a contradiction. Thus, with x0 and x1, X contains

all elements x that lie between them. This a characterization of an interval. ⊓⊔

1.3.3 Proposition. If a space X is path connected, then it is connected.

Proof: If X is not connected, take a disconnection (A,B) of X and take points

x0 ∈ A and x1 ∈ B. Since X is path connected, there is a path ω : I −→ X such

that ω(0) = x0 and ω(1) = x1. Then the sets A′ = ω−1(A) and B′ = ω−1(B) form

a disconnection of the unit interval I. This contradicts 1.3.2. ⊓⊔

Using a similar idea to the one used in previous proof, one can show that if X

is connected and f : X −→ Y is continuous, then f(X) is connected.
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1.3.4 Exercise. Show the last statement, namely, if X is connected and f :

X −→ Y is continuous, then f(X) is connected. Furthermore, show that if X is

path connected and f : X −→ Y is continuous, then f(X) is path connected.

Given a set C ⊂ X, we denote its closure in X by C, ant is given by C =

{x ∈ X | U ∩ C ̸= ∅ for every neighborhood U of x}. An important theorem on

connectedness is the following.

1.3.5 Theorem.

(a) Let {Xλ | λ ∈ Λ} be a family of connected subspaces of X, such that the

intersection
∩
λ∈ΛXλ ̸= ∅. Then Y =

∪
λ∈ΛXλ is connected.

(b) If C ⊂ X is a connected subspace and D is such that C ⊆ D ⊂ C, then D is

a connected subspace too. In particular, C is connected.

Proof: (a) Let f : Y −→ {0, 1} be a continuous map. Since Xλ is connected and

the restriction fλ : Xλ −→ {0, 1} is continuous, then fλ is constant. But the

intersection of all Xλ is nonempty, thus f is constant and so Y must be connected.

(b) Suppose on the contrary that (A,B) is a disconnection of D in X, that is,

D ⊂ A ∪B , (A ∩B) ∩D = ∅ , A ∩D ̸= ∅ ̸= B ∩D .

But since A and B are open, then A ∩ C ̸= ∅ ̸= B ∩ C, because the points in D

which are not in C must be cluster points. Thus (A,B) would be a disconnection

of C in X, which is a contradiction. ⊓⊔

If we take a point x ∈ X and consider the set Cx =
∪
{C ⊂ X | x ∈

C and Cis connected}, then Cx is the largest connected set that contains x. It

is called the connected component of x. By Theorem 1.3.5 (b), Cx is closed.

A space X is said to be locally (path) connected , if for each point x ∈ X and

for each neighborhood U of x in X, there is a (path) connected neighborhood V

of x in X such that V ⊂ U .

1.3.6 Theorem.

(a) Let X be locally connected and let U ⊂ X be open. Then the connected

components of U are open.

(b) Let X be locally path connected and let U ⊂ X be open and connected. Then

U is path connected. Furthermore, the path-components of an open set V ⊂ X

coincide with the connected components of V and they are open.
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Proof: (a) Let C ⊂ U be the connected component of x in U and take y ∈ C. Then

C = Cy. Since U is a neighborhood of y in X, there is a connected neighborhood

V of y in X such that V ⊂ U . Hence V ⊂ C, because C = Cy is the maximal

connected set in X in which y lies. Thus C is open in X.

(b) Take x ∈ U and let cx be the path-component of U in which x lies. If

y ∈ cx, then there is a path connected neighborhood V of y such that V ⊂ U .

Hence we have V ⊂ cx and thus cx is open. Since the complement U−cx is a union

of path-components, each of which is open, then it is open. But U is connected.

Hence U − cx = ∅, i.e., U = cx is path connected.

Combining (a) with the latter, we obtain the second part of (b). ⊓⊔

For A ⊂ X, we denote by ∂A the (topological) boundary of A in X, namely

∂A = {x ∈ X | U ∩ A ̸= ∅ ̸= U ∩ (X − A) for each neighborhood U of x}. If A◦

denotes the interior, given by A◦ = X−X −A, where C denotes the closure of C,

then ∂A = A−A◦. We have the following.

1.3.7 Theorem.

(a) If A is open in X and it is a connected component of the open set B in X,

then ∂A ⊂ ∂B.

(b) If A is an open connected subset of X, then A is a connected component of

X − ∂A.

Proof: (a) First notice that A is closed in B, hence A = A∩B. Since A and B are

open in X we have

∂A = A−A = A− (B ∩A) = A ∩ (X −B) ⊂ B ∩ (X −B) = ∂B .

(b) Let B be the connected component of X−∂A which contains A. If A ̸= B,

then as well B ∩ A ̸= ∅ as B ∩ (X − A) ̸= ∅. Thus the pair (B ∩ A,B ∩ (X − A))

would be a disconnection of B, which is a contradiction. ⊓⊔

Another useful theorem is the next.

1.3.8 Theorem. Let X be a connected space and let A ⊂ X be a connected sub-

space. Furthermore, let C be a connected component of X − A. Then one has the

following:

(a) If U ⊂ X − C is open and closed in X − C, then U ∪ C is connected.
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(b) X − C is connected.

Proof: (a) If (P,Q) is a disconnection of U∪C, then C is contained in P , say. Hence

Q ⊂ U . Then Q is open and closed in U . Since U is open and closed in X −C, Q

is open and closed in X−C. Thus Q is open and closed in (X−C)∪ (C ∪U) = X,

but this contradicts the connectedness of X.

(b) If (P ′, Q′) is a disconnection of X−C, then we shall prove that (A∩P ′, A∩
Q′) is a disconnection of A. If we assume that A ∩ P ′ = ∅, then by (a), C ∪ P ′

is connected and it is contained in X − A. Since C is a proper subset of C ∪ P ′,

this contradicts the fact that C is a connected component of X − A. Therefore

A ∩ P ′ ̸= ∅ and similarly A ∩Q′ ̸= ∅. ⊓⊔

If the spaces involved are Hausdorff spaces, we have interesting relationships

between connectedness and compactness.

1.3.9 Theorem. Let X be a compact Hausdorff space. If C is a connected compo-

nent of X, then the the open and closed neighborhoods of C form a neighborhood

basis of C in X.

Proof: We shall consider the case of a compact metric space X with metric d. A

t-chain, t > 0, from x to x′ in X is a family {x = x0, . . . , xk = x′} such that

d(xj , xj+1) < t for 1 ≤ j < k. We define a relation in X by x ∼t x
′ if and only if

there is a t-chain from x to x′. This is clearly an equivalence relation. Furthermore,

the equivalence class Kx(t) of all points x
′ such that x ∼t x

′ is open in X. On the

other hand, since X −Kx(t) is the union of the other open equivalence classes, it

is open too and thus Kx(t) is closed. Define the set

Kx =
∩
t>0

Kx(t) .

Now consider the connected component of x, Cx, and define the set COx as the

intersection of all open and closed sets that contain x. Then one has

Cx ⊆ COx ⊆ Kx ,

and obviously, if Kx is connected, then all inclusions are equalities. Since Kx is

intersection of closed sets, it is closed, and if it is disconnected, then one can

decompose it as a disjoint union Kx = A ∪ B such that A and B are closed and

nonempty. Hence there is an s > 0 such that the open neighborhoods of A and

B, U2s(A) = ∪x∈AD◦
2s(x) and U2s(B) = ∪x∈BD◦

2s(x) are disjoint, where D◦
2s(x)

denotes the open ball with center x and radius 2s.

Define H = X − Us(A) ∪ Us(B) and assume that x ∈ A and take x′ ∈ B. For

each t such that 0 < t < s, x ∼t x
′, so that there is a t-chain {x0, . . . , xk} from x
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to x′. According to the choice of s one can always assume that one of the links of

the corresponding t-chain lies in H. In other words, if t < s, then Kx(t) ∩H ̸= ∅.
On the other hand, if t < t, then Kx(t) ⊆ Kx(t

′). Hence by the compactness of

the sets Kx(t)∩H, 0 < t < s, their intersection is nonempty, namely Kx ∩H ̸= ∅,
thus contradicting the definition of H. Therefore Kx is connected.

Let now V be an open neighborhood of C. Since C is a connected component

of X, then C = Cx = Kx for every x ∈ C. If the set Kx(t)∩ (X − V ) is nonempty

for every t, then by the compactness of Kx(t) ∩ (X − V ), their intersection Kx ∩
(X − V ) ̸= ∅, which is again a contradiction.

If X is not metric, the proof is similar, but the t-neighborhoods must be re-

placed by something more general, by defining an adequate uniform structure.

This can be found in [5, Ch. II.§4]. ⊓⊔

1.4 Group actions

An interesting aspect of topology is the one that links it with the algebra. This

relationship appears in different ways. An important way refers to what we may

call the symmetry of a topological space, that brings us directly to the origins

of group theory itself, because initially the groups were precisely conceived as

symmetry groups.

1.4.1 Definition. A topological space G endowed with two continuous mappings

G×G −→ G , (g, h) 7−→ gh and G −→ G , g 7−→ g−1 ,

which provide G with the structure of a group, is called a topological group.

In other words, a topological group is a set together with the structure of a

topological space and the structure of a group, both of which are compatible.

1.4.2 Examples.

(a) If G is any group and it is furnished with the discrete topology, then it is a

topological group simply called a discrete group.

(b) If G = Rn is considered as a topological space as usual and as a group with

the mappings (x, y) 7→ x+ y and x 7→ −x, then it is a topological group. In

particular, R = R1 and C = R2 are topological groups in this sense.

(c) If G = C−{0} is considered as a topological subspace of C = R2 and has the

group structure given by (w, z) 7→ wz and z 7→ z−1 (complex multiplication

and complex inverse), then it is a topological group.
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(d) If S1 ⊂ C−{0} is considered as a topological subspace and also as a subgroup,

then it is a topological group.

(e) Take G = GLn(R) (resp. G = GLn(C)) to be the set of invertible n × n

matrices with real (resp. complex) entries. G can be seen as a topological

subspace of Rn2
(resp. Cn2

) by putting each row of the matrix simply one

after the other in one line. It can also be considered as a group with the usual

matrix multiplication. Since these group operations are clearly continuous,

G is a topological group. See next chapter.

1.4.3 Exercise. Show that G is a topological group if and only if the mapping

G×G −→ G given by (g, h) 7→ gh−1 is continuous.

1.4.4 Definition. Let G be a topological group. We say that G acts on a topo-

logical space X if there is a continuous map

G×X −→ X , (g, x) 7−→ gx ,

called the action, so that the following identities hold:

1x = x

g(hx) = (gh)x ,

where in the first identity 1 denotes the neutral element of the group G, while in

the second, the action of the group is applied twice on the left hand side, while on

the right hand side it is applied only once after multiplying inside the group.

1.4.5 Exercise. Prove that given g ∈ G, the map tg : X −→ X such that

tg(x) = gx is a homeomorphism. This map is called translation in X by the

element g.

As the previous exercise shows, the action of the group corresponds to a set

of homeomorphisms of the space onto itself, with the group structure given by

composition. This suggests the symmetry of the space.

1.4.6 Examples.

(a) Let G = Z2 be the discrete group with two elements {1,−1} and take X =

Sn. Then one has a group action

Z2 × Sn −→ Sn

such that (−1)x = −x. This action is called antipodal action on the n-sphere.



20 1 Basic concepts

(b) Let G = S1 be the topological group of unit complex numbers, and take

X = S2n+1 ⊂ Cn+1 = R2n+2. Then one has a group action

S1 × S2n+1 −→ S2n+1 , (ζ, z) 7−→ ζz ,

given by componentwise complex multiplication.

(c) Let G = S1 be again the topological group of unit complex numbers, and

take X = S1 × S1 be the 2-torus. Then one has a group action

S1 ××(S1 × S1) −→ S1 × S1 , (ζ, (w, z)) 7−→ (ζw, ζz) ,

given by componentwise complex multiplication.

(d) Let G = GLn(R) be the topological group of invertible real n× n matrices,

and take X = Rn. Then one has a group action

GLn(R)×Rn −→ Rn , (M,A) 7−→MA,

where M is a matrix and A is an n-vector written vertically.

Given a group action of a topological group G on a space X. We define an

equivalence relation on X be declaring x ∼ y if and only if there is g ∈ G such

that y = gx. The equivalence classes are the so-called orbits and for each x ∈ X

is given by the set Gx = {gx | g ∈ G}.

1.4.7 Definition. The quotient space of a G-space X under the equivalence rela-

tion given above is called the quotient of X under the action of G, or more simply,

the orbit space of the G-space X. This space is usually denoted by X/G.

1.4.8 Examples.

(a) Consider the antipodal action on Sn given in 1.4.6 (a). Then the orbits in Sn
are the pairs of points {x,−x} and the quotient of Sn under the antipodal

action Sn/Z2 is the real projective space RPn.

(b) Consider the S1-action on S2n+1 given in 1.4.6 (b). Then the orbits in S2n+1

are circles and the quotient of S2n+1 under this action S2n+1/S1 is the com-

plex projective space CPn.

(c) The group Z (with + as group multiplication) acts on R so that if n ∈ Z and

x ∈ R, α(n, x) = x + n. One can prove that the orbit space R/Z is homeo-

morphic to S1. Similarly, Z×Z acts on R2 = R×R by α((n1, n2), (x1, x2)) =

(x1 + n1, x2 + n2). In this case, the orbit space R × R/Z × Z is the torus

S1 × S1.
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Figure 1.15 The identification R � R/Z

1.4.9 Exercise. Show that R/Z ≈ S1 (Hint: The map R −→ S1 such that

t 7→ e2πit determines the homeomorphism.)

1.4.10 Exercise. Use Exercise 1.4.9 to conclude that the orbit space R×R/Z×Z
is the torus S1 × S1. (Hint: Recall that if one has an identification q : X −→ X ′

and a locally compact space Y , then q × idY : X × Y −→ X ′ × Y is also an

identification.)

1.4.11 Exercise. Show that there is an action of Z on R2 such that

(n, (x1, x2)) 7→ (n+ x1, (−1)nx2) .

Show furthermore that the orbit space of this action, R2/Z, is homeomorphic to

the Moebius band.

1.4.12 Definition. An action of a topological group G on a space X is called

transitive if given any two points x, y ∈ X, there is an element g ∈ G such that

gx = y.

1.4.13 Example. Let G be a locally compact topological group and let H ⊆ G be

a (closed) subgroup. If the set X = G/H of left cosets of H in G has the quotient

topology, then there is an action G × X −→ X given by g[g′] = [gg′], where [g]

denotes the coset gH ⊂ G. Clearly this is a transitive action. The space X = G/H

is called homogeneous space.

1.4.14 Proposition. Let G be a topological group, which as a topological space is

a compact Hausdorff space. If H ⊂ G is a closed subgroup, then the homogeneous

space X = G/H is a Hausdorff space too.
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Proof: Recall that X is a Hausdorff space if and only if the diagonal ∆X ⊂ X×X
is a closed subspace. Since G is locally compact and H ⊂ G is closed, one easily

checks that X = G/H is locally compact. Hence, if q : G −→ G/H = X is the

quotient map, then q × q : G × G −→ G/H × G/H = X × X is a quotient map

too. The inverse image (q × q)−1∆X =
∪
g∈G gH × gH.

There is a continuous map G×H −→ G×G given by (g, h) 7→ (gh, gh), whose

image is
∪
g∈G gH × gH ⊂ G×G. Since G×H is a compact space and G×G is

a Hausdorff space, (q × q)−1∆X =
∪
g∈G gH × gH ⊂ G ×G is a closed subspace.

Hence ∆X ⊂ X ×X is closed, because q × q is an identification. ⊓⊔



Chapter 2 Manifolds

That of a manifold is one of the central concepts in topology. Many of the

relevant spaces in topology, as well as in other areas of mathematics are manifolds.

For instance, manifolds play a role in algebraic and in differential geometry, also in

analysis or in function theory. Among the most important examples of manifolds,

we have the spheres Sn, n = 0, 1, 2, . . . , the real and complex projective spaces

RPn and CPn, and the real and complex Grassmann and Stiefel manifolds Gk(Rn),

Vk(Rn), and Gk(Cn), Vk(Cn). In dimension two, one has the important example

of the surfaces, in particular, the Riemann surfaces. In dimension one there are

essentially only two mannifolds, namely the line R and the circle S1. This last is a

very important space in many aspects. It will be carefully analyzed from the point

of view of homotopy theory, but it will also be used to develop knot theory at the

end of the book.

In this chapter we shall study topological manifolds, and we shall carefully

discuss the construction of all closed surfaces and discuss their classification. We

shall also see many other examples of manifolds.

2.1 Topological manifolds

In this section we shall study the general concept of topological manifold and we

shall indicate the meaning of manifold with structure, e.g. differentiable, smooth,

complex, holomorphic, et cetera.

2.1.1 Definition. A Hausdorff second-countable space X is a topological mani-

fold or simply, a manifold of dimension n, also called an n-manifold if each point

x ∈ X has a neighborhood V which is homeomorphic to an open set U in the

closed unit ball Bn. We say that a point x ∈ X is an interior point, resp. a bound-

ary point, if for some homeomorphism φ : V −→ U , φ(x) ∈
◦
Bn, resp. φ(x) ∈ Sn−1.

We define the interior of X by X◦ = {x ∈ X | x is an interior point of X} and

the boundary of X by ∂X = {x ∈ X | x is a boundary point of X}. The domain

invariance theorem 1.1.8 and the boundary invariance theorem 1.1.10 guarantee

that these concepts are well defined.

23
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2.1.2 Remark. In the definition of a manifold X it is enough to ask that each

point x ∈ X has a neighborhood V which is homeomorphic to Bn since, if U ⊂ Bn
is open and φ : V −→ U is a homeomorphism, then φ(x) ∈ U has a neighborhood

U ′ ⊂ U (not necessarily open) which is homeomorphic to Bn. Therefore φ−1(U ′)

is a neighborhood of x which is homeomorphic (through φ) to Bn (see Figure 2.1).

Thus, a point x ∈ X is an interior point if and only if φ(x) ∈
◦
Bn, and it is a

boundary point if φ(x) ∈ ∂Bn = Sn−1.

V

V ′ x
φ

U

U ′

φ(x) Bn

Bn

Figure 2.1 The unit n-ball models locally an n-manifold with boundary

2.1.3 Proposition. The concept of boundary of a manifold is well defined, namely,

it does not depend on the homeomorphism φ : V −→ U .

Proof: By Remark 2.1.2 one may always assume that U = Bn. Take a manifold

X and a point x ∈ X. Let V be a neighborhood of x such that there are two

homeomorphisms φ,ψ : V −→ Bn. Then we have a homeomorphism φ ◦ ψ−1 :

Bn −→ Bn. If ψ(x) lies on the boundary, then by the boundary invariance theorem

1.1.10, one has that φ(x) = φψ−1(ψ(x)) lies also on the boundary. In other words,

no matter what homeomorphism φ one takes, if a point x on the manifold is

mapped to a boundary point of Bn by one of them, then it will be mapped to a

boundary point by the other too. ⊓⊔

2.1.4 Note. As it is the case with the boundary of a ball, the use of the expression

“interior” of a manifold is once again an abuse of language. However, as in the

case of the boundary, it is a generalization. Thus, if we want to be more precise,

we should call the interior or the boundary of a subset A of a topological space X,

interior or boundary of A in X, in order to distinguish them from the “intrinsic

interior” or the “intrinsic boundary” of a manifold.

2.1.5 Remark. In the case of a manifold without boundary X, namely, such that

∂X = ∅, we may redefine the concept by requiring that each point x ∈ X has a
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neighborhood U which is homeomorphic to Rn, since in this case, by definition, x

would have a neighborhood which is homeomorphic to an open ball
◦
Bn, which is

homeomorphic to Rn (see the next exercise).

2.1.6 Exercise. Let
◦
Bn be the open unit ball (unit cell) in Rn. Show that

◦
Bn is

homeomorphic to Rn. (Hint: The mapping x 7→ x
1+x determines a homeomorphism

Rn −→
◦
Bn.) Conclude that any open ball in Rn, Br(y) with center y and radius r is

homeomorphic to Rn. (Hint: The mapping x 7→ x−y
r determines a homeomorphism

Br(y) −→
◦
Bn.)

From the exercise above, we obtain as a consequence the following result

(cf. 1.1.4 and 1.1.6 (b)).

2.1.7 Proposition. The finite product of cells is a cell and the finite product of

balls is a ball. In particular, the product of an m-cell with a n-cell is an (m+n)-cell

and the product of an m-ball and an n-ball is an (m+ n)-ball.

Proof: It is enough to show that one has homeomorphisms as depicted in the

diagram
◦
Bm ×

◦
Bn� _

��

≈ // ◦Bm+n
� _

��
Bm × Bn ≈ // Bm+n .

Since by 2.1.6, there are homeomorphisms
◦
Bk ≈−→ Rk and Rm × Rn ≈−→ Rm+n,

we obtain the first part of the statement.

From 1.1.6 (b) we obtain the second part. ⊓⊔

2.1.8 Corollary. The following are equal spaces: ∂(Bm ×Bn) and (∂Bm ×Bn)∪
(Bm × ∂Bn).

Proof: One has equalities ∂(Bm × Bn) = Bm × Bn −
◦
Bm ×

◦
Bn = ((Bm −

◦
Bm) ×

Bn) ∪ (Bm × (Bn −
◦
Bn)) = (∂Bm × Bn) ∪ (Bm × ∂Bn). ⊓⊔

The conditions that a manifold must be a Hausdorff and second-countable space

are not consequences of the condition that the manifold is locally homeomorphic

to Rn. There are ”pathological” spaces which are locally Euclidean, but are not

Hausdorff or second-countable.
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2.1.9 Example. Consider the space X obtained after identifying in the topolog-

ical sum of two copies of R, the positive semilines. We do it as follows. Take two

homeomorphic copies of R, which will be denoted by R1 and R2, and take the

quotient space

X = R1 ⊔R2/∼ .

The equivalence relation is defined as follows. Take homeomorphisms φν : Rν ≈ R,

ν = 1, 2, and declare x1 ∼ x2 if and only if φ1(x1) = φ2(x2) > 0.

R1

R2

01

02

Figure 2.2 A space which is locally homeomorphic to R and is not Hausdorff

Obviously this quotient space, which is shown in Figure 2.2 (though not with

high fidelity), is such that each of its points has a neighborhood which homeomor-

phic to an open interval in Rn. However the points 01 and 02 that are such that

φν(0ν) = 0, ν = 1, 2, are different, but any neighborhood in X of one of them

overlaps (on the positive side) with any other neighborhood of the other. Thus X

is not Hausdorff.

2.1.10 Example. The closed long ray L is defined as the cartesian product of the

first uncountable ordinal Ω with the half-open interval [0, 1), equipped with the

order topology that arises from the lexicographical order on Ω × [0, 1). The open

long ray is obtained from the closed long ray by removing the smallest element

(0, 0).

The long line is obtained by putting together a long ray in each direction. In

other words

L =
⨿
α

Iα/∼ ,

where Iα ≈ I by a homeomorphism ψα and α takes values in all the ordinals

less than Ω and if ψα(0α) = 0, ψα(1α) = 1, then 1α ∼ 0α+1. Obviously each

point in L has a neighborhood which is homeomorphic to R. However L is not

second-countable (exercise).

As in the case of 1.1.10 one may prove the following result (exercise).
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2.1.11 Theorem. Let φ : X −→ Y be a homeomorphism of manifolds with bound-

ary. Then φ determines a homeomorphism φ|∂X : ∂X −→ ∂Y of the boundaries.

⊓⊔

From 2.1.7 one obtains the following important result.

2.1.12 Theorem. Let X be an m-manifold and Y an n-manifold with boundaries

∂X and ∂Y . Then X × Y is an (m + n)-manifold with boundary ∂(X × Y ) =

X × ∂Y ∪ ∂X × Y . ⊓⊔

Given a manifold X and a point x ∈ X, there is a neighborhood V of x in X

which is homeomorphic, via some homeomorphism φ : V −→ U , to an open set

U ⊂ Bn. If x ∈ ∂X, then V ∩∂X is a neighborhood of x in ∂X and the restriction

φ|V ∩∂X is a homeomorphism onto an open set U ′ in sn−1. Without loss of generality

we may assume that U ′ is not the whole sphere. Hence, composing φ|V ∩∂X with a

convenient stereographic projection, we have that V ∩ ∂X is homeomorphic to an

open set in Rn−1. Thus we have shown the following result.

2.1.13 Theorem. Let X be an n-manifold. Then its boundary ∂X is an (n− 1)-

manifold with empty boundary. ⊓⊔

In what follows, we shall only consider the case of manifolds without boundary,

and we leave the study of the general case as an exercise to the reader.

Let X be an n-manifold. Thus X can be covered by a family of open sets Vλ

such that for each λ, there is a homeomorphism φλ : Vλ −→ Uλ, where Uλ ⊂ Rn

is an open set. Each pair (Vλ, φλ) will be called a chart of the manifold X. The

homeomorphism φλ allows to put coordinates on Vλ. Namely, if pk : Rn −→ R
is the projection onto the kth coordinate and φkλ = pk ◦ φλ, then for each point

x ∈ Vλ the n-tuple of real numbers (φ1
λ(x), . . . , φ

n
λ(x)) are coordinates for x. These

are known as local coordinates of x with respect the chart (Vλ, φλ).

A family A of charts {(Vλ, φλ)} such that the family of open sets {Vλ} is a

cover of X, is called an atlas for the manifold X.

Let A be an atlas for the manifold X and let (Vλ, φλ) and (Vµ, φµ) be two

charts on A. The homeomorphism

γλµ = φµ ◦ φ−1
λ : φλ(Vµ ∩ Vλ) −→ φµ(Vµ ∩ Vλ)

is known as change of coordinates. or transition map These changes of coordi-

nates are homeomorphisms between open sets of Rn. Therefore they may satisfy

additional conditions (see Figure 2.3).
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Uλ Uµ

γλ
µ

φλ φµ

Vλ Vµ

Figure 2.3 Change of coordinates

2.1.14 Definition. Let A be an atlas for a manifold X. If the homeomorphisms

γλµ are differentiable of class Cr (resp. C∞, analytic, holomorphic, et cetera) we

say that the atlas A is a Cr (resp. C∞, analytic, holomorphic, et cetera) structure

on X. We also say that the manifold is of class Cr (resp. of class C∞, analytic,

holomorphic, et cetera). A manifold of class C∞ is also called a smooth manifold.

2.1.15 Note. In the case of a holomorphic manifold, for instance, we require

that n is even, namely n = 2m, and we take a fixed homeomorphism Rn ≈ Cm.

This way, the change of coordinates are homeomorphisms between open sets in

the complex space Cm and it makes sense to ask these homeomorphisms to be

holomorphic functions. If this is the case, then one considersX to be a holomorphic

m-manifold.

2.1.16 Exercise. Give the corresponding charts and atlases for the more general

cases of manifolds with boundary. Explain how to extend the structure concept to

this case.

In this text we shall not study manifolds with structure and we shall restrict

ourselves to topological manifolds, namely to manifolds with an atlas whose tran-

sition maps are only (topological) homeomorphisms.

2.1.17 Examples.

(a) A 0-manifold is nothing else but a discrete space.

(b) Rn is an n-manifold. If we choose as an atlas forRn the family of all open sets,

each together with the identity homeomorphisms, then this atlas determines

an analytic structure on Rn (thus also of class Cr, r ≤ ∞). More generally,

any open set in Rn is a manifold with any of the structures.
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(c) Cm is a 2m-manifold. If as before, we choose as an atlas for Cn the family of

of all open sets, each together with the identity homeomorphisms, then this

atlas determines an holomorphic structure on Cn. Then Cn is a holomorphic

n-manifold.

(d) The sphere Sn is a manifold. We have an atlas consisting of two charts,

namely V1 = Sn−N and V2 = Sn−S, whereN = (0, 0, . . . , 1) is the north pole

and S = (0, 0, . . . ,−1) is the south pole. The homeomorphism φ1 : V1 −→ Rn

is the stereographic projection p defined above 1.1.0 and φ2 : V2 −→ Rn is

the other stereographic projection 1.1.1. Notice that φ2 = φ1 ◦ a, where

a : V2 −→ V1 is the antipodal map given by a(x) = −x. With this atlas, Sn
is a smooth manifold.

(e) The cross X = {(x, 0) | x ∈ R} ∪ {(0, y) | y ∈ R} ⊂ R2 is not a manifold,

since the origin does not have any neighborhood homeomorphic toR. (Indeed

any connected neighborhood is a cross, and when one deletes the origin, it

decomposes into four components. On the other hand, no matter what point

we delete from R, we always obtain two components. Thus the cross is not

homeomorphic to the line.)

Figure 2.4 The cross is not homeomorphic to R

(f) Take the upper halfspace Rn
+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. Rn

+ is an

n-manifold with boundary ∂Rn
+ = Rn−1.

(g) Bn is a manifold with boundary ∂Bn = Sn−1.

(h) If X is an n-manifold without boundary, then X × I is an (n+ 1)-manifold,

whose boundary consists of two copies of X, namely ∂(X × I) = X ×{0, 1}.

2.1.18 Exercise. Show that the interior of the manifold with boundary Rn
+, i.e.

(Rn
+)

◦ = {(x1, . . . , xn) ∈ Rn | xn > 0}, is homeomorphic to Rn. (Hint: The map-

ping (x1, . . . , xn) 7→ (x1, x2, . . . , xn−1, xn−(1/xn)) determines a homeomorphism.)
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2.1.19 Exercise. Take the point N = (0, 0, . . . , 1) ∈ Bn. Show that one has a

homeomorphism

ψ : Bn −N ≈ Rn
+

such that ψ|Sn−1−N : Sn−1 − N −→ Rn−1 is the stereographic projection. (Hint:

See Figure 2.5.)

≈

Figure 2.5 Homeomorphism of Bn −N with Rn
+

2.1.20 Definition. Let X be an n-manifold and take Y ⊂ X. We say that Y is

a submanifold of dimension m ≤ n if the following hold:

(a) Y is an m-manifold.

(b) X admits an atlas A such that for each point x ∈ Y and for each chart (V, φ)

in A with y ∈ V , the local coordinates φk|V ∩Y : V ∩ Y −→ R are zero for

k = m+ 1, . . . , n.

(c) The pairs (V ∩ Y, pm ◦ φ|(V ∩ Y )), where pm : Rn −→ Rm is the projection

onto the first m coordinates, form an atlas for Y .

Thus φ(V ∩Y ) = U ∩Rm, under the canonical inclusion of Rm into Rn in the first

m coordinates.

2.1.21 Examples.

(a) Rm ⊂ Rn, together with the canonical inclusion, is a submanifold. More

generally, if V ⊂ Rn is open, then V ∩ Rm is a submanifold of V (and of

Rn).
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(b) If V is open in Rn, then V is a submanifold of Rn. More generally, if V ⊂ Rn

is open and W ⊂ V is open too, then W is a submanifold of V .

(c) Sm ⊂ Sn, with the inclusion given by the canonical inclusion Rm+1 ⊂ Rn+1,

is a submanifold. Namely the charts V1 = Sn − A1 and V2 = Sn − A2,

where A1 = (1, 0, 0, . . . , 0) and A2 = (−1, 0, 0, . . . , 0), with the corresponding

stereographic projections onto Rn, intersect Sm in charts W1 and W2 with

stereographic projections onto Rm.

(d) ∂X ⊂ X is a submanifold of dimension n−1 if X is an n-manifold. Namely, if

x ∈ ∂X, then a chart φ : V −→ U ⊂ Bn around x is such that φ(x) ∈ Sn−1.

Hence, φ|V ∩∂X : V ∩ ∂X −→ U ∩ Sn−1 is a homeomorphism. Without loss

of generality we may assume that U ∩ Sn−1 is an open proper subset of the

sphere, thus by Exercise 2.1.19, this subset is homeomorphic to Rn−1 by a

homeomorphism as in the definition of a submanifold.

2.1.22 Definition. Let X and Y be topological manifolds and let f : Y −→ X

be continuous. We say that f is an embedding of manifolds if it is a topological

embedding (i.e. a homeomorphism onto its image f(Y )) and f(Y ) is a submanifold

of X.

2.1.23 Examples. The following are embeddings of manifolds.

(a) The canonical inclusion Rm ↪→ Rn, m ≤ n.

(b) The canonical inclusion Sm ↪→ Sn, m ≤ n.

(c) The canonical inclusion S1 ↪→ R2.

(d) The mapping of the torus into R3, f : T2 = S1 × S1 ↪→ R3, such that if

(x1, x2, y1, y2) ∈ S1 × S1 ⊂ R2 ×R2, then

f(x1, x2, y1, y2) = ((2 + y1)x1, (2 + y1)x2, y2) .

2.1.24 Exercise. Consider the map φ : I×I −→ T2 = S1×S1 given by φ(s, t) =

(e2πis, e2πit). Show that φ is surjective. If we consider the equivalence relation

determined by (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t), s, t ∈ I, show that φ is compatible

with the identification. Furthermore, show that the induced map on the quotient

ψ : I× I/∼−→ T2 is bijective. Since clearly I× I/∼ is compact and T2 ⊂ C×C is

Hausdorff, show that ψ is a homeomorphism. This provides another construction

of the torus. See Figure 2.15.
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φ−−−−−−→

Figure 2.6 Union of two manifolds along their boundaries

2.1.25 Definition. Let X and Y be two n-manifolds with boundary such that

∂X ≈ ∂Y . If φ : ∂X −→ ∂Y is a homeomorphism, we may construct X ∪φ Y by

taking the disjoint union X ⊔ Y and identifying each point x ∈ ∂X with the point

φ(x) ∈ ∂Y (see Figure 2.6).

2.1.26 Exercise. Let φ : ∂X −→ ∂Y be a homeomorphism. Show that X ∪φ Y
is a manifold without boundary. (Hint: A point x ∈ ∂X has a neighborhood,

which is homeomorphic to Rn
+ in such a way that x corresponds to the origin. An

analogous situation happens with the point φ(x) ∈ ∂Y . It is now possible to take

smaller neighborhoods which are homeomorphic to open semiballs, in such a way

that after making the identification, both produce an open ball.)

2.1.27 Definition. More generally, assume that the boundaries ∂X and ∂Y are

not connected and A is a union of some of the connected components of ∂X and

that B is also a union of some connected components of ∂Y . Assume also that

there is a homeomorphism φ : A −→ B. As above, we can define X ∪φ Y as the

result of taking the topological sum X ⊔ Y and identifying x ∈ A ⊂ ∂X with the

point φ(x) ∈ B ⊂ ∂Y .

Analogously to 2.1.26, it is possible to solve the following.

2.1.28 Exercise. Let A and B be unions of connected components of ∂X and

∂Y , respectively, and let φ : A −→ B be a homeomorphism. Show that X ∪φ Y is

a manifold, whose boundary is the (disjoint) union of the connected components

of ∂X and ∂Y that do not lie on A nor on B.

2.1.29 Definition. A special case of the previous constructions is the double of

a manifold (with boundary) X, which is defined by

2X = X ∪id∂X X ,
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namely as the result of identifying in the topological sum of two copies of X

both boundaries through the identity. By 2.1.26 one knows that the one obtains a

manifold without boundary. (If X has no boundary, then 2X = X ⊔X.)

2.1.30 Exercise. Show that the double of a manifoldM is homeomorphic to the

quotient space M × {0, 1}/∼ where (x, 0) ∼ (x, 1) for all x ∈ ∂M .

2.1.31 Exercise.

(a) Show that the double of a (solid) ball is a sphere, namely, 2Bn = Sn.

(b) Show that the double of Rn
+ is Rn.

(c) Show that the double of the cylinder S1 × I is the torus S1 × S1.

Given two n-manifolds X and Y , their topological sum X ⊔ Y is again an n-

manifold, although it is disconnected. It is possible to make an operation between

connected n-manifolds the produces another connected n-manifold.

2.1.32 Definition. Let X and Y be connected n-manifolds and pierce a hole in

each, namely, take n-balls BX and BY embedded in X and Y , respectively, and

consider X ′ = X − B◦
X and Y ′ = Y − B◦

Y . Then X ′ and Y ′ are manifolds with

boundaries ∂X ′ = ∂BX and ∂Y ′ = ∂BY . Since ∂BX ≈ Sn−1 ≈ ∂BY , we may take

a homeomorphism φ : ∂X ′ = ∂BX −→ ∂BY = ∂Y ′ and define

X#Y = X ′ ∪φ Y ′ .

This new n-manifold is called connected sum of X and Y . In the case n = 2, this

construction is independent of the way one chooses the balls and the homeomor-

phism between their boundaries. In the general case, n > 2, the construction does

depend on the choice of the homeomorphism.

Figure 2.7 Connected sum of two manifolds
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2.2 Surfaces

An important instance of manifolds are the surfaces. Their classification problem

was already solved in the nineteenth century by Moebius (1861).

In this section we shall study the surfaces. We shall construct all the so-called

closed surfaces and we shall state their classification theorem. In this section we

agree to call a 2-ball simply a disk.

2.2.1 Definition. A 2-manifold S is a surface. If S is compact, connected and it

has no boundary, then we say that the surface S is closed. (As it is the case with

the interior and the boundary of a manifold, one should not confuse the concept

of a closed surface with that of a closed set in a space.)
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Figure 2.8 Surface with boundary

2.2.2 Examples. Besides R2,R2
+, or open subsets of them, there are the following

examples.

(a) By 2.1.12, the torus T2 = S1 × S1 is a surface without boundary. Indeed, it

is a closed surface.

(b) A closed disk D, which is homeomorphic to the unit 2-disk D2 (which is the

same as the unit 2-ball B2), is a surface with boundary.

(c) Subsets of the plane, as depicted in Figure 2.10, are surfaces with boundary.

(d) Let f : R2 −→ R be a continuous function. Then its graph

G(f) = {(x, y, z) ∈ R3 | z = f(x, y)}
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T2

Figure 2.9 The torus is a surface without boundary
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Figure 2.10 Surfaces with boundary

is a surface as one easily verifies. Thus a hyperboloid of one sheet, a hyper-

boloid of two sheets, a paraboloid, et cetera, are surfaces.

(e) The open cylinder S1 × R and the pierced plane R2 − S, where S is some

discrete set, are surfaces.

2.2.3 Exercise. Show that the surface S1 ×R is homeomorphic to R2 − {0}.

2.2.4 Example. The trivial strip B is defined as the result of identifying in the

square I×I a point of the form (0, t) with the point (1, t). Clearly B is homeomor-

phic to the closed cylinder S1×I. It is a manifold with boundary ∂B ≈ S1×{0, 1},
namely the topological sum of two copies of S1. Therefore the boundary is discon-

nected: it has two connected components.

On the other hand, the Moebius strip M is defined as the result of identifying

in I × I a point of the form (0, t) with the point (1, 1− t). Clearly M is a surface
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with boundary ∂M ≈ S1, namely one copy of S1, thus connected.

Hence ∂B ̸≈ ∂M and hence M ̸≈ B.

The trivial strip B is an orientable surface, while the Moebius strip M is a

nonorientable surface. Indeed, M is somehow the paradigm of the nonorientable

surfaces. Its nonorientability can be explained by the following phenomenon, which

does not take place in B. Take a coordinate system with the origin in some point

on the equator E = {(s, 12) | 0 ≤ s ≤ 1} ⊂ M , say (12 ,
1
2). One axis is horizontal,

namely, it is parallel to E and points to the positive side, and the other axis is

vertical, namely, it is parallel to E′ = {(12 , t) | 0 ≤ t ≤ 1} and points up.

Now we translate the system continuously along the equator around the Moe-

bius strip. When we come back to the start point, the horizontal axis still points

to the positive side, but the negative axis points down. In other words, if we look

in the positive direction of the equator, at the start, the vertical axis points to the

left, but when we come back to the start point, the vertical arrow points to the

right: it changed the orientation of the coordinate system (see Figure 2.11).

Figure 2.11 The Moebius strip is nonorientable

In general, and somehow informally, one says that a surface is orientable if for

any cycle, namely for any subspace homeomorphic to the circle S1, if one translates

a coordinate system along the cycle, the coordinate system comes back to the start

point with the same orientation. The surface is nonorientable if it is not orientable,

that is, if there is a cycle along which the coordinate system comes back with its

orientation reversed. In the case of the Moebius strip, one of these cycles is E. It is

not difficult to figure out that a surface S is nonorientable if and only if it admits

an embedding of the Moebius strip, M ↪→ S (exercise).
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2.2.5 Note. It is frequently comfortable to define the Moebius strip M as the

quotient of [−1, 1] × [−1, 1] which results after identifying each point of the form

(1, t) with the point (−1,−t).

2.2.6 Example. The Klein bottle, is defined as the space K that results from the

square I × I after identifying a each point (0, t) with the point (1, 1− t) and each

point (s, 0) with the point (s, 1). It is a compact surface without boundary, hence

it is a closed surface. Furthermore, K is nonorientable, since a coordinate system

which moves around the equator E, as defined for M in 2.2.4, comes back to the

start point with the reversed orientation. Equivalently, if one takes the subspace

M ′ of I × I consisting of the points (s, t) such that 1
4 ≤ t ≤ 3

4 , then the image of

M ′ in K under the identification is homeomorphic to a Moebius strip M .

S

Figure 2.12 Klein bottle

2.2.7 Exercise. Show that the Klein bottle is homeomorphic to the double of

the Moebius strip, namely K ≈ 2M (see 2.1.29).

2.2.8 Example. Take a surface S and pierce in it two holes, namely, take two

disjoint embeddings of the 2-ball into S, e0, e1 : D2 −→ S and consider the surface

S′ = S − e1(
◦
B2

) − e2(
◦
B2

). S′ is a surface such that ∂S′ = ∂S ⊔ S1
0 ⊔ S1

1, where

S1
0 and S1

1 are circles in S. Let φ0 : S1 × 0 −→ S1
0 and φ1 : S1 × 1 −→ S1

1 be

homeomorphisms and then glue the cylinder S1 × I onto S′. One says that the

resulting surface S+ is obtained by gluing a handle to S. Of course S+ depends on

how one glues the handle, i.e. from the homeomorphisms φ0 and φ1. In particular,

as one can see in Figure 2.13, if S = S2 is the sphere, then one possibility is that

S+ is the torus, when S+ is orientable (i.e. it does not admit an embedding of the

Moebius strip). Otherwise, inverting the orientation of one of the homeomorphisms,

what one obtains is the Klein bottle.

In what follows we shall describe several ways to construct surfaces.
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S

Figure 2.13 Spheres with handles

2.2.9 Example. Let g ≥ 1 be an integer.

(a) Let Dg ⊂ R2 be the unit disk with g (disjoint) holes (see 2.2.8). If we take

the manifold with boundary S = Dg × I, then its boundary is a surface Ag.

(b) Let Dg be as in (a). Its double 2Dg is a surface Bg.

(c) Take the 2-torus T2 = S1 × S1. The connected sum Cg = T2#T2# · · ·#T2

of g copies of T2 is a surface.

(d) Gluing g handles to S2 in such a way that the resulting surface is orientable

(i.e. it does not admit an embedding of the Moebius strip) we obtain a surface

Dg.

All constructed surfaces in 2.2.9 are determined up to homeomorphism by the

integer g. Moreover Ag ≈ Bg ≈ Cg ≈ Dg. Figure 2.14 shows case g = 3.

2.2.10 Exercise. Show that there is a homeomorphism Ag ≈ Bg. (Hint: ∂S ∩
(Dg × [0, 1/2]) ≈ Dg ≈ ∂S ∩ (Dg × [1/2, 1]).)

There is another way to define these orientable surfaces without boundary. For

g ≥ 1 consider the regular polygon E4g ⊂ R2 with 4g edges and whose vertices

are the points pn = e2πin/4g, where n = 1, 2, . . . , 4g. Since E4g is a convex compact

subset of R2 with nonempty interior, it is homeomorphic to the closed unit disk

D2 and hence it is a surface with boundary.

We define an equivalence relation on the boundary of E4g declaring equivalent

the following points:

(1− t)p4i−3 + tp4i−2 ∼ (1− t)p4i + tp4i−1

(1− t)p4i−2 + tp4i−1 ∼ (1− t)p4i+1 + tp4i
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C3

D3

A3 B3

Figure 2.14 Surfaces of genus 3

Namely, the edges of the polygon are identified as shown in Figure 2.15.

a

b

a

b

a1

b1

a1

b1

a2

b2

a2

b2

Figure 2.15 4g-gons for g = 1 and g = 2

2.2.11 Proposition. The resulting space after identifying the edges of the polygon

E4g according to the relation defined above, is a closed orientable surface Sg.

The surface Sg and any other surface S homeomorphic to Sg is called orientable

surface of genus g. We denote by S0 the orientable surface of genus 0, which is

nothing else but the unit sphere de dimension 2.

Proof: Before we start with the proof, it is convenient to denote in E4g every

two edges which will be identified with each other, using the same letter. We also

give an orientation to each edge, according to how they identify. Namely, the first

edge a1 has the positive (counterclockwise) orientation, while the third edge a1

has the negative (clockwise) orientation. Furthermore, the second edge b1 has the
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positive orientation, while the fourth edge b1 has the negative orientation. The

same happens for the next block of four edges a2, b2, a2, b2. Figure 2.15 shows

this.

One must show that each point in Sg has a neighborhood which is homeomor-

phic to an open disk. There are three cases:

(i) If x ∈ Sg is a point which comes from an interior point y ∈ E4g, then it is

possible to take a neighborhood V of y in E4g which is an open disk and does

not intersect the boundary. Then the image of V under the identification is

again a neighborhood of x which is homeomorphic to an open disk.

(ii) If x ∈ Sg comes from a point y1 ∈ ∂E4g which is not a vertex, then it is

possible to take a neighborhood V1 of y1 in E4g which is the intersection

with E4g of a disk D1 in R2 centered at y1, and which does not contain

any vertex. Then y1 ∼ y2, where y2 lies also on the boundary and is not a

vertex. We can now take a neighborhood V2 of y2 in E4g which, again, is the

intersection with E4g of another open disk D2 in R2 centered at y2 and has

the same radius as D1. Then, as one can see in Figure 2.16, the image of the

union V1 ∪ V2 is a neighborhood V of x which is homeomorphic to a disk.

y2

y1V1

V2

Figure 2.16 Two halfdisks yield a disk

(iii) Notice first that all vertces of E4g identify to yield one point x0 ∈ Sg. In order

to construct a neighborhood of x0 which is an open disk, for each vertex pi

we take a neighborhood Vi which is the intersection of some disk Di in R2

centered at pi with E4g and small radius, which is equal for all vertices of the

polygon. After the identification, the sides of the 4g circular sectors are glued

in such a way that, as shown in Figure 2.17, the result is a neighborhood of

x0 homeomorphic to an open disk. ⊓⊔
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p3 p2

p1

p4g

p4g−1p4g−2

p4g−3

p4

Figure 2.17 4g sectors yield a disk

2.2.12 Remark. Instead of the polygon E4g one can take the unit disk D2 and

mark the same vertices pn = e2πin/4g, n = 0, 1, . . . , 4g− 1. Then one takes the arcs

determined by two consecutive vertices pi and pi+1 and makes the identifications

accordingly. More precisely, if 0 ≤ t ≤ 1
4g , then

e2πit/4g ∼ e2πi(3−t)/4g

e2πi(1+t)/4g ∼ e2πi(4−t)/4g

and in general, for k = 0, . . . , g − 1,

e2πi(4k+t)/4g ∼ e2πi(4k+3−t)/4g

e2πi(4k+1+t)/4g ∼ e2πi(4k+4−t)/4g .

One easily shows that the result of this identification is homeomorphic to Sg.

Let us now analyze the construction with which we obtain Sg. For the case

g = 1, the polygon E4 is a square in which opposite sides are identified as shown

in Figure 2.15. Therefore what we obtain is a torus, namely, we have S1 ≈ T2 (see

Exercise 2.1.24.

For g > 1 we proceed by induction on g. The surface Sg is a quotient E4g. Take

in E4g the line segment joining p1 and p5. Then cut E4g along this line segment and

identify first p1 and p5 (recall that in all vertices Sg are identified to one point) in

each of both pieces. So we obtain one copy of E4 with a hole and a copy of E4g−4

with a hole as shown in Figure 2.18.

Hence we can obtain the identification q : E4g −→ Sg in three steps. First we

identify in the pierced copy of E4 the edges according to q and so we obtain a copy

of a pierced S1. Then we do the same with the pierced of E4g−4 and so we obtain
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a1

b1 b1

a1b2
a2

bg

ag

bg

ag

b2

a2
Sg ≈ S1#Sg−1

E4g−4

E4

Figure 2.18 The connected sum of S1 and Sg

a copy of a pierced Sg−1. The third step consists of identifying both pierced copies

along the line segment, along which we cut E4g, and so we obtain the connected

sum of S1 and Sg−1. In other words, we have established a recurrence formula

Sg ≈ S1#Sg−1 .

Since S1 is the torus, we may assume inductively that Sg−1 is a connected sum

of g−1 copies of the torus. Hence we have that Sg is the connected sum of g copies

of the torus. Hence we have the following.

2.2.13 Theorem. The closed oriented surface of genus g is the connected sum of

g copies of the torus. ⊓⊔

We shall now analyze the case of the closed nonorientable surfaces, namely of

those surfaces which admit an embedding of the Moebius strip.

We start with the following example.

2.2.14 Example. Two points x, y ∈ R3 − {0} will be declared as equivalent if

there exists a number λ ∈ R such that y = λx. In other words, two (nonzero) points

will be equivalent if and only if they lie on the same straight line through the origin.

Hence the equivalence classes for this relation are in one to one correspondence

with the straight lines in R3 which contain the origin. Let P2 be the quotient space

of R3 − {0} under this equivalence relation. This space is the projective plane or

the projective space of dimension 2. We can say that P2 is the space of straight

lines through the origin in R3. Take x ∈ R3−{0}. If we denote by ⟨x⟩ the straight
line in R3 through x, then a neighborhood of ⟨x⟩ always contains a double circular

cone, which has the given line as axis. This shows clearly that P2 is a Hausdorff

space. See Figure 2.19.
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Figure 2.19 Two disjoint cones show that P2 is Hausdorff

The following result establishes properties of the projective plane and shows

that it is the same space as one obtained from the 2-sphere by identifying antipodal

points.

2.2.15 Theorem. The projective plane P2 is homeomorphic to the quotient space

of S2 obtain as

RP2 = S2/∼ , where x ∼ y if and only if x = y or x = −y .

Proof: Let φ : S2 −→ P2 be given by φ(x) = ⟨x⟩. Then φ is a continuous, surjective

map from a compact space to a Hausdorff space. A well-known result in general

topology implies that φ is an identification. Furthermore φ(x) = φ(y) if and only

if x ∼ y, since each straight line through the origin in R3 intersects the 2-sphere

S2 in exactly two antipodal points. Therefore φ induces a homeomorphism φ :

RP2 ≈−→ P2. ⊓⊔

The next result gives another construction of the projective plane.

2.2.16 Theorem. Let Q be obtained from the disk D2 after identifying two points

of its boundary S1 if and only if they are antipodes, namely, if x, y ∈ D2, then x ∼ y

if and only if x = y or x, y ∈ S1 and x = −y. Then there is a homeomorphism

ψ : Q ≈ P2.

Proof: The map ψ : D2 −→ P2 given by ψ(x) = ⟨(x1, x2,
√

1− |x|2)⟩ if x =

(x1, x2), is continuous and surjective from a compact space to a Hausdorff space.
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Hence, by the general topology result mentioned in the previous proof, ψ is an

identification. Furthermore ψ(x) = ψ(y) if and only if x ∼ y. Thus ψ determines

a homeomorphism ψ : Q
≈−→ P2. ⊓⊔

Making use of 2.2.15 we shall prove that P2 is a surface, namely that it is a

2-manifold. We have the following result.

2.2.17 Theorem. The projective plane P2 is homeomorphic to the space obtained

by gluing a disk D to the Moebius strip M along their homeomorphic boundaries.

Proof: Take the identification ψ : D2 −→ P2 constructed in the proof of 2.2.16,

given by mapping antipodal points in the boundary of D2 to the same point in P2.

We can decompose D2 into two pieces as follows. Take

A = {(x1, x2) ∈ D2 | |x2| ≤ 1/2} and B = {(x1, x2) ∈ D2 | |x2| ≥ 1/2} .

If we restrict the identification ψ to each piece, we obtain from A a Moebius

strip M and from B simply a disk D, since no two points of B are identified

by ψ. Hence P2 is the result of gluing M = ψ(A) with D = ψ(B) along their

boundaries, which are the images in M and D under the restrictions of ψ of the

subset {(x1, x2) ∈ D2 | |x2| = 1/2} of A and of B. See Figure 2.20. ⊓⊔

M D

P2

Figure 2.20 The identification of a Moebius strip with a disk along their boundaries
yields a projective plane

Since bothM and D are manifolds with homeomorphic boundaries, if we iden-

tify the boundaries via a homeomorphism, then we obtain P2. Hence by 2.1.26 we

have the following.

2.2.18 Corollary. P2 is a closed surface. ⊓⊔
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In the case of the orientable closed surfaces, we proved in 2.2.13 that the funda-

mental piece to construct them is the torus. This means that the closed orientable

surface of genus g, Sg, is homeomorphic to the connected sum of g copies of the

torus. Anther consequence of 2.2.17 is the next result, which is the first step to-

wards showing that for the nonorientable case the fundamental piece to construct

the nonorientable closed surfaces is the projective plane.

2.2.19 Corollary. The connected sum of two copies of the projective plane P2 is

the Klein bottle K.

Proof: By 2.2.17, if we pierce a hole in P2 we obtain a Moebius strip. Therefore

the connected sum of two projective planes is homeomorphic to the space obtained

by gluing two Moebius strips along their boundaries. Namely, P2 is the double 2M

of the Moebius strip. Consequently, by 2.2.7, P2#P2 ≈ K. ⊓⊔

2.2.20 Exercise. Decompose I × I into two pieces

A = {(s, t) | 1/4 ≤ t ≤ 3/4} and B = {(s, t) | 0 ≤ t ≤ 1/4 or 3/4 ≤ t ≤ 1}

and show that by restricting the identifications of 2.2.6 to A and to B, respectively,

one obtains two Moebius stripsMA andMB. Conclude the Klein bottle is the union

of MA and MB along their boundaries.

Analogously to 2.2.9, consider the next example.

2.2.21 Example. Let g ≥ 1 be an integer.

(a) The connected connected sum C ′
g = P2#P2# · · ·#P2 of g copies of the

projective plane is a closed nonorientable surface.

(b) Piercing g holes in S2 and gluing a Moebius strip along the boundary of each

hole through a homeomorphism of their boundaries, one obtains a closed

nonorientable surface D′
g.

The surfaces described in 2.2.21 are determined up to homeomorphism by g and

one has C ′
g ≈ D′

g. As in the orientable case, there is another way of constructing

these nonorientable closed surfaces.

Let E2g ⊂ R2, g ≥ 2, be the regular polygon with 2g edges and vertices

pn = e2πin/2g, where n = 1, 2, . . . , 2g. Since E2g is a convex compact subset of R2

with nonempty interior, it is homeomorphic to D2 and hence it is a surface with

boundary.
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Define an equivalence relation on the boundary ofE2g by declaring as equivalent

the following points:

(1− t)p2i−1 + tp2i ∼ (1− t)p2i + tp2i+1 .

Namely, the edges of the polygon are identified as illustrated for g = 2 and for

g = 3 in Figure 2.21.

E4 E6

a2

a1

a1

a2

a1

a1a2

a2

a3 a3

Figure 2.21 2g-gons, g = 2, g = 3

2.2.22 Proposition. The space obtained by identifying the edges of the polygon

E2g according to the equivalence relation defined above, is a nonorientable closed

surface denoted by Ng.

The surface Ng and any other surface S homeomorphic to Ng is called nonori-

entable surface of genus g. We can extend the definition of Ng to the case g = 1

taking as E2 the 2-gon or “digon” the unit 2-disk, one of whose edges is the left

half-circle and the other edge, the right half-circle (see Figure 2.22). The relation

described above for g > 1 corresponds in this case to the relation x ∼ y if and

only if either x = y or x, y ∈ S1 and x = −y, in other words, what we do in order

to define N1 is to identify two boundary points in the disk if they are antipodal.

We call N1 the nonorientable surface of genus 1.. By Theorem 2.2.16, N1 is the

projective plane.

The proof of 2.2.22 is virtually the same as that of 2.2.11, so we leave it to the

reader as an exercise.

We do not count with enough tools to make a full study of the surfaces Sg

and Ng. However we shall state the classification theorem of the closed surfaces,

whose full proof we shall omit. Corollary 4.4.7 below proves the first half of the

classification. We refer the reader to the books of Massey [19] or Armstrong [4] for

the full proof.
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E2

a1 a1

Figure 2.22 2-gon

2.2.23 Theorem. The surfaces in the list

S1, S2, . . . and N1, N2, . . .

are not homeomorphic to each other. Furthermore, any closed surface is homeo-

morphic to one (and only one) in the list.

2.2.24 Exercise. Show that the quotient space M/∂M of the Moebius strip M

that collapses the boundary ∂M to one point is homeomorphic to the projec-

tive plane P2. (Hint: The map f : [−1, 1] × [−1, 1] −→ D2 given by f(s, t) =

(s
√
1− t2, t) is an identification which maps the horizontal edges of the square

to the poles of the disk and determines the desired homeomorphism between the

quotient spaces M/∂M and P2. See 2.2.5.)

2.2.25 Exercise. In a similar way to the Klein bottle, the projective plane cannot

be embedded into R3. Show that P2 can be embedded into R4. (Hint: The mapping

e : S2 −→ R4 given by e(x1, x2, x3) = (x21 − x22, x1x2, x1x3, x2x3) determines an

embedding ê : P2 −→ R4.)

2.2.26 Exercise. A topological space X is called a homogeneous space if given

any two points x, y ∈ X, a homeomorphism φ : X −→ X exists, such that φ(x) =

y. Show that the torus S1×S1 is a homogeneous space. (Hint : Given x = (1, 1), y =

(ζ1, ζ2) ∈ T2 = S1 × S1 ⊂ C × C, the map φ : T2 −→ T2, given by φ(ζ, ζ ′) =

(ζ1ζ, ζ2ζ
′) is a homeomorphism, such that φ(x) = y.)

2.2.27 Exercise. Show that given any two points x, y ∈
◦
Bn, there is a home-

omorphism φ : Bn −→ Bn, such that for any point z ∈ Sn−1, φ(z) = z, and

φ(x) = φ(y).

2.2.28 Exercise. Show that any connected surface is a homogeneous space. (Hint :

Use the previous exercise.)
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2.3 More low-dimensional manifolds

In this section, we shall study the manifolds of dimension 1. First of all we shall

prove that they are not too many. Indeed, we shall see that the only connected

1-manifolds without boundary are homeomorphic either to R or to S1. Notwith-

standing, the closed 1-manifolds become more interesting if they are embedded

in the Euclidean space R3 or, equivalently, in the sphere S3. In other words, the

richness of the 1-manifolds is to be found in the knots and links that we shall study

in the last chapter.

Below, in this chapter, we shall study succinctly some constructions that give

rise to 3-manifolds, namely the so-called Heegaard decomposition. We end the

chapter stating one of the most important results in topology of the last decade,

namely the classification of the simply connected 4-manifolds, due to M. Freedman,

and we shall compare this classification with the classical classification of the 2-

manifolds (surfaces), which was stated in Section 2.2, where we slightly change the

statement.

We start by recalling that a connected 1-manifold is a connected Hausdorff

second-countable space V , which has an open cover, whose elements are called Ui,

and are such that for every i there is a homeomorphism of an open or half-open

interval onto it, say φi : Ii −→ Ui.

The following lemma will be basic for the classification of manifolds of dimen-

sion 1.

2.3.1 Lemma. Let X be a connected Hausdorff space such that X = X1 ∪ X2,

where X1, X2 ⊂ X are open sets with the property that X1 ≈ X2 ≈ R. Then

X ≈ R or X ≈ S1.

Proof: Assume that X1 * X2 and X2 * X1, since otherwise the result would be

trivial.

Let φ1 : X1 −→ R and φ2 : X2 −→ R be homeomorphisms. Since the inter-

section X1 ∩ X2 is open, then in X1 as well as in X2, the sets φ1(X1 ∩ X2) and

φ2(X1 ∩X2) are open in R. Hence their components are open intervals.

None of these intervals can be bounded, since if an interval (a, b) were a compo-

nent of, say, φ1(X1 ∩X2), then the set φ−1
1 (a, b) would be closed in X2 (since it is

the intersection of the compact set φ−1
1 [a, b] with X2), as well as open in X2. Then

we would have X2 = φ−1
1 (a, b) ⊂ X1, which contradicts the initial assumption.

Furthermore, φ1(X1 ∩X2) ̸= R, since otherwise X1 ⊂ X2. Similarly, φ2(X1 ∩
X2) ̸= R. We still have two more more possible cases:
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(i) The set φ1(X1∩X2), as well as the set φ2(X1∩X2) are open half-lines (rays).

(ii) The set φ1(X1 ∩X2) as well as the set φ2(X1 ∩X2) are, each, the union of

two disjoint open half-lines.

Since we can multiply either φ1 or φ2 by −1, we may assume that case in (i),

φ1(X1 ∩ X2) has the form (−∞, a) and φ2(X1 ∩ X2) has the form (b,∞). The

composite

(−∞, a) = φ1(X1 ∩X2)
φ−1
1 |

// X1 ∩X2
φ2| // φ2(X1 ∩X2) = (b,∞)

is a continuous injective map, hence it is monotonous and obviously increasing

(otherwise the points φ−1
1 (a) and φ−1

2 (b) would not have disjoint neighborhoods

in X and thus X would not be Hausdorff). Hence

X = φ−1
2 ((−∞, φ2(x0)]) ∪ φ−1

1 ([φ1(x0),∞)) ,

for some point x0 ∈ X1 ∩X2, so that in case (i) X is homeomorphic to R.

In case (ii), φ1(X1 ∩ X2) = (−∞, a) ∪ (a′,∞) and φ2(X1 ∩ X2) = (−∞, b) ∪
(b′,∞), for some elements a, a′, b, b′, (a < a′, b < b′). Thus we may assume that

the composed homeomorphism

φ1(X1 ∩X2)
φ−1
1 |

// X1 ∩X2
φ2| // φ2(X1 ∩X2)

maps (−∞, a) homeomorphically onto (b′,∞), and maps (a′,∞) homeomorphically

on (−∞, b).

Both homeomorphisms (−∞, a) −→ (b′,∞) and (a′,∞) −→ (−∞, b) induced

by the composed homeomorphism given above, are increasing (since if, for instance,

the first were not increasing, then the points φ−1
1 (a) and φ−1

2 (b′) would not have

disjoint neighborhoods in X). Thus we may write

X = φ−1
2 ([φ2(y), φ2(x)]) ∪ φ−1

1 ([φ1(x), φ1(y)]) ,

for certain points x ∈ φ−1
1 (−∞, a) = φ−1

2 (b′,∞), y ∈ φ−1
1 (a′,∞) = φ−1

2 (−∞, b).

Therefore, in case (ii), X is homeomorphic to S1. ⊓⊔

The first part of our classification theorem is the following.

2.3.2 Proposition. Any compact connected 1-manifold V is homeomorphic to S1

or to the interval I = [0, 1].

Proof: If the manifold V closed, namely, it has no boundary, then it can be covered

by a finite number of open sets, each homeomorphic to R. We can order them in a
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sequence U1, . . . , Uk, so that each union Vl = U1 ∪ · · · ∪Ul is connected. According

to Lemma 2.3.1, the first of the sets Vl which is not homeomorphic to R, must

be homeomorphic to S1, and since it both open and closed, it must be the whole

manifold V . Therefore, V must be homeomorphic to S1.

If we now assume that V has a boundary, then its double 2V is a closed

connected 1-manifold. Hence, by the first part of this proof, 2V is homeomorphic

to S1. Consequently, the original manifold V must be homeomorphic to a proper

open subset of S1, which is closed, connected, nonempty, and it is not a point.

Then it must be homeomorphic to the closed interval [0, 1]. ⊓⊔

The last result we need is the next.

2.3.3 Lemma. If a topological space X can be represented as the union of a non-

decreasing sequence of open subsets, all of which are homeomorphic to R, then X

itself is homeomorphic to R.

Proof: Let X = ∪Vi be the given representation. It is clear that any homeomor-

phism of Vi with some interval (a, b) can be extended to a homeomorphism of Vi+1

with one of the intervals (a, b), (a− 1, b), (a, b+1), or (a− 1, b+1). This way, it is

possible to construct inductively a sequence of intervals I1 ⊂ I2 ⊂ · · · ⊂ Ii ⊂ · · ·
and a sequence of homeomorphisms φi : Vi −→ Ii, i = 1, 2, . . . , such that φi|Vi−1 =

φi−1 : Vi−1 −→ Ii−1. It is obvious that the map φ : X −→ ∪Ii given by φ|Vi = φi,

is a homeomorphism. ⊓⊔

Using the previous lemmas, we may prove the second part of the classification

theorem for manifolds of dimension 1.

2.3.4 Proposition. Any connected, noncompact 1-manifold V is homeomorphic

to R or to R+.

Proof: Suppose first that V has no boundary. Then it can be covered with count-

ably many open sets homeomorphic to R. One can denote them as a sequence

U1, U2, . . . , such that all unions U1∪· · ·∪Uk are connected. Hence all these unions

are homeomorphic to R, since otherwise the first of them which is not homeomor-

phic to R must be, by Lemma 2.3.1, homeomorphic to S1 and since it is closed and

open, and thus must coincide with V , which is a contradiction. Hence we apply

Lemma 2.3.3 to the manifold V to conclude that it is homeomorphic to R.

If we now assume that V has a boundary, then its double 2V no has none, and

therefore it is a connected noncompact manifold and thus it must be homeomorphic
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to R. Hence we deduce that V is homeomorphic to a closed connected noncompact

subset of R, different from R. Therefore it must be homeomorphic to R+ = [0,∞).

⊓⊔

Wemay summarize Propositions 2.3.2 and 2.3.4 in the following theorem, which

provides the full classification of the 1-manifolds.

2.3.5 Theorem. Let V be a connected 1-manifold. Then the following hold:

1. If V has no boundary, then there are two possibilities:

(a) if V is compact, then V ≈ S1;

(b) if V is not compacta, then V ≈ R;

2. if V has boundary, then there are two possibilities:

(a) if ∂V is connected, then V ≈ [0,∞);

(b) if ∂V is disconnected, then V ≈ [0, 1] = I. ⊓⊔

In what follows, we shall explain some features about 3-dimensional manifolds.

We start by considering two solid tori T1 = S1 ×D2 and T2 = D2 × S1. These are

3-dimensional manifolds whose boundaries are equal, namely ∂T1 = ∂T2 = S1×S1.

If we now identify T1 with T2 along their common boundaries, using the identity, in

other words, if we take the attaching space corresponding to the attaching situation

T1 ⊃ S1 × S1 ↪→ T2 ,

then the corresponding identification space is precisely

T1∪T2 = (S1×D2)∪(D2×S1) = (∂D2×D2)∪(D2×∂D2) = ∂(D2×D2) ≈ ∂B4 = S3 ,

namely the boundary of a 4-ball (see 2.1.8). We have thus shown the following.

2.3.6 Proposition. The union of two copies of the solid torus T = S1×D2 along

their boundary, through the homeomorphism ∂T −→ ∂T given by (x, y) 7→ (y, x),

is homeomorphic to the unit 3-sphere S3. ⊓⊔

This situation is shown in Figure 2.23, where we can appreciate how it is

possible that the union of two (solid) balls along their boundary is the same thing

as the union of two solid tori along their boundary.

In general, there are two homeomorphisms of the torus onto itself φ : ∂T −→
∂T , which are essentially different to the one described in the previous proposi-

tion. In general, they determine 3-manifolds which are different to the 3-sphere.
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S3 = ∪ = ∪

Figure 2.23 A 3-sphere is the union of two 3-balls or of two solid tori

Important members of this family of automorphisms of the torus are the home-

omorphisms facbd : S1 × S1 −→ S1 × S1, given by facbd (ζ, η) = (ζa · ηb, ζc · ηd),
a, b, c, d ∈ Z, ad− bc = ±1, which will be described in more detail below in 4.2.15.

We may define the corresponding attaching spaces Mac
bd resulting from the

attaching situations

T1 ⊃ S1 × S1
facbd // S1 × S1 ⊂ T2 .

2.3.7 Exercise. For a, b, c, d ∈ Z such that ad − bc = ±1, show that the map

facbd : S1 × S1 −→ S1 × S1 is a homeomorphism whose inverse is of the same type,

and give the inverse explicitly.

2.3.8 Exercise. Show that if f : S1 × S1 −→ S1 × S1 is a homeomorphism, then

the attaching space M corresponding to the attaching situation

T1 ⊃ S1 × S1
f // S1 × S1 ⊂ T2

is a 3-dimensional compact connected manifold without boundary.

From the previous exercises, we obtain immediately the following result.

2.3.9 Theorem. The attaching spaces Mac
bd , a, b, c, d ∈ Z, ad − bc = ±1, are

manifolds of dimension 3, connected, compact and without boundary, namely they

are closed 3-manifolds. ⊓⊔

TakeM =Mac
bd with attaching map f = facbd . Take another collection a

′, b′, c′, d′ ∈
Z such that a′d′ − b′c′ = ±1, then we have M ′ = Ma′c′

b′d′ with attaching map

f ′ = fa
′c′

b′d′ . Consider α, β, γ, δ ∈ {−1, 1} and m,n ∈ Z. Then we have home-

omorphisms F : D2 × S1 −→ D2 × S1, given by F (ζ, η) = (ζαηm, ηβ), and
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G : S1 × D2 −→ S1 × D2, G(ζ, η) = (ζγηn, ηδ), where ξ−1 = ξ. Assume that

the following equations hold:

(2.3.10) γa = αa′, γb = ma′ + βb′, αc′ = na+ δc, mc′ + δc′ = nb+ δd .

Then (G|S1 ×S1) ◦ f = f ′ ◦ (F |S1 ×S1), that is, the following diagram commutes:

S1 × S1

f

��

F |S1×S1 // S1 × S1

f ′

��
S1 × S1

G|S1×S1
// S1 × S1 ,

so that clearly M ≈M ′.

In the case a = 0, one has that bc = ±1, and we can take α = γ = −1, β = −b,
δ = −c, n = 0 and m = −cd. Then M ≈M1 0

0 1 ≈ (D2 ∪id D2)× S1 ≈ S2 × S1.

In the case a = ±1, we take α = δ = a, β = ad− bc, γ = 1, m = b and n = −c.
Then M ≈M0 1

1 0 ≈ S3 (exercise, see Figure 2.23).

In what follows, we assume |a| ≥ 2. If a < 0, we take α = −1, β = γ = δ = 1

and m = n = 0 and we obtain a′ > 0, so that we may assume from the beginning

that a > 0. If ad − bc = −1, then we assume α = β = γ = 1, δ = −1 and

m = n = 0, so that we obtain a′d′ − b′c′ = 1, where a′ = a > 0. Therefore, we

consider ad − bc = 1. The numbers c and d are determined by a and b in the

following sense. If one has ad′′ − bc′′ = 1, then c′′ = c + na and d′′ = d + nb for

some n ∈ Z. If in (2.3.10) we take these n and m = 0, α = β = γ = δ = 1,

then M ≈ Mac′′
bd′′ . Hence M , up to homeomorphism, is determined by a and b,

and it is possible to simply write Ma
b instead of Mac

bd . Taking now n = 0 and

α = β = γ = δ = −1 in (2.3.10), Ma
b ≈ Ma

b+ma, so one may reduce b modulo a

and obtain 1 ≤ b < a. The manifold Ma
b is known as the lens space associated to

a, b, usually denoted by L(a, b). We have shown the following.

2.3.11 Theorem. The 3-manifold Mac
bd is homeomorphic to the sphere S3, to S2×

S1, or to the lens space L(a, b), where a and b are relatively prime and 1 ≤ b < a.

⊓⊔

2.3.12 Note. The given definition of the lens spaces is ad hoc. For instance, in

[4] the traditional definition of a lens space is given. It is thus interesting to show

that our lens spaces are homeomorphic to the traditional one.

2.3.13 Example. Let g ≥ 1 be an integer and let Dg be the disc with g holes, as

in 2.2.9(a). Then Hg = Dg × I is a 3-manifold whose boundary Ag = ∂(Dg × I)

is an orientable surface of genus g. The space Hg is called handle-body of genus
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g. If φ : Ag −→ Ag is some homeomorphism, then M = Hg ∪φ Hg is a closed

3-manifold. The pair (Hg, φ) is known as Heegaard decomposition of M of genus

g.

The following result is due to Dyck and Heegaard. Its proof goes outside of the

scope of this text, so we omit it (see [14]).

2.3.14 Theorem. Every closed orientable 3-manifold M admits a Heegaard de-

composition of genus g ≥ 0, namely M ≈ Hg ∪φHg for some g and some homem-

orphism φ : Ag −→ Ag, Ag = ∂Hg.

One dimension higher, that is, in dimension 4, the situation turns to be partic-

ularly interesting. As we already noticed in 2.2.23, Moebius gave the classification

of all closed orientable manifolds of dimension 2. Using homological techniques,

it is possible to assign a bilinear form to every even-dimensional manifold –say

of dimension 2n–, which is called its intersection form, and in a sense counts the

(finite) number of points (with a sign) in which its submanifolds of dimension n

intersect. This is registered in the homology in dimension n (the semidimension

of M). To this bilinear form one can canonically associate a symmetric unimodu-

lar matrix (namely with determinant ±1) with integral coefficients. In the case of

the surfaces, to each symmetric unimodular matrix, put in canonical form, corre-

sponds a surface. The classification theorem of surfaces 2.2.23 can be reformulated

in terms of these symmetric unimodular matrices as follows.

2.3.15 Theorem. Let S be a path-connected (0-connected) surface. If S is ori-

entable, then its canonical matrix can be 0, in whose case S ≈ S2, or it has the

form 
0 1 0 0
1 0 0 0

. . .
0 0 0 1
0 0 1 0

 ,

in whose case S ≈ (S1 × S1)# · · ·#(S1 × S1), with as many summands as there

are 2× 2 blocks in the matrix. If S is nonorientable, then its canonical matrix has

the form 
1 0 0 0
0 1 0 0

. . .
0 0 1 0
0 0 0 1

 ,

in whose case S ≈ RP2# · · ·#RP2, with as many summands as there are ones in

the diagonal.
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The theorem assures that the matrices are invariants which classify surfaces:

In the first case one deals with block matrices of dimension 2g× 2g. In the second

case one deals with identity matrices of dimension g× g, where in both cases, g is

the genus of S.

In dimension 4 the situation is particularly interesting. In the first place, it

does not seem possible to give a full classification theorem, that is a theorem that

classifies all 4-manifolds. There are algebraic reasons for that, as we comment in

4.4.18. However, back in 1982 a fundamental step in the classification was given.

Freedman [9] gave the classification of all simply connected 4-manifolds (see 4.1.24

below). Freedman shows that given a unitary, unimodular canonical matrix, there

is a 4-manifold that corresponds to the matrix, and that these matrices classify the

manifolds. There is an exceptional symmetric, unimodular 8× 8-matrix, namely

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


,

to which, according to Freedman’s results, a certain simply connected manifold of

dimension 4 corresponds. We denote this manifold by V8. In a similar form as one

way to endow a 4-manifold with an orientation or not, one can endow it with a

structure called spin. The classification theorem is the following.

2.3.16 Theorem. Let V be a simply connected (1-connected) 4-manifold. If V is

spin, then its canonical matrix can be 0, in whose case V ≈ S4, or it has the form



0 1 0 0
1 0 0 0

. . .
0 1
1 0

E8

0 0
. . .

0 0 E8


,

in whose case V ≈ (S2 × S2)# · · ·#(S2 × S2)#V8# · · ·#V8, with as many sum-

mands of the form S2 × S2 as there are 2 × 2-blocks in the matrix, and as many

summands V8 as there are E8-blocks in the matrix. If V is not spin, then its canon-
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ical matrix has the form 
1 0 0 0
0 1 0 0

. . .
0 0 −1 0
0 0 0 −1

 ,

in whose case V ≈ CP2# · · ·#CP2#CP2
# · · ·#CP2

, with as many summands

CP2 as there are ones, and as many summands CP2
as there are minus ones in

the diagonal of the matrix. The space CP2
denotes the usual complex projective

plane with the opposite orientation to that of CP2.

The parallelism between this statement on the classification of 4-manifolds

and that of the classification of 2-manifolds 2.3.15 is astonishing. The two main

differences are the block E8 in the matrix, as well as the summand V8 in the

4-manifold. The reader may take a look at [11] for details on this result.

2.4 Classical groups

Starting with groups of matrices, known as classical groups which happen to be

manifolds, in this section we shall define a variety of other manifolds, which are

useful in several areas of mathematics. Examples are the Grassmann and the Stiefel

manifolds. We shall see what their relationships are and how the Grassman man-

ifolds generalize the projective spaces. Furthermore, we shall briefly study the

classical groups.

Let us begin by considering the space Mn(R) (resp. Mn(C)) of all n×nmatrices

with real (resp. complex) entries. Putting the entries one line after the other, one

may give homeomorphisms

Mn(R) ≈ Rn2
, Mn(C) ≈ Cn2 ≈ R2n2

.

The determinant functions

detR : Mn(R) −→ R, detC : Mn(C) −→ C

are continuous. Therefore they are continuous functions. Hence the subsets

GLn(R) = det−1
R (R− 0), GLn(C) = det−1

C (C− 0)

are open and, therefore they are open sets and thus submanifolds of Rn2
and of

Cn2
= R2n2

, so that they have dimensions n2 and 2n2, respectively. These sets

consist of invertible matrices and, with respect to matrix multiplication, they are
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groups. Since this multiplication, as well as the map that sends a matrix to its

inverse matrix (using Cramer’s rule), are continuous, then the matrix groups are

topological groups

2.4.1 Definition. The manifolds GLn(R) and GLn(C) are known as the real

general linear group of n × n matrices and the complex general linear group of

n× n matrices (or shorter, the nth real general linear group and the nth complex

general linear group). Furthermore, dimGLn(R) = n2 and dimGLn(C) = 2n2.

Given a real (resp. complex) n × n matrix A, we may interpret its columns

Ai =

a1i...
ani

 as vectors in Rn (resp. Cn). The vectors A1, . . . , An are linearly

independent if and only if A ∈ GLn(R) (resp. A ∈ GLn(C)). Let us assume a little

more, namely that these vectors build an orthonormal basis, that is they satisfy

the n(n+1)
2 equations ⟨Ai, Aj⟩ = δij , 1 ≤ i ≤ j ≤ n, where ⟨−,−⟩ represents the

usual scalar product in Rn (resp. the usual hermitian product in Cn). Putting

these equations (of which, in the complex case, n of them have real values and
n(n+1)

2 − n = n(n−1)
2 , complex values) in an adequate order, one gets mappings

φ : GLn(R) −→ R
n(n+1)

2 , (resp. φ : GLn(C) −→ Rn2
) ,

which are even differentiable. For each point A ∈ GLn(R) (resp. A ∈ GLn(C)),

such that φ(A) = δ, where δ ∈ R
n(n+1)

2 (resp. δ ∈ Rn2
) is the point given by

the Kronecker delta δij , i ≤ j = 1, . . . , n, then its derivative has maximal rank.

The implicit function theorem states that there is a neighborhood UA of A in

GLn(R) (resp. in GLn(C)), a neighborhood VA of 0 in Rn2
(resp. R2n2

), and

homeomorphisms ψA : VA −→ UA, which map 0 to A. These maps are such that the

composites φ′◦ψA : VA −→ R
n(n+1)

2 (resp. φ′◦ψA : VA −→ Rn2
), where φ′ = φ−δ,

correspond simply to the projection onto the first n(n+1)
2 real coordinates (resp.

onto the first n2 real coordinates). This way, the set of solutions of the n(n+1)
2

equations M = φ−1(δ) = φ′−1(0) is such that the restriction of ψA to the last
n(n−1)

2 (resp. n2) real coordinates induces a homeomorphism, which we denote

again by ψA : UA∩(0×R
n(n−1)

2 ) −→ VA∩M (resp. ψA : UA∩(0×Rn2
) −→ VA∩M).

Figure 2.24 shows what we have done.

We have shown that each point A ∈M has a neighborhood WA = VA∩M and

there is a homeomorphism ψA : U ′
A −→ WA, where U

′
A is open in R

n(n−1)
2 (resp

en Rn2
). Therefore M is a manifold of dimension n(n−1)

2 (resp. n2). Furthermore,

since M is a set of solutions, it must be closed and since each matrix A ∈ M it

is built up by unit vectors, clearly M is bounded. Hence M is a closed manifold

(namely, it is compact and has no boundary).
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UA

0

Rn(n−1)
2

Rn(n+1)
2

ψA φ

VA

A
Rn(n+1)

2

Figure 2.24 The implicit function theorem

The subset M ⊂ GLn(R) (resp. M ⊂ GLn(C)) is indeed a subgroup. It is

characterized by the following: A matrix A ∈ GLn(R) (resp. A ∈ GLn(C)) is such

that A ∈ M if and only if AA∗ = 1, where A∗ is the transposed (resp. conjugate

transposed) matrix of A and 1 is the identity matrix.

2.4.2 Definition. The group On = {A ∈ GLn(R) | AA∗ = 1} is called nth

orthogonal group or orthogonal group of n× n matrices and the group Un = {A ∈
GLn(C) | AA∗ = 1}, nth unitary group or unitary group of n × n matrices. The

first is a closed manifold of dimension n(n−1)
2 , and the second is a closed manifold

of dimension n2. On and Un are topological groups with respect to the relative

topology induced by GLn(R) and GLn(C), respectively.

We have a more general construction. One considers the so-called frames,

namely collections of k orthonormal vectors in Rn, k ≤ n. This is equivalent to

taking matrices with k columns and n rows, i.e., n×k matrices, A = (A1, . . . , Ak),

where Ai =

a1i...
ani

 is a vector in Rn (resp. Cn) and the equality ⟨Ai, Aj⟩ = δij ,

1 ≤ i ≤ j ≤ k, where again ⟨−,−⟩ represents the usual scalar product in Rn (resp.

the usual hermitian product in Cn). Take the sets

Vk(Rn) = {A = (A1, . . . , Ak) ∈ Rn × · · · ×Rn | ⟨Ai, Aj⟩ = δij} ,

Vk(Cn) = {A = (A1, . . . , Ak) ∈ Cn × · · · ×Cn | ⟨Ai, Aj⟩ = δij} ,

1 ≤ i ≤ j ≤ k. We may consider Vk(Rn) (resp. Vk(Cn)) as the subset of Rnk,

(resp. Cnk) of solutions of the k(k+1)
2 (resp. k(k + 1)− k = k2) equations

⟨Ai, Aj⟩ = δij , 1 ≤ i ≤ j ≤ k .

The same arguments used above for the orthogonal groups (resp. the unitary

groups), show that Vk(Rn) (resp. Vk(Cn)) is a closed manifold of dimension
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nk − k(k+1)
2 = k(2n−k−1)

2 (resp. 2nk − k2 = k(2n − k)). Hence we have the fol-

lowing.

2.4.3 Definition. The set Vk(Rn) = {A = (A1, . . . , Ak) ∈ Rn × · · · × Rn |
⟨Ai, Aj⟩ = δij , 1 ≤ i ≤ j ≤ k} is called the real Stiefel manifold of k-frames in Rn

and the set Vk(Cn) = {A = (A1, . . . , Ak) ∈ Cn × · · · × Cn | ⟨Ai, Aj⟩ = δij , 1 ≤
i ≤ j ≤ k} is called the real Stiefel manifold of k-frames in Cn. The first is a

closed manifold of dimension k(2n−k−1)
2 , while the second is a closed manifold of

dimension k(2n− k).

2.4.4 Note. If in the previous definition we take k = n, we clearly have that

Vn(Rn) = On and that Vn(Cn) = Un. On the other hand, if we take k = 1, we

have that V1(Rn) = Sn−1 and that V1(Cn) = S2n−1.

Take an element M ∈ On (resp. M ∈ Un) and an element A ∈ Vk(Rn) (resp.

A ∈ Vk(Cn)). The matrix M acts on each vector Ai in the k-frame A. Since M an

orthogonal (resp. unitary) matrix, the image vectorsMAi, i = 0, 1, . . . , k, build up

again an orthogonal frame inRn (resp. inCn). We denote this new k-frame byMA.

This determines an action of the orthogonal (unitary) group on the Stiefel manifold

(see 5.1.22), since it is simple to check that the mapping On×Vk(Rn) −→ Vk(Rn)

(resp. Un × Vk(Cn) −→ Vk(Cn)) given by (M,A) 7→ MA is continuous and the

equations IA = A and (MN)A =M(NA) hold (see 1.4.4).

2.4.5 Exercise. Show that given any two frames A,B ∈ Vk(Rn) (resp. Vk(Cn)),

then there is a matrixM ∈ On (resp. A ∈ Un) such thatMA = B. In other words,

show that the action of On (resp. of Un) on Vk(Rn) (resp. Vk(Cn)) is transitive

(see 1.4.12).

The former exercise shows that the Stiefel manifold Vk(Rn) (resp. Vk(Cn)), at

least as a set, is homogeneous (see 1.4.13), that is, it is a quotient of the group

On by a (closed) subgroup. Namely, if we take the canonical k-frameE defined

by Ei = ei, where ei denotes the ith canonical unit vector in Rn, i = 1, . . . , k,

then for each A ∈ Vk(Rn) (resp. A ∈ Vk(Cn)), there is a matrix MA ∈ On (resp.

MA ∈ Un) such that MAE = A. Thus we have a surjective function

On −→ Vk(Rn) (resp. Un −→ Vk(Cn)) ,

given by M 7→ ME. One easily verifies that this is a continuous map. But On

(resp. Un) is a compact space and Vk(Rn) (resp. Vk(Cn)) is a Hausdorff space.

Thus we have the following.
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2.4.6 Proposition. The maps On −→ Vk(Rn) and Un −→ Vk(Cn) given by

M 7→ME are identifications. ⊓⊔

2.4.7 Exercise. Show that ME = NE, M,N ∈ On (resp. M,N ∈ Un), where

E ∈ Vk(Rn) (resp. E ∈ Vk(Cn)) is the canonical k-frame, if and only if there is a

matrix K ∈ On−k ⊂ On (Un−k ⊂ Un) such that MK = N , where On−k is seen as

a closed subgroup of On (resp. Un−k as a closed subgroup of Un) via

K 7−→
(
1k 0
0 K

)
,

where 1k ∈ Ok (resp. 1k ∈ Uk) is the identity matrix.

The previous exercise shows that the Stiefel manifold of k-frames in Rn (resp.

in Cn) is the set of cosets of the subgroup On−k of On (resp. of the subgroup Un−k

of Un) with the identification topology. Namely

(2.4.8) On/On−k ≈ Vk(Rn) (resp. Un/Un−k ≈ Vk(Cn)) .

In other words, the Stiefel manifolds are homogeneous spaces (see 1.4.13).

An alternative way for defining the real and complex projective spaces RPn−1

and CPn−1 is as certain spaces of real or complex straight lines (namely of sub-

spaces of real or complex dimension 1) of Rn or of Cn. In other words, consider in

Rn − {0} (resp. in in Cn − {0}) the equivalence relation x ∼ y if and only if there

is a real (resp. complex) number ξ such that y = ξx. Then RPn−1 ≈ Rn − {0}/ ∼
(resp. CPn−1 ≈ Cn − {0}/ ∼).

2.4.9 Exercise. Consider the topological group G = R − {0} (resp. G = C −
{0} described in 1.4.2). Then G acts on Rn − {0} (resp. on Cn − {0}) by scalar

multiplication. Show that the inclusion Sn−1 ↪→ Rn−{0} (resp. S2n−1 ↪→ Cn−{0})
induces a homeomorphism RPn −→ Rn − {0}/ ∼ (resp. CPn −→ Cn − {0}/ ∼).

More generally we may consider the sets of subspaces of (real) dimension k

of Rn (resp. of complex dimension k of Cn). Take a frame A ∈ Vk(Rn) (resp.

A ∈ Vk(Cn)). Since this frame consists of k linearly independent vectors in Rn

(resp. in Cn), then A determines a subspace of real dimension k, LA ⊂ Rn (resp.

of complex dimension k, LA ⊂ Cn). Furthermore, any subspace L of dimension k

of Rn (resp. of Cn) has an orthonormal basis A ∈ Vk(Rn) (resp. A ∈ Vk(Cn)).

If we call Gk(Rn) (resp. Gk(Cn)) the set of subspaces of real dimension k of Rn

(resp. of complex dimension k of Cn), then there are surjective functions

q : Vk(Rn) � Gk(Rn) (resp. q : Vk(Cn) � Gk(Cn)) .

Giving the codomain the identification topology, then the set Gk(Rn) (resp. Gk(Cn))

becomes a compact topological space.
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2.4.10 Exercise. Show that two frames A,B ∈ Vk(Rn) (resp. A,B ∈ Vk(Cn))

determine the same k-dimensional subspace LA = LB of Rn (resp. of Cn) if and

only if there is a matrix K ∈ Ok ⊂ On (K ∈ Uk ⊂ Un)such that KA = B, where

Ok (resp. Uk) is seen as a subgroup of On (resp. of Un) via

K 7−→
(
K 0
0 1n−k

)
,

where 1n−k ∈ On−k (resp. 1n−k ∈ Un−k) is the identity matrix. Conclude that

taking the composite

On −→ Vk(Rn) −→ Gk(Rn) (resp. Un −→ Vk(Cn) −→ Gk(Cn) ),

then LME = LNE if and only if there is a matrix K ∈ Ok × On−k ⊂ On (resp.

K ∈ Uk × Un−k ⊂ Un), where we include Ok × On−k in On (resp. Uk × Un−k in

Un) via

(K1,K2) 7−→
(
K1 0
0 K2

)
.

What must be shown in the previous exercise is that the space Gk(Rn) (resp.

Gk(Cn)) of k-dimensional subspaces of Rn (resp. of Cn) is the set of cosets of

the subgroup Ok × On−k of On (resp. Uk × Un−k of Un) with the identification

topology. Namely they are the homogeneous spaces

(2.4.10) On/Ok ×On−k ≈ Gk(Rn) (resp. Un/Uk ×Un−k ≈ Gk(Cn)) .

2.4.11 Note. If in the definition of Gk(Rn) (resp. of Gk(Cn)) we take k = n, then

we have that Gn(Rn) = ∗ (resp. Gn(Cn) = ∗). On the other hand, if we take k = 1,

then we have that G1(Rn) = RPn−1 (resp. G1(Cn) = CP2n−1). Furthermore, from

the equation (2.4.10) we conclude that

On/O1 ×On−1 ≈ RPn−1 (resp. Un/U1 ×Un−1 ≈ CPn−1) .

Seen from another point of view, we have

On/On−1 ≈ Sn−1 (resp. Un/Un−1 ≈ S2n−1)

and since O1 = Z2 (resp. U1 = S1), we recover the original definition of RPn−1

(resp. of CPn−1) as the orbit space of Sn−1 with respect to the antipodal action

of Z2 = O1 (resp. the orbit space of S2n−1 with respect to the action of S1 = U1

given by complex multiplication).

We have shown above that spaces such as Vk(Rn), Vk(Cn), Gk(Rn), or Gk(Cn)

are obtained as quotients of some topological groups modulo certain closed sub-

groups. Thus they are homogeneous spaces.
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More precisely, by the implicit function theorem, the topological groups On

and Un are (smooth) manifolds and the mapping (A,B) 7→ AB−1 is a (smooth)

map. Hence they are Lie groups (see 2.1.14). The considered subgroups are closed

submanifolds. The following result is the smooth case of Proposition 1.4.14, whose

proof uses specific techniques of the theory of Lie groups, and is beyond the scope

of this book. A proof can be found in [6].

2.4.12 Theorem. If G is a compact Lie group and H ⊂ G is a closed sub-

group, then the homogeneous space G/H is a closed (smooth) manifold such that

dim(G/H) = dimG− dimH. ⊓⊔

Consequently for the cases analyzed above, we can write the following defini-

tion.

2.4.13 Definition. The homogeneous space Gk(Rn) = {L ⊂ Rn | dimR L = k} is
called the real Grassmann manifold of k-frames in Rn and the homogeneous space

Gk(Cn) = {L ⊂ Cn | dimC L = k} is called the complex Grassmann manifold of

k-frames in Cn. Gk(Rn) is a closed manifold of dimension k(n− k), while Gk(Cn)

is a closed manifold of dimension 2k(n− k).

There are other Lie groups which play an important role in several branches

of mathematics. Two of them are SOn = {A ∈ On | detA = 1} and its complex

counterpart SUn = {A ∈ Un | detA = 1}. They are called the special orthogonal

group of real n× n matrices, and the special unitary group of complex n× n ma-

trices. Indeed we have that the determinant functions detR : On −→ Z2 = O1 and

detC : Un −→ S1 = U1 are group epimorphisms, whose kernels are the subgroups

SOn and SUn defined above. Namely det−1
R (1) = SOn and det−1

C (1) = SUn. In

the real case, On has exactly two connected components, namely det−1
R (1) and

det−1
R (−1), each of which is a (smooth) submanifold of On with the same dimen-

sion. The first corresponds to the subgroup of orthogonal matrices that preserve

the canonical orientation of Rn. The second consists of the matrices that reverse

the orientation. They do not form a group, since the product of two of them pre-

serves the orientation. Indeed, topologically On = SOn ⊔ SO−
n , where SO−

n is the

path-component of On in which the matrix 1−n =

(
−1 0
0 1n−1

)
lies.

In the complex case, the group Un is path connected and the subgroup SUn

has a smaller dimension than Un.
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2.4.14 Exercise.

(a) Show that On is not path connected. Show that SOn is path connected.

Conclude that SO−
n is also path connected. (Hint: Use the Gram-Schmidt

orthonormalization process to produce a path from any orthogonal matrix

of determinant 1 to the identity matrix.)

(b) Show that Un is path connected. (Hint: Use the Gram-Schmidt orthonor-

malization process, as well as the fact that S1 is path connected, to produce

a path from any unitary matrix to the identity matrix.)

2.4.15 Note. The subgroup SUn of Un is a submanifold of codimension 1, namely

dimSUn = dimUn − 1 = n2 − 1. This follows from the fact that dimS1 = 1 and

thus the submanifold {1} has codimension 1 in S1, and any inverse image of a

regular value under a smooth surjection (submersion) preserves the codimension.

Indeed there is an epimorphism det : Un −→ S1 given by the determinant, such

that SUn = det−1(1).

More generally we have determinants

detR : GLn(R) −→ R−{0} = GL1(R) and detC : GLn(C) −→ C−{0} = GL1(C) ,

which are epimorphisms, whose kernels are the topological groups

SLn(R) = det−1
R (1) ⊂ GLn(R) and SLn(C) = det−1

C (1) ⊂ GLn(C) .

These groups, which are submanifolds of GLn(R) and GLn(C), respectively, are

known as the real special linear group of n × n matrices and the complex special

linear group of n×n matrices (or shorter, the nth real special linear group and the

nth complex special linear group). These groups are noncompact (up to the case

n = 1) and their codimensions are 1 and 2, respectively, namely dimSLn(R) =

n2 − 1 and dimSLn(C) = 2n2 − 2.

Furthermore, the following space equalities are immediate:

SLn(R) ∩On = SOn y SLn(C) ∩Un = SUn .

Let us get back once more to the general linear group GLn(R) and we consider

the subgroups

Bn = {A = (aij) | aij = 0 si i > j} ⊂ GLn(R) ,

B+
n = {A = (aij) | aii > 0} ⊂ Bn ,

B(1)
n = {A = (aij) | aii = 1} ⊂ B+

n .
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The first is the group of real upper triangular n × n matrices, also called Borel

subgroup of GLn(R). The last is the group of real upper triangular n×n unipotent

matrices. Consider the group of diagonal n× n matrices with positive elements

D+
n = {

l1 · · · 0
...

. . .
...

0 · · · λn

 | λi ∈ R, λi > 0} .

2.4.16 Exercise. Show that one has a homeomorphism D+
n ×B(1)

n ≈ B+
n . Notice

that it is not a group isomorphism.

These subgroups of GLn(R) play a role in the following theorem, which is called

Iwasawa decomposition theorem.

2.4.17 Theorem. The matrix multiplication defines a homeomorphism

On ×B+
n ≈ GLn(R) .

Proof: Take a matrix B ∈ GLn(R) and let Bj = Bej be its jth column, where ej

is the canonical j-vector. By the Gram-Schmidt orthonormalization process, one

obtains an orthonormal basis A1, . . . , An such that

Bj = µjjAj +
∑
i<j

µijAi ,

where µjj > 0. That is, B = AM , where M = (µij) ∈ B+
n and A = (A1 · · ·An) ∈

On.

If AM = A′M ′, then A′−1A = M ′M−1 ∈ On ∩ B+
n . But On ∩ B+

n consists

only of the identity matrix 1n, since an orthogonal n × n matrix with n positive

eigenvalues must be the matrix 1n. Hence A′−1A = M ′M−1 = 1n and therefore

A = A′ andM =M ′. Thus we have shown that the Gram-Schmidt process defines

a map GLn(R) −→ On ×B+
n , B 7→ (A,M), which is clearly continuous and is the

inverse of the map On ×B+
n −→ GLn(R) given by (A,M) 7→ AM . ⊓⊔

The Iwasawa decomposition homeomorphism is not a homomorphism (isomor-

phism) (if n > 1), since the matrices in On do not commute with those of B+
n .

Combining 2.4.16 and 2.4.17 one obtains the following decomposition.

2.4.18 Corollary. There is a homeomorphism

GLn(R) ≈ On ×D+
n ×B(1)

n .

⊓⊔
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The following result shows the role played by On in the Iwasawa decomposition.

2.4.19 Theorem. The subgroup On ⊂ GLn(R) is a maximal compact subgroup,

namely if K ⊂ GLn(R) is a compact subgroup such that On ⊂ K, then On = K.

Proof: IfK ⊂ GLn(R) is a compact subgroup such that On ⊂ K, thenH = K∩B+
n

is also a compact subgroup. By the Iwasawa decomposition 2.4.17, one has that

K = OnH. We shall prove that every compact subgroup H of B+
n is the trivial

group.

Let us thus take a compact subgroup H ⊂ B+
n and take A ∈ H. By the

compactness of H, any eigenvalue of any element in H must lie in certain compact

subset of R∗ = R − 0, so that the eigenvalues of A and of all its powers must be

in the same set. Therefore these eigenvalues must be 1 and hence A ∈ B
(1)
n .

Let us take now a minimal i ∈ {1, . . . , n} such that if i ≤ j < k, then Ajk = 0.

We must show that i = 1. If we had i > 1, then there would be an index k ≥ i

such that Ai−1 k ̸= 0. Hence for C = Am one would have that Ci−1 k = mAi−1 k,

which would contradict the compactness of H, because the entries of the matrices

in H would build up an unbounded set.

2.4.20 Exercise. Show that any connected compact subgroup of GLn(R) is a

conjugate in GLn(R) to a subgroup of On.

2.4.21 Note. According to Theorem 2.4.12, starting with any of the many (Lie)

groups that we have defined, we can produce many different (smooth) manifolds

by taking the quotients of the groups by their closed subgroups, the way we did

to obtain the Stiefel and the Grassmann manifolds.
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Chapter 3 Homotopy

Homotopy is one of the fundamental concepts in topology and is the base of

algebraic topology. In this chapter, we shall introduce the elements of homotopy

theory that we shall need to understand the next chapters.

3.1 The homotopy concept

In this section we introduce the basic concept of homotopy of maps between topo-

logical spaces. As usual, I will denote the unit interval [0, 1] ⊂ R.

3.1.1 Definition. Let X and Y be topological spaces. A homotopy from X to Y

is a map

H : X × I −→ Y .

If f, g : X −→ Y are continuous maps, we shall say that they are homotopic if

there exists a homotopy H from X to Y such that

H(x, 0) = f(x)

H(x, 1) = g(x) .

We say that the homotopy H starts at f and ends at g, or that it is a homotopy

between f and g. If we define Ht : X −→ Y by Ht(x) = H(x, t), t ∈ I, then Ht is

continuous for each t and we may identify a homotopy H with the family {Ht} of

maps from X to Y parametrized by t. Indeed, the mapping t 7→ Ht determines a

(continuous) path in the function space M(X,Y ), of maps from X to Y endowed

with the compact open topology.

If there is a homotopy H between f and g, we usually denotes this fact by

H : f ≃ g.

3.1.2 Exercise. Prove the last assertion in Definition 3.1.1, namely, show that

to have a homotopy H : f ≃ g is equivalent to have a path, i.e., a continuous

map ω : I −→ Y X (cf. 4.1.1 below), where M(X,Y ) is the space of continuous

maps from X to Y with the compact-open topology (cf. [21]) and ω(t) = Ht. This

67
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statement is equally true if instead of M(X,Y ) we write Y X , namely the space

of maps from X to Y with the compactly generated topology associated to the

compact-open topology.

3.1.3 Proposition. The relation ≃ is an equivalence relation in M(X,Y ).

Proof: If f : X −→ Y is continuous, then the homotopy H : X× I −→ Y given by

H(x, t) = f(x)

shows that f ≃ f .

If H : f ≃ g, then H : g ≃ f , where the homotopy H is given by

H(x, t) = H(x, 1− t) .

Finally, if H : f ≃ g and K : g ≃ h, then H ∗K : f ≃ h, where the homotopy

H ∗K is given by

H ∗K(x, t) =

{
H(x, 2t) if 0 ≤ t ≤ 1

2 ,

K(x, 2t− 1) if 1
2 ≤ t ≤ 1. ⊓⊔

The homotopy relation is compatible with compositions; namely, one has the

following.

3.1.4 Proposition. If f ≃ g : X −→ Y and f ′ ≃ g′ : Y −→ Z, then f ′ ◦ f ≃
g′ ◦ g : X −→ Z.

Proof: If H : f ≃ g and H ′ : f ′ ≃ g′ are homotopies, then K : f ′ ◦f ≃ g′ ◦g, where

K(x, t) = H ′(H(x, t), t) .
⊓⊔

3.1.5 Note. Alternatively, one may define K : f ′ ◦f ≃ g′ ◦g in the previous proof

by

K(x, t) =

{
f ′H(x, 2t) if 0 ≤ t ≤ 1

2 ,

H ′(g(x), 2t− 1) if 1
2 ≤ t ≤ 1.

That is, one proves first f ′ ◦ f ≃ f ′ ◦ g and then f ′ ◦ g ≃ g′ ◦ g, and one uses the

transitivity of the relation ≃.

The problem of deciding whether two maps are homotopic or not is, in general,

a very difficult problem. To be able to provide a positive answer requires a good

knowledge of the given spaces and of the given maps in order to give an explicit

homotopy, or else, have other elements to answer the question. In general, the

negative case is not so difficult whenever one counts with adequate tools for doing

it. This is one of the fundamental aspects of algebraic topology. In the following

chapters we shall develop methods to analyze this sort of questions.
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3.1.6 Definition. We say that a map f : X −→ Y is nullhomotopic if it is

homotopic to the constant map cy0 : X −→ Y given by c(x) = y0 ∈ Y for every

y. A homotopy H : f ≃ cy0 is called nullhomotopy. We say that a topological

space X is contractible if the identity map idX : X −→ X is nullhomotopic. A

nullhomotopy H : X ≃ cx0 of idX is called a contraction of X. If H(x0, t) = x0

for t ∈ I, namely, if the point x0 remains fixed throughout the contraction, we say

that X es strongly contractible to x0.

Contractibility is a topological invariant, that is, if X is contractible, then any

other space Y homeomorphic to X is contractible. We shall see below that in a

certain sense, contractible spaces behave like points. Before doing that, we consider

the following notation.

3.1.7 Definition. As we proved in 3.1.3, the homotopy relation is an equivalence

relation. Given f : X −→ Y , we call the equivalence class [f ] = {g : X −→ Y |
g ≃ f}, homotopy class of f : X −→ Y . Moreover, we denote by [X,Y ] the set of

homotopy classes of maps f : X −→ Y .

3.1.8 Remark. According to Exercise 3.1.2, f ≃ g : X −→ Y if and only if f and

g are connected by a path in Y X . Therefore, the set of path components of this

space coincides with that of homotopy classes, namely

π0(Y
X) = [X,Y ] .

3.1.9 Remark. If Y is path connected, then any two nullhomotopic maps f, g :

X −→ Y are homotopic. Namely, take nullhomotopies F : f ≃ cy0 and G : g ≃ cy1 ,

and take a path σ : y0 ≃ y1 en Y . Then the homotopy H : X × I −→ Y given by

H(x, t) =


F (x, 3t) if 0 ≤ t ≤ 1

3 ,

σ(3t− 1) if 1
3 ≤ t ≤ 2

3 ,

G(x, 3− 3t) if 2
3 ≤ t ≤ 1,

is a homotopy from f to g.

If Y is path connected, then the homotopy class of all nullhomotopic maps

from X en Y is well defined and will be denoted by 0 ∈ [X,Y ]. In this case, we

write the fact that a map f : X −→ Y is nullhomotopic simply as f ≃ 0.

3.1.10 Examples.

(a) Any two maps f, g : X −→ Rn are homotopic; for example, through the

linear homotopyH(x, t) = (1−t)f(x)+tg(x) determined by the line segments

that join the point f(x) with the point g(x) in Rn for each x ∈ X. Thus,

[X,Rn] = 0.
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(b) Every map f : Rn −→ Y es nullhomotopic, for example, through the homo-

topy H(x, t) = f((1−t)x), determined by the image in Y of the line segments

from x to 0. Thus, if Y is path connected, [Rn, Y ] = 0.

(c) If ∗ is a singular space, then for any space Y , there is exactly one homotopy

class in [∗, Y ] for each path component of Y , since a homotopy of maps from

∗ to Y is the same thing as a path in Y , that is, [∗, Y ] is in one-to-one

correspondence with the path components of Y ; in other words, [∗, Y ] =

π0(Y ).

(d) If f : W −→ X and g : Y −→ Z are continuous, and H : X × I −→ Y is a

nullhomotopy, then H ◦ (f × idI) : W × I −→ Y and g ◦H : X × I −→ Z

are nullhomotopies. Hence the composite (in any order) of an arbitrary map

and a nullhomotopic map is always nullhomotopic.

(e) If X is contractible, then any maps f : W −→ X and g : X −→ Y are

nullhomotopic, since f = idX ◦ f and g = g ◦ idX and idX is nullhomotopic.

Since, in particular, a contractible space is path connected (exercise), if X

is contractible, then [W,X] = 0 and [X,Y ] = 0 for any nonempty space W

and any path-connected space Y .

(f) Bn and Rn are contractible through the linear contractions given by (x, t) 7→
(1 − t)x. Along with these spaces, all (closed) balls (disks) and all (open)

cells are contractible. This, together with (a), puts (a) and (b) in a more

general context.

(g) A subset A ⊂ Rn is said to be star-like if it contains a point x0 such that for

any other point x ∈ A the line segment from x to x0 lies inside A, that is,

if (1− t)x+ tx0 ∈ A for every t ∈ I. In particular, convex sets are star-like.

Any star-like set A is contractible via the contraction H : A× I −→ A given

by H(x, t) = (1− t)x+ tx0.

(h) Since we already know by the stereographic projection that for any point

x0 ∈ Sn, Sn − x0 is homeomorphic to Rn, or in other words, that Sn − x0

is a cell, we have that any continuous nonsurjective map f : X −→ Sn
such that x0 ̸∈ f(X), f factors through the inclusion i : Sn − x0 ↪→ Sn,
that is nullhomotopic. Consequently, f is nullhomotopic. See 3.1.11 below

for another proof of this fact.

(i) Consider the infinite comb, defined as the subspace of R2 given by

P = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y > 0 ⇔ x = 0,
1

n
, n ∈ N} .

(See Figure 3.1).
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Figure 3.1 The infinite comb

The homotopy

H(x, y, t) =

{
(x, (1− 2t)y) if 0 ≤ t ≤ 1

2 ,

((2− 2t)x, 0) if 1
2 ≤ t ≤ 1,

shows that P is strongly contractible to the point (0, 0). However, P is not

strongly contractible to any point of the form (0, y), 0 < y ≤ 1; in partic-

ular, it is not strongly contractible to (0, 1), because it is not locally con-

nected at this point, nor at any point of the form (0, t), t > 0, (see Figure

3.2).

Figure 3.2 A neighborhood in the infinite comb

3.1.11 Remark. An alternative proof of statement (h) above is the following.

Since the line segment that joins −x0 with f(x) in Rn+1 does not contain 0, the

homotopy H : X × I −→ Sn given by

H(x, t) =
(1− t)f(x)− tx0
|(1− t)f(x)− tx0|
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is well defined, starts at f and ends at the constant map c−x0 ; namely, it is a

nullhomotopy of f .

3.1.12 Exercise. Check that, indeed, the comb space P is not strongly con-

tractible to the point (0, 1) ∈ P .

3.1.13 Exercise. Prove that if f, g : X −→ Sn are maps such that for every

x ∈ X, f(x) ̸= −g(x), then f ≃ g.

It is frequently convenient to have certain restriction on the homotopy concept.

In what follows we analyze some cases.

3.1.14 Definition. Take f, g : X −→ Y and let A ⊂ X be such that f |A = g|A.
We say that f and g are homotopic relative to A if there exists a relative homotopy

H : X × I −→ Y , namely a homotopy such that H(x, 0) = f(x), H(x, 1) = g(x)

and H(a, t) = f(a) = g(a) for every a ∈ A. In other words, a homotopy between f

and g which is stationary on A. This fact is denoted by H : f ≃ g rel A. Relative

homotopy, such as it is the case with the free homotopy, is an equivalence relation.

3.1.15 Remark. If f, g : X −→ Y are continuous and A ⊂ X is such that f |A =

g|A, then f ≃ g rel A =⇒ f ≃ g. However, the converse of this statement is false,

as we easily infer from 3.1.10(i).

Another frequent concept which is also useful in homotopy theory is the fol-

lowing.

3.1.16 Definition. Recall that a topological space X together with a subspace

A is called a pair of spaces and is denoted by (X,A). A map of pairs, denoted by

f : (X,A) −→ (Y,B), is a map f : X −→ Y such that f(A) ⊂ B. A homotopy

of pairs is a map of pairs such that H(a, t) ∈ B for every a ∈ A, t ∈ I. If

f(x) = H(x, 0) and g(x) = H(x, 1), f, g : (X,A) −→ (Y,B), then we say that H is

a homotopy of pairs between f and g; in symbols, H : f ≃ g : (X,A) −→ (Y,B).

So as the free homotopy, homotopy of pairs is an equivalence relation, and similarly

to 3.1.7, we denote the class {g | f ≃ g : (X,A) −→ (Y,B)} by [f ] and the set of

these classes by [X,A;Y,B]. If A = ∅ = B, then this homotopy set coincides with

[X,Y ], but in general, if f : (X,A) −→ (Y,B), then its class [f ] ∈ [X,A;Y,B]

differs from its class [f ] ∈ [X,Y ], as we shall see.

3.1.17 Exercise. If (X1, A1) and (X2, A2) are pairs of spaces, then their product

(X1, A1)× (X2, A2) is the pair (X1 ×X2, A1 ×X2 ∪X1 ×A2). Prove the following

statements.
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(a) The product of pairs is compatible with the identification of a space X with

the pair (X, ∅).

(b) If f1 : (X1, A1) −→ (Y1, B1) and f2 : (X2, A2) −→ (Y2, B2) are maps of pairs,

then f1 × f2 : (X1, A1)× (X2, A2) −→ (Y1, B1)× (Y2, B2) is a map of pairs.

3.1.18 Exercise. A homeomorphism of pairs φ : (X,A) −→ (Y,B) is a homeo-

morphism φ : X −→ Y such that φ(A) = B.

(a) Prove that there is a homeomorphism of pairs

α : (I × I, ({0} × I) ∪ (I × {1}) ∪ ({1} × I)) −→ (I × I, {1} × I) .

(Hint: Take

α(s, t) =


(1− 3s, t3) if 0 ≤ s ≤ 1−t

3 ,

(t, 3s−2st+2t−1
2t+1 ) if 1−t

3 ≤ s ≤ 2+t
3 ,

(3s− 2, 3−t3 ) if 2+t
3 ≤ s ≤ 1.)

(b) Let (Z,X) be a pair of spaces and takeW = (Z×{0})∪(X×I)∪(Z×{1}) ⊂
Z × I. Prove that there exists a homeomorphism of pairs

φ : (Z × I × I, (Z × I × {1}) ∪ (W × I))
−→ (Z × I × I, (Z × {1} × I) ∪ (X × I × I))
= (Z × I, (Z × {1}) ∪ (X × I))× I .

(Hint: The pair on the left hand side is the product of pairs (Z,X) × (I ×
I, ({0} × I) ∪ (I × {1}) ∪ ({1} × I)), while that on the right hand side is

the product (Z,X)× (I × I, {1}× I). The desired homeomorphism φ is then

idZ × α, where α is as in (a).)

The following exercise will be used below.

3.1.19 Exercise. Prove that if there exists a retraction σ : Z×I −→ (Z×{1})∪
(X×I), then there also exists a retraction ρ : Z×I×I −→ (Z×I×{1})∪(W ×I),
whereW = (Z×{0})∪(X×I)∪(Z×{1}) ⊂ Z×I. (Hint: Let ρ = φ−1◦(σ×idI)◦φ,
where φ is as in the previous exercise 3.1.18.)

What the previous exercise asserts, in more technical terms, is that if the

inclusionX ↪→ Z is a cofibration, then the inclusionW ↪→ Z×I is also a cofibration
(see 3.4.8 below or [2, 4.1]).

3.1.20 Example. Since the unit interval I is contractible, [I, I] = 0. However,

the set [I, ∂I; I, ∂I] consists of four elements; namely the homotopy class of the
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identity map idI , that of the constant map c0 with value 0, that of the constant

map c1 with value 1, and that of the map idI given by idI(t) = 1 − t. Indeed,

if f ≃ g : (I, ∂I) −→ (I, ∂I), then f |∂I = g|∂I , that is, f(0) = g(0)(= 0 or 1)

and f(1) = g(1)(= 0 or 1). Given f : (I, ∂I) −→ (I, ∂I), the homotopy H(s, t) =

(1− t)f(s) + t[(1− s)f(0) + sf(1)] is of pairs; it starts at f and ends at c0, idI , c1

or idI , according to whether f |∂I = c0, id∂I , c1, or id∂I . Therefore, [f ] = [g] if and

only if f |∂I = g|∂I .

3.1.21 Remark. If f ≃ g : (X,A) −→ (Y,B), then f ≃ g : X −→ Y and

f |A ≃ g|A : A −→ B. However, the converse statement is not true (see 3.3.8).

3.1.22 Exercise. Prove that X and Y are contractible spaces if and only if the

topological product X × Y is a contractible space.

3.1.23 Exercise. Recall that the diagonal map dX : X −→ X × X is given by

dX(x) = (x, x). Prove that dX is nullhomotopic if and only if X is contractible.

More generally, take f : X −→ Y and let df : X −→ X × Y be the graph map

of f , that is, df (x) = (x, f(x)); prove that df is nullhomotopic if and only if X is

contractible.

3.1.24 Exercise. Prove that for every space X, its cone CX = X × I/X × {1}
is contractible.

A special case of pairs of spaces is the following, where A and B are singular

subspaces.

3.1.25 Definition. Given a space X and a point x0 ∈ X, the pair (X,x0) is

called pointed space and the point x0, base point of the pointed space. A map

of pairs f : (X,x0) −→ (Y, y0), that is, a map such that f(x0) = y0, is called

pointed map, and so also a homotopy of pairs H : (X,x0)× I −→ (Y, y0), namely

a homotopy such that H(x0, t) = y0, t ∈ I, is called a pointed homotopy.

In this case we may alternatively denote the homotopy set [X,x0;Y, y0] by

[X,Y ]∗ if the base points are obvious or their names are not important.

3.1.26 Exercise. If we consider S0 = {−1, 1} as a pointed space with base point

1, prove that there is a bijection

π0(X) ∼= [S0, X]∗ ,

if X is considered as a pointed space with any point x0 ∈ X as base point. (Hint:

By 3.1.10, π0(X) ∼= [P,X], where P is a singular space; prove hence, that [P,X] ∼=
[S0, 1;X,x0].)
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3.1.27 Note. The pairs of spaces together with the maps of pairs build a category

in the sense that idX determines a map of pairs id(X,A) : (X,A) −→ (X,A) for

every A ⊂ X, and if f : (X,A) −→ (Y,B), g : (Y,B) −→ (Z,C) are maps of pairs,

then the composite g ◦f : (X,A) −→ (Z,C) is a map of pairs. In this case we refer

to the category of pairs of spaces. In particular, if we restrict the pairs of spaces

to pointed spaces, we shall be dealing with the category of pointed spaces.

Moreover, we can associate to every pair of spaces (X,A) a pointed space

(X/A, {A}), where {A} represents the point to which A collapses in the quotient

spaceX/A. Thus, a map of pairs f : (X,A) −→ (Y,B) determines a map of pointed

spaces f : (X/A, {A}) −→ (Y/B, {B}) in a functorial way, that is, such that if

f = id(X,A), then f = id(X/A,{A}), and if f : (X,A) −→ (Y,B) and g : (Y,B) −→
(Z,C) are maps of pairs, then

g ◦ f = g ◦ f : (X/A, {A}) −→ (Z/C, {C}) .

In other words, the assignment

(X,A)

f

��

(X/A, {A})

f
��

� //

(Y,B) (Y/B, {B})

is a functor from the category Top2 of pairs of spaces and continuous maps of pairs

to the category Top∗ of pointed spaces and continuous pointed maps.

A space X can also be seen as a pair if we take the pair of spaces (X, ∅), so
that the assignment

X

f

��

(X, ∅)

f

��

� //

Y (Y, ∅)

is also a functor, now from the category Top of topological spaces and continuous

maps to Top2.

If we recall that X/∅ = X+ = X ⊔ {x0}, then we may compose the functors

described above to obtain a functorial way of associating to any topological space

X a pointed space; namely (X+, x0). Thus, we have that

X

f

��

(X+, x0)

f+

��

� //

Y (Y +, y0),

where f+|X = f and f+(x0) = y0, is a functor from Top to Top∗.
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Similarly, given any pair of spaces (X,A), we may associate to it either the

space X or the space A and so we have that

(X,A)

f

��

X

f

��

(X,A)

f

��

A

f |A

��

� // and
� //

(Y,B) Y (Y,B) B

are functors from Top2 to Top.

Since we frequently define new spaces through identifications, it is quite conve-

nient to know that if the homotopies are compatible with the identifications, then

they determine homotopies in the quotient spaces.

3.1.28 Proposition. Let q : X −→ X be an identification and let H : X×I −→ Y

be a homotopy compatible with q, that is, such that if q(x1) = q(x2), then also

H(x1, t) = H(x2, t), for all t ∈ I. Then H determines a homotopy H : X×I −→ Y

such that H(q(x), t) = H(x, t), x ∈ X, t ∈ I.

Proof: Since I is (locally) compact, the map q × idI : X × I −→ X × I is an

identification and, since H is compatible with it, H determines H as desired. ⊓⊔

An immediate consequence of this fact is the following corollary.

3.1.29 Corollary. Given equivalence relations in the spaces X and Y , both de-

noted, for simplicity, by the same symbol ∼, take a homotopy H : X×I −→ Y such

that if x1 ∼ x2 in X, then H(x1, t) ∼ H(x2, t) in Y , t ∈ I. Then H determines

a homotopy H : (X/∼) × I −→ Y/∼ such that if x ∈ X/∼ denotes the class of

x ∈ X and y ∈ Y/∼ denotes the class of y ∈ Y , then H(x, t) = H(x, t), x ∈ X,

t ∈ I. ⊓⊔

There are other interesting consequences of 3.1.28. For instance, we have the

following.

3.1.30 Proposition. Given an attaching situation; that is, a diagram X ⊃ A
f−→

Y , and homotopies H : X × I −→ Z, K : Y × I −→ Z such that if a ∈ A,

H(a, t) = K(f(a), t) ∈ Z, t ∈ I, then the map (H,K) : (X⊔Y )×I −→ Z such that

(H,K)|X×I = H, (H,K)|Y×I = K, induces a homotopy ⟨H,K⟩ : (Y ∪fX)×I −→
Z. ⊓⊔
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3.1.31 Note. Congruently with 3.1.27, we have that the construction of the ho-

motopy sets [X,Y ] (resp. [X,A;Y,B], [X,x0;Y, y0]) are functorial in the following

sense. Given a map φ : Y −→ Z (resp. φ : (Y,B) −→ (Z,C), φ : (Y, y0) −→
(Z, z0)), there is a function

φ∗ : [X,Y ] −→ [X,Z]

(resp. φ∗ : [X,A;Y,B] −→ [X,A;Z,C], φ∗ : [X,x0;Y, y0] −→ [X,x0;Z, z0])

defined by φ∗([f ]) = [φ ◦ f ].

Analogously, given a map ψ : Z −→ X (resp. ψ : (Z,C) −→ (X,A), ψ :

(Z, z0) −→ (X,x0)), we obtain a function

ψ∗ : [X,Y ] −→ [Z, Y ]

(resp.

ψ∗ : [X,A;Y,B] −→ [Z,C;Y,B],

ψ∗ : [X,x0;Y, y0] −→ [Z, z0;Y, y0])

defined by ψ∗([f ]) = [f ◦ ψ].

These assignments are functorial, since (idY )∗ = 1[X,Y ] (resp. (id(Y,B))∗ =

1[X,A;Y,B], (id(Y,y0))∗ = 1[X,x0;Y,y0]) and if φ : Y −→ Z and γ : Z −→ W

(resp. φ : (Y,B) −→ (Z,C), and γ : (Z,C) −→ (W,D), φ : (Y, y0) −→ (Z, z0)

and γ : (Z, z0) −→ (W,w0)), then (γ ◦ φ)∗ = γ∗ ◦ φ∗ : [X,Y ] −→ [X,W ]

(resp. (γ ◦ φ)∗ = γ∗ ◦ φ∗ : [X,A;Y,B] −→ [X,A;W,D], (γ ◦ φ)∗ = γ∗ ◦ φ∗ :

[X,x0;Y, y0] −→ [X,x0;W,w0]); thus,

Y

φ

��

[X,Y ]

φ∗

��

� //

Z [X,Z]

is a covariant functor, namely a functor such that the induced arrows point in the

same direction, from the category Top, (resp. Top2), to the category Set of sets
and functions. On the other hand, (idX)

∗ = 1[X,Y ] (resp. (id(X,A))
∗ = 1[X,A;Y,B],

(id(X,x0))
∗ = 1[X,x0;Y,y0]), and if ψ : Z −→ X and λ :W −→ Z (resp. ψ : (Z,C) −→

(X,A) and λ : (W,D) −→ (Z,C), ψ : (Z, z0) −→ (X,x0) and λ : (W,w0) −→
(Z, z0)), then (ψ ◦ λ)∗ = λ∗ ◦ ψ∗ : [X,Y ] −→ [W,Y ] (resp. (ψ ◦ λ)∗ = λ∗ ◦ ψ∗ :

[X,A;Y,B] −→ [W,D;Y,B], (ψ ◦ λ)∗ = λ∗ ◦ ψ∗ : [X,x0;Y, y0] −→ [W,w0;Y, y0]);

thus,

Z

π

��

[Z, Y ]

� //

X [X,Y ]

ψ∗

OO

is a contravariant functor; that is, a functor such that the induced arrows point in

the opposite direction, from Top, (resp. Top2, Top∗), to Set.
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3.1.32 Exercise. Recall Exercise 3.1.26, where one has to show that

π0(X) ∼= [S0, X]∗ .

Prove the following:

(a) The correspondences

X 7−→ π0(X) and X 7−→ [S0, X]∗

are both functors from the category Top∗ to the category Set.

(b) The bijection is natural; namely, for any pointed map f : X −→ Y the

diagram

π0(X)
∼= //

f∗
��

[S0, X]∗

f∗
��

π0(Y ) ∼=
// [S0, Y ]∗ ,

is commutative, where the vertical arrow f∗ on the left-hand side sends the

path component of X corresponding to a point x to the path component of

Y corresponding to the point f(x), while f∗ on the right-hand side sends the

class [γ] to the class [f ◦ γ], for any pointed map γ : S0 −→ X.

Thanks to Proposition 3.1.28, we see that a homotopy of pairs H : (X,A) ×
I −→ (Y,B) defines a homotopy of pointed spaces H : (X/A, {A}) × I −→
(Y/B, {B}), so that if f ≃ g : (X,A) −→ (Y,B), then f ≃ g : (X/A, {A}) −→
(Y/B, {B}). In other words, we have the following.

3.1.33 Proposition. There is a natural function

[X,A;Y,B] −→ [X/A, {A};Y/B, {B}]

given by [f ] 7→ [f ]. ⊓⊔

3.1.34 Exercise. Prove that, in fact, the function in the preceding proposition

is natural in both (X,A) and Y,B); namely, show that if φ : (X,A) −→ (X ′, A′)

and ψ : (Y,B) −→ (Y ′, B′) are maps of pairs, then the diagrams

[X,A;Y,B] // [X/A, {A};Y/B, {B}]

[X ′, A′;Y,B]

φ∗

OO

// [X ′/A′, {A′};Y/B, {B}]

φ∗

OO
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and

[X,A;Y,B]

ψ∗
��

// [X/A, {A};Y/B, {B}]

ψ∗
��

[X,A;Y ′, B′] // [X/A, {A};Y ′/B′, {B′}]

are commutative.

3.1.35 Exercise. Given two homeomorphisms f, g : X −→ Y , we say that they

are isotopic if there exists an isotopy H : f ≃ g; that is, a homotopy such that

for every t ∈ I, Ht : X −→ Y is a homeomorphism. Prove that every rotation

r : S1 −→ S1, that is, a map r given by r(e2πit) = e2πi(t0+t), is isotopic to idS1 .

3.1.36 Exercise. Given continuous f, g : X −→ S1, we define f · g : X −→ S1

simply by (f ·g)(x) = f(x)g(x), with the usual multiplication of complex numbers.

Prove that the multiplication [f ] · [g] = [f · g] is well defined and equips [X,S1]

with the structure of an abelian group. For “nice” spaces X, this abelian group is

the so-called first cohomology group of X and is usually denoted by H1(X) (see

[2, §7.1]).

3.2 Homotopy of mappings of the circle into itself

Up to this point we have not seen any explicit maps that are not nullhomotopic.

In this section we shall study from the homotopical viewpoint the first example

of nontrivial maps. The mappings of the circle into itself will not only be the first

example, but, in a sense they provide us with a fundamental example of this. We

shall follow here the very convenient approach of Stöcker–Zieschang [23].

Recall that the points of the circle S1 ⊂ C have the form e2πit. Let q : I −→ S1

be the identification such that q(t) = e2πit.

Let φ : I −→ R be a continuous pointed function, that is, a function such that

φ(0) = 0, that also satisfies φ(1) = n ∈ Z. The map I −→ S1 given by t 7→ e2πiφ(t),

is compatible with the identification q. Hence it determines a pointed map

φ̂ : S1 −→ S1 ,

that is, a map such that φ̂(1) = 1, given by φ̂(e2πit) = e2πiφ(t). Therefore, one has

a commutative diagram

I
φ //

q

��

R

��
S1

φ̂
//___ S1 .
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We might say, in plain words, that the values of the map φ run along the

interval [0, n] (since we start from 0 and arrive at n) in one time unit, that is,

while letting the argument of the function run along the interval [0, 1]. Therefore,

the map φ̂ is such that while its argument runs around S1 once, starting at 1 and

returning to 1, its value runs around S1 n times, also starting at 1 and returning

to 1. In other words, after one turn of the argument, there are n turns of the value

of φ̂. More precisely, this number n counts n counterclockwise turns if n > 0,

and −n clockwise turns if n < 0. We shall prove in what follows that any mapping

f : S1 −→ S1 coincides with φ̂ for some φ : I −→ R, that is, that one can “unwind”

the mapping.

3.2.1 Proposition. Given any pointed map f : S1 −→ S1, that is, a map such

that f(1) = 1, there exists a unique pointed function φ : I −→ R, that is, with

φ(0) = 0, such that f(ζ) = φ̂(ζ), ζ ∈ S1.

Proof: The function is unique, since if φ,ψ : (I, 0) −→ (R, 0) are such that φ̂ =

ψ̂ : S1 −→ S1, that is, if they are such that e2πiφ(t) = e2πiψ(t), then ψ(t)−φ(t) ∈ Z
for all t ∈ I. Therefore, since the function I −→ Z given by t 7→ ψ(t) − φ(t) is

continuous, and since I is connnected and Z discrete, it follows that this function

has to be constant. Moreover, since ψ(0)− φ(0) = 0− 0 = 0, then ψ = φ.

Let us see now that φ exists. We need a mapping φ such that φ(0) = 0 and

such that f(e2πit) = e2πiφ(t). To that end, let us take the main branch, log, of

the complex logarithm; namely, if z = reiα ∈ C, r > 0, −π < α < π, then

log(z) = ln(r) + iα, where ln is the natural logarithm function. Let h : I −→ S1

be such that h(t) = f(e2πit). Since I is compact, h is uniformly continuous, and so

there exists a partition 0 = t0 < t1 < · · · < tk = 1 of I such that

|h(t)− h(tj)| < 2 if t ∈ [tj , tj+1] and j = 0, 1, . . . , k − 1 .

Hence h(t) ̸= −h(tj), that is, h(t) · h(tj)−1 ̸= −1. Therefore, log(h(t) · h(tj)−1) is

well defined. The desired function is thus the following. If t ∈ [tj , tj+1], take

φ(t) =
1

2πi

(
log

(
h(t1)

h(t0)

)
+ · · ·+ log

(
h(tj)

h(tj−1)

)
+ log

(
h(t)

h(tj)

))
.

Then φ is well defined, continuous, and has real values. Using the exponential law

ea+b = eaeb, and elog(z) = z, since h(t0) = h(0) = 1, one gets

e2πiφ(t) =
h(t)

h(t0)
= h(t) = f(e2πit) .

⊓⊔

As a consequence of this last proposition, we obtain the fundamental result of

this section.
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3.2.2 Theorem. Given any mapping f : S1 −→ S1, there exists a unique pointed

function φ : I −→ R such that f(ζ) = f(1) · φ̂(ζ), ζ ∈ S1 (where the dot here

means the complex product).

Proof: Let g : S1 −→ S1 be given by g(ζ) = f(1)−1 · f(ζ). Then g(1) = 1, and

therefore by 3.2.1, there exists a unique pointed function φ : I −→ R such that

g(ζ) = φ̂(ζ). Hence, f(ζ) = f(1) · φ̂(ζ). ⊓⊔

Given a function φ : I −→ R such that φ(0) = 0 and φ(1) = n ∈ Z, then
φ ≃ φn rel {0, 1} for φn : I −→ R given by φn(s) = ns, since H : I × I −→ R
defined by

H(s, t) = (1− t)φ(s) + nst

is a homotopy relative to {0, 1} between φ and φn. Applying the exponential

mapping to both φ and φn, we obtain the following result.

3.2.3 Lemma. Let φ : I −→ R satisfy φ(0) = 0 and φ(1) = n ∈ Z. Then

φ̂ ≃ φ̂n rel {1}. ⊓⊔

Given a mapping f : S1 −→ S1, we have by Theorem 3.2.2 that f = f(1) · φ̂,
that is, f is the result of composing a map of type φ̂ with a rotation as was defined

in Exercise 3.1.35. By this exercise, we know that a rotation is homotopic to the

identity map idS1 ; therefore, f ≃ φ̂, for some φ : I −→ R such that φ(0) = 0 and

φ(1) = n ∈ Z. By 3.2.3, we have the following.

3.2.4 Proposition. Given f : S1 −→ S1, then there exists a unique n ∈ Z such

that f ≃ φ̂n : S1 −→ S1.

We have the following definition.

3.2.5 Definition. Let f : S1 −→ S1 be continuous and let φ : I −→ R be the

unique function that by 3.2.2 exists and is such that f(ζ) = f(1) · φ̂(ζ). Since the

integer φ(1) = n is well defined, we define the degree of f as this integer n and

denote it by deg(f).

It is geometrically clear what is meant by deg(f), since by 3.2.2 this integer

indicates how many times f(ζ) turns around S1 when ζ turns once around S1.

This motion of f(ζ) is counterclockwise if n > 0 and clockwise if n < 0, while if

n = 0, it means that f ≃ c0, that is, the total number of turns is 0.

We observe that deg(f) depends only on the homotopy class of f ; namely, we

have the following.
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3.2.6 Lemma. If f ≃ g : S1 −→ S1, then deg(f) = deg(g).

Proof: Let H : S1 × I −→ S1 be a homotopy such that H(ζ, 0) = f(ζ) and

H(ζ, 1) = g(ζ), and let fs : S1 −→ S1 be given by fs(ζ) = H(ζ, s). By 3.2.2,

there exists a unique continuous function φs : I −→ R such that φs(0) = 0,

φs(1) ∈ Z, and fs(ζ) = fs(1) · φ̂s(ζ). We shall see that the mapping I × I −→ R
given by (t, s) 7→ φs(t) is a homotopy; that is, it is continuous. As in the proof of

Proposition 3.2.2, the map h : I × I −→ S1 given by (s, t) 7→ h(s, t) = fs(e
2πit) is

uniformly continuous, and hence one can choose the partition of I in the proof of

that proposition in such a way that

|h(s, t)− h(s, tj)| < 2 if s ∈ I, t ∈ [tj , tj+1] and j = 0, 1, . . . , k − 1 .

As before, one can now define φs with the same formula, but inserting in it the

map hs : t −→ h(s, t) instead of h; that is, if s ∈ I and t ∈ [tj , tj+1], then

φs(t) =
1

2πi

(
log

(
h(s, t1)

h(s, t0)

)
+ · · ·+ log

(
h(s, tj)

h(s, tj−1)

)
+ log

(
h(s, t)

h(s, tj)

))
.

Therefore, φs(t) is continuous as a function of s and of t; in particular, the function

s 7→ φs(1) is continuous, and since φs(1) ∈ Z, it has to be constant. Since f(ζ) =

f(1) · φ̂0(ζ) and g(ζ) = g(1) · φ̂1(ζ), we obtain that deg(f) = φ0(1) = φ1(1) =

deg(g). ⊓⊔

Thus, the degree determines a function [S1,S1] −→ Z. The fundamental result

in this section, which shows us how an invariant is used for classification problems,

is the following.

3.2.7 Theorem. The function

[S1,S1] −→ Z given by [f ] 7→ deg(f) ,

is well defined and bijective. More precisely, one has the following

(a) If n ∈ Z, then the map gn : S1 −→ S1 given by gn(ζ) = ζn is such that

deg(gn) = n.

(b) Take f, g : S1 −→ S1. Then f ≃ g if and only if deg(f) = deg(g).

Proof: (a) Since gn(e
2πit) = e2πint, we have that gn = φ̂n; thus deg(f) = φn(1) = n.

(b) By 3.2.6, if f ≃ g, then deg(f) = deg(g).

Conversely, if deg(f) = deg(g) = n, then we have that f(ζ) = f(1) · φ̂(ζ)
and g(ζ) = g(1) · ψ̂(ζ), where φ(0) = ψ(0) = 0 and φ(1) = ψ(1) = n. Since

multiplication by f(1) and by g(1) yields rotations, and so maps that are homotopic

to idS1 , and since by the considerations before 3.2.3 we have φ ≃ φn ≃ ψ, it follows

that f ≃ φ̂ ≃ φ̂n ≃ ψ̂ ≃ g. ⊓⊔
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3.2.8 Examples.

(a) The map idS1 : S1 −→ S1 has degree 1, since idS1 = g1.

(b) If f : S1 −→ S1 is nullhomotopic, than deg(f) = 0, since then f ≃ g0.

(c) The reflection ρ : S1 −→ S1 on the x-axis, that is, the map ρ such that

ρ(ζ) = ζ, has degree −1, since s = g−1. More generally, since any other

reflection ρ′ : S1 −→ S1 is conjugate to ρ by a rotation r : S1 −→ S1, that

is, ρ′ = r−1 ◦ ρ ◦ r, we have that deg(ρ′) = deg(ρ) = −1.

3.2.9 Proposition. Given f, g : S1 −→ S1, then

deg(f · g) = deg(f) + deg(g) ,

where f · g : S1 −→ S1 denotes the mapping ζ 7→ f(ζ)g(ζ), using the complex

multiplication in S1.

Proof: If f ≃ gm and g ≃ gn, then f · g ≃ gm · gn = gm+n. ⊓⊔

3.2.10 Proposition. Given f, g : S1 −→ S1, then

deg(f ◦ g) = deg(f) deg(g) .

Proof: If f ≃ gm and g ≃ gn, then f ◦ g ≃ gm ◦ gn = gmn. ⊓⊔

3.2.11 Corollary. If f : S1 −→ S1 is a homeomorphism, then deg(f) = ±1.

Consequemtly, f ≃ idS1 or f ≃ ρ, where ρ is the reflection given by taking complex

conjugates.

Proof: Since f ◦ f−1 = id, deg(f) deg(f−1) = 1; this is only possible if deg(f) =

deg(f−1) = ±1. In particular, we have that deg(f) = deg(f−1). ⊓⊔

3.2.12 Definition. We say that a map f : Sm −→ Sn is odd if for every x ∈ Sm,
f(−x) = −f(x); we say that the map is even if for every x ∈ Sn, f(−x) = f(x).

3.2.13 Theorem.

(a) If f : S1 −→ S1 is odd, then deg(f) is odd.

(b) If f : S1 −→ S1 is even, then deg(f) is even.
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Proof: (a) By 3.2.2, there is a map φ : I −→ R such that φ(0) = 0, φ(1) = deg(f),

and

f(e2πit) = f(1) · e2πiφ(t) .

From −e2πit = e2πi(t+
1
2
) and −f(e2πit) = f(−e2πit) = f(e2πi(t+

1
2
)) it follows that

e2πi(φ(t)+
1
2
) = −e2πiφ(t) = e2πiφ(t+

1
2
) ,

and therefore

φ

(
t+

1

2

)
= φ(t) +

1

2
+ k ,

where k is an integer that does not depend on t, since I is connected and φ is

continuous. For t = 0 one has that φ(12) = φ(0 + 1
2) = φ(0) + 1

2 + k = 1
2 + k. For

t = 1
2 , one has

deg(f) = φ(1) = φ

(
1

2
+

1

2

)
= φ

(
1

2

)
+

1

2
+ k =

1

2
+ k +

1

2
+ k = 1 + 2k ,

and therefore deg(f) is odd.

The even case is proved similarly. ⊓⊔

3.2.14 Exercise. Prove (b) in the theorem above.

3.2.15 Exercise. The set [S1,S1] has an additive structure (namely the structure

of an abelian group), given by [f ] + [g] = [f · g] (see 3.2.9) and a multiplicative

structure given by [f ][g] = [f ◦ g] (see 3.2.10). Prove that [S1,S1] is a commutative

ring with 0 = [g0] (g0(ζ) = 1 for all ζ ∈ S1) and 1 = [g1] (g1(ζ) = ζ for all ζ ∈ S1)

with respect to these structures. Conclude that the function [S1,S1] −→ Z given

by [f ] 7→ deg(f) is a ring isomorphism. According to Exercise 3.1.36, this proves

that the first cohomology group of the circle is Z, i.e., H1(S1) ∼= Z.

3.2.16 Proposition. The inclusions i, j : S1 ↪→ T2 = S1 × S1 given by i(z) =

(z, 1), j(z) = (1, z) are not nullhomotopic and are not homotopic to each other;

that is, 0 ̸= [i] ̸= [j] ̸= 0.

Proof: If i and j were nullhomotopic, then the composites proj1 ◦ i = idS1 and

proj2◦j = idS1 would also be nullhomotopic, thus contradicting 3.2.8(a). Similarly,

if i and j were homotopic, then the composites proj1 ◦ i = idS1 = g1 and proj1 ◦j =
g0 would also be homotopic, a result that would contradict 3.2.8(a) and (b). ⊓⊔

Proposition 3.2.16 above, showing that the maps i and j are not homotopic,

corresponds to the intuitive idea that each of the two maps “surrounds” a certain

“hole”. In fact, i surrounds the “exterior hole” of the tube forming the torus, and
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ji

Figure 3.3 The generators i and j on the torus

j the “interior hole,” and these two holes are essentially different (see Figure 3.3).

Let us say, colloquially, that if we consider the torus as a car tire, then i surrounds

the tube and j surounds the rim.

The next example is probably more eloquent. If we bore a hole into the complex

plane C, let us say, to obtain the complement of the origin C−0, then the inclusion

i : S1 ↪→ C− 0 is not nullhomotopic, since if it were, then the map

idS1 : S1 i−→ C− 0
r−→ S1 ,

would also be nullhomotopic, where r(z) = z/|z|. What this shows is that the map

i : S1 −→ C − 0 detects the hole. It is in this sense that we shall systematize in

the next section the study of maps S1 −→ X for any topological space X in order

to “detect holes” or, in other words, to measure certain kinds of complications in

the structure of the space X.

3.2.17 Remark. Let f : S1 −→ C be continuous and z0 ̸∈ f(S1). A rasonable

question is the following: How many times does the curve described by f turn

around z0? The answer is not always intuitively clear, as shown in Figure 3.4.

The answer is as follows. First, if r : C − 0 −→ S1 is the retraction given by

r(z) = z/|z|, then the map

fz0 : S1 f−→ C− z0
tz0−→ C− 0

r−→ S1 ,

where tz0(z) = z − z0, is well defined. Then the answer to the question posed

is that the curve described by f surrounds the point z0 precisely deg(fz0) times.

This number is called the winding number of the curve f(S1), and we denote it by

W (f, z0). In other words,

(3.2.18) W (f, z0) = deg(fz0) where fz0(ζ) =
f(ζ)− z0
|f(ζ)− z0|

.

For example, see [8] for a systematic and more general study of the degree, the

winding number, and other related concepts.
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f(S1)

z0

Figure 3.4 How many times does the curve f(S1) turn around z0?

As a matter of fact, when f is differentiable, then the winding number around

z0 corresponds to the number obtained by the Cauchy formula; that is,

W (f, z0) = deg(fz0) =
1

2πi

∫
S1

f ′(ζ)

f(ζ)− z0
dζ .

(See [22] or [3].)

Having been able to classify maps S1 −→ S1 up to homotopy brings many

nice consequences. From the fact that deg(idS1) = 1, one has that idS1 is not

nullhomotopic, and from this we obtain the following.

3.2.19 Theorem. The circle S1 is not contractible.

Proof: If it were, then idS1 would be nullhomotopic. ⊓⊔

In the example of i : S1 −→ C− 0, we saw that r : C− 0 −→ S1 is a retraction

of the punctured plane C− 0 onto the subspace S1; this way of thinking allows us

to prove an interesting fact, which is the following.

3.2.20 Theorem. There is no retraction r : B2 −→ S1, that is, there is no map

r such that r|S1 = idS1.

Proof: Since B2 is contractible (see 3.1.10(f)), any map defined on B2 is nullho-

motopic, and in particular, r would be so too. But this would be a contradiction,

since the composition of r with the inclusion S1 ↪→ B2, which is idS1 , would also

be nullhomotopic. Thus, such an r cannot exist. ⊓⊔
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The proposition above allows us to prove a very important result in topology

with many applications. It is known as Brouwer’s fixed point theorem.

3.2.21 Theorem. Every map f : B2 −→ B2 has a fixed point, that is, a point

x0 ∈ B2 such that f(x0) = x0.

Proof: If there were no such x0, then we would have f(x) ̸= x for every x ∈ B2.

Thus the points x and f(x) would determine a ray that starts at f(x), passes

through x, and intersects S1 in exactly one point r(x) (see Figure 3.5). The map

r : B2 → S1 is well defined, continuous, and is also a retraction. However, the

existence of such a retraction is denied by Proposition 3.2.20. ⊓⊔

f(x)

x

r(x)

Figure 3.5 The hypothetic retraction r : B2 −→ S1

3.2.22 Exercise. For a given map f , find an explicit formula for the retraction

r : B2 −→ S1 described in the proof of Brouwer’s fixed point theorem 3.2.21.

3.2.23 Exercise. Take X = {(x, y, z) ∈ R3 | |x| ≤ 1, |and| ≤ 2, |z| ≤ 3} and

consider the map f : X −→ R3 given by

f(x, y, z) =

(
x− y2 + z2 + 1

14
, y − x2 + z2 + 4

14
, z − x2 + y2 + 9

14

)
.

Prove that the equation f(x, y, z) = 0 has a solution (in X). (Hint: Use Brouwer’s

fixed point theorem 3.2.21.)

The Brouwer fixed point theorem is valid in general. Its proof follows similarly

to that of 3.2.21. One needs the following.

3.2.24 Theorem. There is no retraction r : Bn −→ Sn−1, that is, there is no map

r such that r|Sn−1 = idSn−1.
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The proof requires some arguments, either from analysis or from algebraic

topology, which are beyond the scope of this text. However, using this result,

using one proves the general Brouwer theorem.

3.2.25 Theorem. Every map f : Bn −→ Bn has a fixed point, namely there is

x0 ∈ Bn such that f(x0) = x0.

The following result is equivalent to the retraction theorem 3.2.24

3.2.26 Theorem. The identity map Sn−1 −→ Sn−1 is nonnullhomotopic.

Proof: If 3.2.24 holds and H : Sn−1×I −→ Sn−1 is a nullhomotopy of the identity,

then the map r : Bn −→ Sn−1 given by r(tx) = H(x, t) is a retraction.

Conversely, if r : Bn −→ Sn−1 is a retraction, then H(x, t) = r(tx) defines a

nullhomotopy of the identity. ⊓⊔

The degree concept is so useful that it frequently has applications beyond the

limits of topology. A nice example of this is the proof of the fundamental theorem

of algebra.

3.2.27 Theorem. (Fundamental theorem of algebra) Every nonconstant polyno-

mial with complex coefficients has a root. That is, if f(z) = a0 + a1z + · · · +
an−1z

n−1 + zn, n > 0, a0, a1, . . . , an−1 ∈ C, then there exists z0 ∈ C such that

f(z0) = 0.

Proof: Assuming that f does not have a root, the mapping z 7→ f(z) would de-

termine a map f : C −→ C − 0. If we take µ = |a0| + |a1| + · · · + |an−1| + 1 and

z ∈ S1, then

|f(µz)− µnzn| ≤ |a0|+ µ|a1|+ · · ·+ µn−1|an−1|
≤ µn−1(|a0|+ |a1|+ · · ·+ |an−1|) (since µ ≥ 1)

< µn = |µnzn| (since µ > |a0|+ |a1|+ · · ·+ |an−1|).

Therefore, f(µz) lies in the interior of a circle with center at µnzn and radius |µnzn|,
and so the line segment connecting f(µz) with µnzn does not contain the origin.

Hence H(z, t) = (1− t)f(µz)+ tµnzn determines a homotopy H : S1× I −→ C−0

between the mapping z 7→ f(µz) and the mapping z 7→ µnzn. Since the first map is

nullhomotopic using the nullhomotopy (z, t) 7→ f((1− t)µz), so also is the second

map. Therefore, by composing it with the known retraction r : C − 0 −→ S1

given by r(z) = z/|z|, we obtain that the map S1 −→ S1 given by z 7→ zn is

nullhomotopic. But this last map is gn, and so we have contradicted 3.2.7. ⊓⊔
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Another application of the degree, or more precisely, of the winding number

W (f, z) defined above in 3.2.17, is to prove a version of the Jordan curve theorem.

This assertion will be based on the following proposition.

3.2.28 Proposition. Let f : S1 −→ C be continuous, and let z0 and z1 be points

on the same path component of C− f(S1). Then W (f, z0) =W (f, z1).

Proof: If λ : z0 ≃ z1 is a path, then fλ(t) given by

fl(t)(ζ) =
f(ζ)− l(t)

|f(ζ)− l(t)|

(see 3.2.18) is a homotopy from fz0 to fz1 ; consequently,

W (f, z0) = deg(fz0) = deg(fz1) =W (f, z1) .
⊓⊔

The following is a weak version of the famous Jordan curve theorem.

3.2.29 Theorem. Given any map f : S1 −→ C, the complement of its image C−
f(S1) contains only one unbounded path component For z inside this component,

one has that W (f, z) = 0.

Proof: Since f(S1) is compact, being the continuous image of a compact set, the

Heine-Borel theorem guarantees that it is bounded. Thus its complement C−f(S1)

contains an unbounded component V . If µ > 0 is large enough, then f(S1) ⊂ D =

{z ∈ C | |z| ≤ µ}, C −D ⊂ C − f(S1), and, since D is bounded, (C −D) ∩ V ̸=
∅. Therefore, since C − D is path connected, C − D ⊂ V and V is the only

unbounded component of C − f(S1). If z ∈ V and z′ ∈ C − D, then by 3.2.28,

W (f, z) =W (f, z′). Moreover, the homotopy

H(ζ, t) =
(1− t)f(ζ)− z′

|(1− t)f(ζ)− z′|

starts at fz′ and ends at a constant map, and so one has thatW (f, z′) = deg(fz′) =

0. ⊓⊔

The classical Jordan curve theorem states that given an embedding e : S1 ↪→
R2, then the complement R2 − e(S1) has exactly two components, one bounded

and one unbounded. The latter is the one given by 3.2.29. One can prove that

W (e, z) = ±1 if z lies inside the bounded component.

Another beautiful result of algebraic topology is the Borsuk–Ulam theorem,

of which we shall prove only its two-dimensional version. This result implies the

nonexistence of an embedding S2 ↪→ R2.



90 3. Homotopy

3.2.30 Theorem. (Borsuk–Ulam) Given a continuous map f : S2 −→ R2, there

is a point x ∈ S2 such that f(x) = f(−x).

Proof: If we assume that f(x) ̸= f(−x) for every point x ∈ S2, then one cane

define two maps, namely

f1 : S2 −→ S1 given by f1(x) =
f(x)− f(−x)
|f(x)− f(−x)|

,

f2 : B2 −→ S1 given by f2(x1, x2) = f1

(
x1, x2,

√
1− x21 − x22

)
.

If we define g = f2|S1 : S1 −→ S1, then we have, on the one hand, that g is

nullhomotopic, since the homotopy

H : S1 × I −→ S1 given by H(ζ, t) = f2((1− t)ζ)

is a nullhomotopy. On the other hand, g is odd, that is, g(−ζ) = −g(ζ), since
f1 is odd. By 3.2.13(a) one has that deg(g) is odd, thus contradicting that g is

nullhomotopic. ⊓⊔

3.2.31 Note. The Borsuk–Ulam theorem is often described in meteorological

terms as follows. If we assume that temperature T and athmospheric pressure

P are continuous functions of location on the surface of the Earth, then both de-

termine a map f = (T, P ) : S2 −→ R2. The theorem asserts in this case that there

exists a pair of antipodal points with the same temperature and pressure.

If g : S2 −→ S1 is continuous, then it cannot be odd, that is, it cannot happen

that g(−x) = −g(x), since the composite

S2 g−→ S1 ↪→ R2

would be a counterexample to the Borsuk–Ulam theorem 3.2.30. In the proof of

this theorem, by assuming the contrary of its assertion, that is, the existence of

f : S2 −→ R2 such that for every x ∈ S2, f(x) ̸= f(−x), we could construct an odd

map g : S2 −→ S1. We have hence that the Borsuk–Ulam theorem is equivalent to

the following.

3.2.32 Theorem. There are no continuous odd maps f : S2 −→ S1. ⊓⊔

3.2.33 Remark. There is a general version of the Borsuk–Ulam theorem stating

that given a continuous map f : Sn −→ Rn, there is a point x ∈ S2 such that

f(x) = f(−x). As before, this statement is equivalent to saying that there are

no continuous odd maps f : Sn −→ Sn−1. In order to prove these facts, more

sophisticated machinery is needed (see [2, 11.8.28 and 11.8.29]).
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3.2.34 Exercise. By assuming that the generalization of the Borsuk–Ulam the-

orem given in 3.2.33 is true, prove that if there exists a continuous odd map

f : Sm −→ Sn, then m ≤ n. Moreover, prove that this last statement is equivalent

to the Borsuk–Ulam theorem. (Hint: Observe that if m ≤ n, then Sm ⊂ Sn.)

3.2.35 Exercise. Let f : B2 −→ R2 be an odd map on the boundary, that is,

such that if x ∈ S1, then f(−x) = −f(x). Prove that there exists x0 ∈ B2 such

that f(x0) = 0.

3.2.36 Exercise. Consider the following system of equations:

x cos y = x2 + y2 − 1

y cosx = tan 2π(x3 + y3) .

Using the last exercise, prove that the system has a solution (x0, y0) such that

x20 + y20 ≤ 1.

One last result in this section, whose proof is an application of the Borsuk–

Ulam theorem, is the so-called ham sandwich theorem. In order to state it, we

need the following preparatory considerations. For each point a = (a1, a2, a3) ∈ S2

and each element d ∈ R, let E(a, d) ⊂ R3 be the plane given by the equation

γa(x) = a1x1 + a2x2 + a3x3 − d = 0 ,

and let E+(a, d) and E−(a, d) be the half-spaces of R3 such that γa(x) ≥ 0 and

γa(x) ≤ 0, respectively. Obviously, E+(−a,−d) = E−(a, d). Let A1, A2, A3 ⊂ R3

be subsets such that the functions f±ν : S2 × R −→ R, where f±ν (a, d) is the

volume of Aν ∩ E±(a, d), ν = 1, 2, 3, are well defined and continuous. Moreover,

for each a ∈ S2 there exists a unique da ∈ R depending continuously on a and

such that f+1 (a, da) = f−1 (a, da). This last condition means that given any family

of parallel planes, there exists only one that divides the set A1 in two portions of

equal volume. Clearly, d−a = −da. Under these conditions, one has the following

result.

3.2.37 Theorem. (Ham sandwich theorem) Given subsets A1, A2, A3 ⊂ R3 as

above, there exists a plane in R3 dividing each of the sets A1, A2, A3 in portions

of equal volume.

Proof: If f : S2 −→ R2 is the map given by

f(a) = (f+2 (a, da), f
+
3 (a, da)) ,
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then, by the assumptions, f is well defined and continuous. By the Borsuk–Ulam

theorem 3.2.30 there exists b ∈ S2 such that f(b) = f(−b). By the properties of

da and E±(a, d), one has for this b that f+ν (b, db) = f+ν (−b, d−b) = f+ν (−b,−db) =
f−ν (b, db), as was required. ⊓⊔

3.2.38 Note. As indicated by its name, a gastronomic interpretation of the ham

sandwich theorem can be given if we assume that A1 is the bread, A2 the butter,

and A3 the ham that were used to prepare a sandwich. The theorem guarantees

that it is possible to cut the sandwich with a flat knife, independent of the dis-

tribution of the ingredients, in such a way that each of the two pieces contains

exactly the same amount of bread, butter, and ham.

3.2.39 Exercise. Prove the Borsuk–Ulam theorem in dimension 1; that is, prove

that given a map f : S1 −→ R, there exists x ∈ S1 such that f(x) = f(−x). (Hint:
Use the intermediate value theorem for a convenient function.)

3.2.40 Exercise. State the ham sandwich theorem in R2 and apply the former

exercise to prove it.

3.2.41 Exercise. Indicate which of the following maps f are nullhomotopic and

which are not.

(a) f : Sn −→ Sn+1 , f(x) = (x, 0).

(b) f : S1 −→ S1 × S1 , f(ζ) = (ζ2, ζ3).

(c) f : S1 × S1 −→ S1 × S1 , f(ξ, η) = (ξη, 1).

(d) f : R2 − {0} −→ R2 − {0} , f(x, y) = (x2 − y2, 2xy).

(e) f : R2 − {0} −→ R2 − {0} , f(x, y) = (x2, y).

3.3 Homotopy equivalence

The concept of homotopy equivalence is weaker than that of homeomorphism, but

the homotopy methods allow us to distinguish spaces up to homotopy equiva-

lence. If by some homotopy argument, we are able to decide that two spaces are

not homotopy equivalent, then we shall immediately conclude that they are not

homeomorphic either.

Let us recall that two spaces X and Y are homeomorphic if there exist maps

f : X −→ Y and g : Y −→ X such that g ◦ f = idX and f ◦ g = idY . The

concept that we are about to introduce, is obtained by replacing in the two previous

equations the equalities by homotopies.
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3.3.1 Definition. We say that two spaces X and Y are homotopy equivalent, or

that they have the same homotopy type,∗ in symbols X ≃ Y , if there exist maps

f : X −→ Y and g : Y −→ X such that

g ◦ f ≃ idX and f ◦ g ≃ idY .

Each of these two maps f and g is called a homotopy equivalence and we may write

f : X ≃ Y or g : Y ≃ X;. Moreover, each of them is a homotopy inverse of the

other.

3.3.2 Example. If X is a contractible space, then it is homotopy equivalent to

a singular space (a one-point space), that is, X ≃ ∗, since if idX ≃ cx0 , then the

maps f : X −→ ∗, and g : ∗ −→ X such that g(∗) = x0 are homotopy inverse,

because g ◦ f = id∗ and f ◦ g = cx0 ≃ idX . In particular, Bn ≃ ∗.

3.3.3 Exercise. Prove that, conversely to the statement of Example 3.3.2, if a

space X is homotopy equivalent to a point, then it is contractible. Namely, one

has that X is contractible if and only if X is homotopy equivalent to a point.

The following statement that shows that the concept of homotopy equivalence

is weaker than that of homeomorphism is immediate.

3.3.4 Proposition. If X ≈ Y , then X ≃ Y . ⊓⊔

It is an easy exercise to prove the following statement.

3.3.5 Proposition. The homotopy equivalence relation is, in fact, an equivalence

relation in the class of topological spaces. ⊓⊔

Corresponding to the concept of homotopy of pairs, one has the following con-

cept.

3.3.6 Definition. Two pairs of spaces (X,A) and (Y,B) are homotopy equivalent,

or they have the same homotopy type, in symbols (X,A) ≃ (Y,B), if there exist

maps of pairs f : (X,A) −→ (Y,B) and g : (Y,B) −→ (X,A) such that

g ◦ f ≃ id(X,A) and f ◦ g ≃ id(Y,B) ;

that is, these composites ar homotopic to the identity maps via homotopies of

pairs.

∗Mostly in the literature is this second the usual denomination.
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We use analogous designations in the relative case, to those of the absolute

case. An important special case is the homotopy equivalence of pointed spaces.

The following statement is clear.

3.3.7 Proposition. If f : (X,A) −→ (Y,B) is a homotopy equivalence of pairs,

then f : X −→ Y and f |A : A −→ B are homotopy equivalences. ⊓⊔

The converse of the previous statement is false as is shown in the next exercise.

3.3.8 Exercise. Let P ⊂ R2 be the comb space and take A = {(0, 1)}. Prove
that the map f : (X,A) −→ (X,A) given by f(x) = x0 = (0, 1) satisfies that

f : X −→ X and f |A : A −→ A are homotopy equivalences; however, f is not a

homotopy equivalence of pairs. (Observe that this assertion shows, in particular,

that the converse of the statement in 3.1.21 is not true.)

An important source of homotopy equivalences is given by the following con-

cept.

3.3.9 Definition. A subspace A of a space X is a deformation retract of X if

there exists a homotopy H : X × I −→ X such that

H(x, 0) = x if x ∈ X

H(x, 1) ∈ A if x ∈ X(3.3.10)

H(a, 1) = a if a ∈ A.

Such homotopy H is called a deformation retraction of X in A. In particular, the

map rH : X −→ A given by rH(x) = H(x, 1) is a retraction of X in A; namely,

rH |A = idA and A is a retract of X. If additionally to the conditions (3.3.10) we

ask

H(a, t) = a if a ∈ A , t ∈ I ,

we say that A is a strong deformation retract of X and that H is a strong defor-

mation retraction.

3.3.11 Remark. In the previous definition H is a homotopy between the identity

map and the retraction rH , that is, H : idX ≃ rH ; if the deformation retraction H

is strong, then the homotopy is relative to A, that is, H : idX ≃ rH rel A.

3.3.12 Theorem. If A is a deformation retract of X, then the inclusion i : A ↪→
X is a homotopy equivalence.
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Proof: If i : A ↪→ X is the inclusion and H : X × I −→ X is a deformation

retraction then, by Remark 3.3.11, H : idX ≃ i ◦ rH ; on the other hand, by the

third equation of (3.3.10), rH ◦ i = rH |A = idA. ⊓⊔

In general, the converse is false. However, one has the following.

3.3.13 Exercise. A homotopy H : X × I −→ X is called a weak deformation

retraction, if in (3.3.10) one only requires that the map rH : X −→ A ⊂ X given by

rH(x) = H(x, 1) is a weak retraction, namely, it is such that rH |A ≃ idA : A −→ A.

Prove that A is a weak deformation retract of X if and only if the inclusion map

A ↪→ X is homotopy equivalence.

3.3.14 Exercise. Give an example of a weak deformation retract of X that is not

a deformation retract of X. (In particular, the fact that an inclusion i : A ↪→ X is

a homotopy equivalence does not imply that A is a deformation retract of X.)

3.3.15 Exercise. Prove that every compact convex subset of Rn is a (strong)

deformation retract of Rn.

3.3.16 Examples.

(a) Let ∗ ∈ CX be the vertex of the cone over X, CX = X × I/X × {1}; that
is, if q : X × I −→ CX is the quotient map, then ∗ = q(x, 1). The singular

space ∗ is a strong deformation retract of CX, via the strong deformation

retraction H : CX × I −→ CX given by H(q(x, s), t) = q(x, (1− t)s+ t).

(b) The unit sphere Sn is a strong deformation retract of X = Bn+1 − 0 or of

X = Rn+1 − 0, via H : X × I −→ X given by

H(x, t) = (1− t)x+ t
x

|x|
.

(c) The disk with g holes Dg (see 2.2.9(b)) contains a wedge sum of g circles as

a strong deformation retract. Consequently, the handle body Hg = Dg × I

contains S1
1∨ · · ·∨S1

g as a strong deformation retract. Thus one has that Dg,

Hg, and the wedge of g circles are homotopy equivalent spaces. (See Figure

3.6.)

3.3.17 Theorem. Let Y be a space obtained from X by attaching an n-cell via a

map

Bn ⊃ Sn−1 φ−→ X ;

that is, Y = X ∪φ en. If y0 is the point in Y that comes from 0 ∈ Bn ⊂ X ⊔Bn by

taking the quotient, then X is a strong deformation retract of Y − {y0}, as can be

appreciated in Figure 3.7.
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H3

D3

S1
1 ∨ S1

2 ∨ S1
3

� �

Figure 3.6 Hg, Dg and S1
1 ∨ · · · ∨ S1

g are homotopy equivalent.

Figure 3.7 Deformation sequence of a space with a punctured cell

Proof: As we already saw in Example 3.3.16(b), the sphere Sn−1 is a strong defor-

mation retract of the punctured ball Bn−0. IfH : (Bn−0)×I −→ Bn−0 is a strong

deformation retraction, then H ′ = H ⊔projX : ((Bn−0)⊔X)×I −→ (Bn−0)⊔X
is a strong deformation retraction that determines K in the quotient space. This

homotopy K is the desired deformation retraction such that the following diagram

commutes.

((Bn − 0) ⊔X)× I
H′

//

q×idI
��

(Bn − 0) ⊔X
q

��
((X ∪φ en)− {y0})× I (X ∪φ en)− {y0}

(Y − {y0})× I
K

//_______ Y − {y0} .

Since I is locally compact, the vertical arrow on the left hand side is an identifi-

cation, and this guarantees the continuity of K. Clearly, K starts at the identity

map and ends at a retraction Y − {y0} −→ X ⊂ Y − {y0}, and X remains fixed
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along the whole deformation. ⊓⊔

Let us now consider the orientable surface Sg, resp. the nonorientable surface

Ng, both of genus g. As in 2.2.11 and 2.2.22, it is a quotient space of the regular

polygon E4g, resp. E2g. Let

p : E4g −→ Sg resp. q : E2g −→ Ng

be the quotient map. In particular, the boundary ∂E4g, resp. ∂E2g, is mapped un-

der p, resp. q, to a wedge sum of circles; namely, all the vertices pi, i = 1, 2, . . . , 4g,

resp. i = 1, 2, . . . , 2g, of the polygon are mapped to just one point x0, and the

edges ai, bi, resp. ai, i = 1, 2, . . . , g, are mapped onto the circles αi, βi, resp. αi,

i = 1, 2, . . . , g. Taking homeomorphisms

S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

≈ p(∂E4g) , resp. S1 ∨ · · · ∨ S1︸ ︷︷ ︸
g

≈ q(∂E2g) ,

let

φg : S1 −→ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

, resp. ψg : S1 −→ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
g

,

be such that the following diagrams commute:

S1
φg //

≈
��

S1 ∨ · · · ∨ S1

≈
��

∂E4g p
// p(∂E4g) ,

S1
ψg //

≈
��

S1 ∨ · · · ∨ S1

≈
��

∂E2g q
// q(∂E2g) .

Then we have the following consequence of this discussion.

3.3.18 Proposition. The surface Sg is obtained by attaching a 2-cell to p(∂E4g)

with the attaching map S1 ≈ ∂E4g −→ p(∂E4g), namely

Sg ≈ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

∪φge
2 .

Analogously, the surface Ng is obtained by attaching a 2-cell to q(∂E2g) with the

attaching map S1 ≈ ∂E2g −→ q(∂E2g), namely

Ng ≈ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
g

∪ψge
2 .

⊓⊔

From this proposition and 3.3.17, we obtain the following consequence.

3.3.19 Corollary. If x ∈ Sg and y ∈ Ng are any points, then there are homotopy

equivalences

Sg − {x} ≃ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

Ng − {y} ≃ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
g

.

⊓⊔
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3.3.20 Note. By 2.2.28 one has that each of the surfaces Sg and Ng are homo-

geneous, and thus it is irrelevant in the previous corollary, what points are x ∈ Sg

and y ∈ Ng.

Coming back to the general case, let us assume that Y is obtained from X by

attaching a 2-cell; that is to say, Y = X∪φe2, with an attaching map φ : S1 −→ X.

There is a path in Y given by the composite

λφ : I
q−→ S1 φ−→ X −→ X ∪φ e2 = Y ,

where q(t) = e2πit. Clearly, this path is a loop, that is, λφ(0) = λφ(1). There is a

commutative diagram of pairs

(I, ∂I)
λφ //

��

(Y, y0)

(S1, 1)
� � // (B2, 1) ,

OO

and since B2 is contractible, the loop λφ is nullhomotopic (relative to ∂I = {0, 1};
see Figure 3.8).

x0

Figure 3.8 Every loop can be contracted inside a cell.

3.3.21 Definition. Let us call λφ the canonical loop associated to the attaching

space Y = X ∪φ e2.

3.3.22 Corollary. For every attaching space Y = X ∪φ e2, the canonical loop is

nullhomotopic; that is, one has that

λφ ≃ cy0 rel ∂I ,

where y0 = φ(1) ∈ Y . ⊓⊔
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3.3.23 Exercise. Similarly to Corollary 3.3.22, given a space Y obtained by at-

taching an n-cell to a space X with an attaching map φ : Sn−1 −→ X, namely

Y = X ∪φ en, prove that the homotopy class of the map γφ : Sn−1 φ−→ X ↪→ Y is

trivial. In other words, prove that the map γφ is nullhomotopic.

No confusion should arise if we call

αi, βi : (I, ∂I) −→ (Sg, x0) ;

αi : (I, ∂I) −→ (Ng, x0)

the loops defined by the maps

αi : t 7→ p((1− t)p4i−3 + tp4i−2) , βi : t 7→ p((1− t)p4i−2 + tp4i−1) ;

αi : t 7→ q((1− t)p2i−1 + tp2i) ,

respectively, where p : E4g −→ Sg and q : E2g −→ Ng are the quotient maps and

the points pi are as in 2.2.11 and 2.2.22. The canonical loop λφg in Sg travels during

the lapse
[
0, 1

4g

]
the same as does the loop α1 (reparametrized by [0, 1] −→

[
0, 1

4g

]
);

during the lapse
[

1
4g ,

2
4g

]
, the same as β1; during the lapse

[
2
4g ,

3
4g

]
, the same as

α1, but in the opposite sense; during the lapse
[

3
4g ,

4
4g

]
, the same as β1, but in

the opposite sense, and, in general, during the lapse
[
4i−4
4g ,

4i−3
4g

]
, the same as αi;

during the lapse
[
4i−3
4g ,

4i−2
4g

]
, the same as βi; during the lapse

[
4i−2
4g ,

4i−1
4g

]
, the

same as αi, but in the opposite sense, and during the lapse
[
4i−1
4g ,

4i
4g

]
, the same

as βi, but in the opposite sense, i = 1, . . . , g. We can express this by writing

simply λφg = α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g , (see 4.4.6(c) in the following chapter).

Similarly, in the nonorientable case for the surfaces Ng, we express the canonical

loop as λψg = α2
1 · · ·α2

g.

From 3.3.22, we obtain the following statement.

3.3.24 Theorem. The loops λφg = α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g in Sg; and α
2
1 · · ·α2

g

in Ng are nullhomotopic. ⊓⊔

This theorem will appear again in the next chapter when we compute the

fundamental groups of the surfaces.

To finish this section, we recall the mapping cylinderMf of a map f : X −→ Y ,

defined in 1.2.5, and that is obtained by identifying each point (x, 0) ∈ X× I with

f(x) ∈ Y . If we denote the quotient map by q : (X × I) ⊔ Y −→ Mf , we have a

homotopy H :Mf × I −→Mf given by

H(z, t) =

{
q(x, (1− t)s) if z = q(x, s) , (x, s) ∈ X × I,

q(y) if z = q(y) , y ∈ Y ,
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that is clearly a strong deformation retraction of Mf onto Y ⊂ Mf . We have

proved the following.

3.3.25 Proposition. Given a map f : X −→ Y , the subspace Y ⊂Mf is a strong

deformation retract of the cylinder Mf , with retraction r :Mf −→ Y given by

r(z) =

{
f(x) if z = q(x, s) , (x, s) ∈ X × I,

y if z = q(y) , y ∈ Y . ⊓⊔

Therefore, the inclusion i : Y ↪→ Mf is a homotopy equivalence with inverse

r. Moreover, if we take the inclusion j : X ↪→ Mf given by j(x) = q(x, 1), then

f = r◦j; that is, up to homotopy, every map f can be decomposed as an inclusion†

followed by a homotopy equivalence. We have, in particular, the following result.

3.3.26 Theorem. A map f : X −→ Y is a homotopy equivalence if and only if X

(or more precisely, q(X × {1})), is a (strong) deformation retract of the mapping

cylinder Mf of f .

Proof: Let j : X ↪→ Mf be the inclusion given by j(x) = q(x, 1). Since, as we

already said, the inclusion i : Y ↪→ Mf is a homotopy equivalence with inverse

r : Mf −→ Y , and since f = r ◦ j, the map f is a homotopy equivalence if and

only if j is one. It is thus enough to prove that j is a homotopy equivalence if and

only if X is a strong deformation retract of Mf .

Assume in the first place that X is a (strong) deformation retract of Mf . In

this case, by 3.3.12, j is a homotopy equivalence.

Conversely, if j : X ↪→ Mf is a homotopy equivalence with inverse g : Mf −→
X, let F : X × I −→ X be a homotopy g ◦ j ≃ idX and let G :Mf × I −→Mf be

a homotopy j ◦ g ≃ idMf
. Define a retraction r :Mf −→ j(X) by

r(z) =


q(g(z), 1) if z = q(y), y ∈ Y ,

q(gq(x, 2s)) if z = q(x, s), 0 ≤ s ≤ 1
2 ,

q(F (x, 2s− 1), 1) if z = q(x, s), 1
2 ≤ s ≤ 1.

With this retraction we define a deformation H :Mf × I −→Mf by

H(z, t) =

{
G(z, 1− 2t) if t ≤ 1

2 ,

rG(z, 2t− 1) if t ≥ 1
2 .

This is a deformation retraction (it is not yet a strong deformation and we have

to transform it into one. This can be done using the Lemma 3.3.27 below, where

we take Z =Mf and identify X with j(X).) ⊓⊔

†This inclusion is particularly “decent,” since it is a cofibration (cf. 3.4.8 below or for details [2,
4.2.8(b)]).
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If we identify X with j(X) ⊂ Mf = Z, we have that there exists a retraction

σ : Z × I −→ (Z × {0}) ∪ (X × I), defined by

σ(q(x, s), t) =

{
(q(x, 2s

2−t), 0) if 0 ≤ s ≤ 2−t
2 ,

(q(x, 1), 2s+t−2
2s−1 ) if 2−t

2 ≤ s ≤ 1,

σ(q(y), t) = (q(y), 0),

where q : (X × I) ⊔ Y −→ Mf is the canonical quotient map, and x ∈ X, s ∈ I,

and y ∈ Y . Therefore, by 3.1.19, there exists a retraction ρ : Z × I × I −→
(Z × I × {1}) ∪ (W × I).

3.3.27 Lemma. Let X ⊂ Z be such that there exists a retraction r : Z −→ X. If

there exists a deformation retraction H : Z × I −→ Z of Z in X, then there exists

a strong deformation retraction L : Z × I −→ Z of Z in X.

Proof: Let r : Z −→ X be the retraction associated to H, namely r(z) = H(z, 1) ∈
X, and take W = (Z × {0}) ∪ (X × I) ∪ (Z × {1}) ⊂ Z × I. Define G : (Z × I ×
{1}) ∪ (W × I) −→ Z by

G(z, 0, t) = z

G(x, s, t) = H(x, st)

G(z, 1, t) = H(r(z), t)

G(z, s, 1) = H(z, s) ,

where z ∈ Z, x ∈ X, s, t ∈ I. The homotopy L : Z × I −→ Z given by

L(z, t) = Gρ(z, t, 0),

where ρ : Z × I × I −→ (Z × I ×{1})∪ (W × I), as above, is a strong deformation

retraction of Z in X, as one may verify directly. ⊓⊔

Let X and Y be two topological spaces. If there is a homotopy equivalence

f : X −→ Y , then by 3.3.26, X is a strong deformation retract of the space

Z = Mf . Moreover, Y is always a strong deformation retract of Z. Conversely, if

X and Y are each a strong deformation retract of some space Z, then, since both

are homotopy equivalent to Z, they are homotopy equivalent to each other. Thus

we have proved the following.

3.3.28 Corollary. Two topological spaces X and Y are homotopy equivalent if

and only if there exists a space Z that contains both as strong deformation retracts.

⊓⊔
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3.3.29 Exercise. Let X and Y be homotopy equivalent topological spaces. Prove

or disprove by a counterexample each of the following assertions:

(a) X connected =⇒ Y connected.

(b) X path connected =⇒ Y path connected.

(c) X compact =⇒ Y compact.

(d) X Hausdorff =⇒ Y Hausdorff.

State corresponding assertions for other topological properties and prove or dis-

prove them.

3.3.30 Exercise. Prove that X1 ≃ Y1, X2 ≃ Y2 =⇒ X1 ×X2 ≃ Y1 × Y2. Is this

fact also true for infinite products?

3.3.31 Exercise. We know by 3.3.19, that if we remove a point from the torus,

then we obtain a space of the same homotopy type of the wedge sum of two circles.

What can be said if we remove two points instead? And what about more than

two?

3.3.32 Exercise. Prove that if we remove from R3 the unit circle in R2 ⊂ R3,

then the remaining space is homotopy equivalent to the wedge sum S1 ∨ S2.

3.3.33 Exercise. Prove that if we remove from Sn the unit circle S1 ⊂ Sn, canon-
ically embedded, then the remaining space is homotopy equivalent to Sn−2.

3.3.34 Exercise. Prove that X ≃ X ′, Y ≃ Y ′ =⇒ [X,Y ] ≈ [X ′, Y ′].

3.3.35 Exercise. Consider the set

H(X) = {[f ] | f : X −→ X is a homotopy equivalence}.

Prove that the operation given by the composition, [f ] · [g] = [f ◦ g] turns this set
into a group. Verify that the group H(S1) es cyclic of order 2, namely that it is

isomorphic to Z/2.

3.3.36 Exercise. What particular space is the mapping cylinder of the reflection

g−1 : S1 −→ S1?
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3.3.37 Exercise. The space of n × n matrices with real coefficients Mn(R), or

with complex coefficients Mn(C), is homeomorphic to the euclidian space Rn2
, or

Cn2
= R4n2

. The determinant det : Mn(R) −→ R, or det : Mn(C) −→ C, is a

continuous function, hence, the subspaces

GLn(R) = det−1(R− 0), GLn(C) = det−1(C− 0)

are open sets. These spaces consist of the invertible matrices, and together with

matrix multiplication, they constitute groups called the general linear group of

real n×n matrices and general linear group of complex n×n matrices (see 2.4.1).

Let On ⊂ GLn(R) and Un ⊂ GLn(C) be the orthogonal and the unitary groups;

that is, M ∈ On, resp. M ∈ Un, if and only if MM∗ = 1, where M∗ represents

the transposed matrix, resp. the conjugate transposed matrix, of M , and 1 is the

identity matrix. Prove that On and Un are strong deformation retracts of GLn(R)

and GLn(C), respectively. (Hint: Use the the Gram-Schmidt orthonormalization

process.)

3.4 Homotopy extension

In this section, we shall apply the Tietze-Urysohn extension theorem to prove some

results about extension of homotopies. The Tietze-Urysohn theorem [21, 9.1.32] is

as follows. The contents are inspired by tom Dieck’s book [7].

3.4.1 Theorem. Let X be a normal space and take a closed set A ⊂ X. Consider

a family of intervals {Iλ}λ∈Λ in R and take the product Y =
∏
λ Iλ. Then every

continuous map F : A −→ Y admits a continuous extension f : X −→ Y . (In

particular, Y can be taken as Rn.) ⊓⊔

As a consequence of this, we obtain the next.

3.4.2 Theorem. Let X be a normal space and take a closed set A ⊂ X. If

f : A −→ Sn is continuous, then there is an open neighborhood V of A and a

continuous extension g : V −→ Sn of f .

Proof: Consider the composite f ′ : A
f−→ Sn ↪→ Rn+1. By the Tietze–Urysohn

theorem, there is a continuous extension F : X −→ Rn+1 of f ′. Put V =

F−1(Rn+1 − {0} and define g : V −→ Sn by

g(x) =
F (x)

|F (x)|
.

This is the desired extension. ⊓⊔
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Clearly not every map f can be continuously extended to all of X. For instance,

if X = Rn+1, A = Sn, and f = idSn , then there is no extension, since otherwise f

would be nullhomotopic.

We have the following.

3.4.3 Theorem. Let X and X × I be normal spaces, let A ⊂ X be closed. Then

every map h : X×{0}∪A×I −→ Sn has a continuous extension H : X×I −→ Sn.

Proof: By the previous result, there is a neighborhood V of X × {0} ∪ A × I in

X × I and an extension g : V −→ Sn. Since X × I is normal, by the Urysohn

lemma [21, 9.1.25] there is a function f : X × I −→ I such that f |A×I = 1 and

f |X×I−V = 0. Put s(x) = min{f(x, t) | t ∈ I}. Hence for all x ∈ X, the point

(x, s(x)t) lies inside V . If we define H(x, t) = g(x, s(x)t), then H is the desired

extension. ⊓⊔

The following result, which reformulates the previous one, states that if A ⊂ X

is a closed subset of a normal space, which has the property that X × I is also

normal, then the pair (X,A) has the homotopy extension property –HEP for short–

with respect to the spheres.

3.4.4 Theorem. Let X and X × I be normal spaces, let A ⊂ X be closed and

let f : X −→ Sn be continuous. Given a homotopy H : A × I −→ Sn such

that H(a, 0) = f(a) for all a ∈ A, then H can be extended to another homotopy

K : X × I −→ Sn such that K(x, 0) = f(x) for all x ∈ X. In a diagram

X
j0

&&MMMMMM
f

$$
A

, �
i

;;vvvvvv

j0 ##G
GG

GG X × I
K //____ Sn

A× I
+ � i×id

88qqqqq

H

::

In particular, if g : A −→ Sn is nullhomotopic, then g can be continuously extended

to a map h : X −→ Sn. ⊓⊔

3.4.5 Definition. A subset E ⊆ Rn is called a Euclidean neighborhood retract,

or ENR for short, if there is an open neighborhood V of E and a retraction

r : U −→ E.

Clearly Theorem 3.4.4 remains true if instead of Sn we put an ENR E.

3.4.6 Theorem. Let A ⊂ Sn+1 be closed and let f : A −→ Sn be continuous.

Then there is an extension g : Sn+1 −F −→ Sn of f , where F is a finite subset of

Sn+1.
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Proof: This proof makes use of some results on smooth maps, which can be seen in

[8]. Take y ∈ Rn+1 such that |y| < 1. There is a retraction r : Rn+1 − {y} −→ Sn.
We may consider f as a map A −→ Rn+1 − {y}, so that we only need to find

an extension F : Sn+1 − F −→ Rn+1 − {y}. By Theorem 3.4.4, we only need

to extend some map g which is homotopic to f . By Theorem 3.4.1, there is a

continuous extension F : Sn+1 −→ Rn+1 of f . Now we may take a C∞-map

G : Sn+1 −→ Rn+1 such that |G(x)− f(x)| ≤ 1
2 for all x ∈ Sn+1. This is possible

by applying the Weierstrass approximation theorem (see??????). Let y ∈ Rn+1 be

a regular value of G such that |y| ≤ 1
2 , which exists by Sard’s theorem (see?????).

Therefore the set F = G−1(y) is finite and G : Sn+1 − F −→ Rn+1 − {y} is

an extension of g = G|A. But by the conditions imposed, the linear homotopy

H : Sn+1 − F −→ Rn+1 − {y} given by H(x, t) = (1 − t)f(x) + tg(x) is well

defined.

One may complete the previous theorem giving a more precise description of

the exceptional set F .

3.4.7 Theorem. One may choose the set F in 3.4.6 so that it has at most one

point in each component of the complement Sn+1 −A.

Proof: Let us first delete a point z from Sn+1, and we consider Sn+1 − {z} as if it

were Rn+1. Under this convention, take

Bε(u) = {x ∈ Rn+1 | |u− x| ≤ ε} ⊂ Rn+1 −A ,

so that F does not meet the boundary Sε(u) of Bε(u). Restrict the map F to Sn+1−
(B◦

ε (u) − F ). For any point x ∈ B◦
ε (u), there is a retraction r : Bε(u) − {x} −→

Sε(u). Hence we may extend F |Sn+1−B◦
ε (u)

to Sn+1 − (B◦
ε (u) ∪ F ) ∪ (Bε(u) − {x}

by applying the map r ◦ F on Bε(u)− {x}. Hence if F is an extension of f , so is

also the newly constructed map.

The described extension process can be used in two ways. If there are several

points of F in B◦
ε (u), then the only missing point is x ∈ Bε(u), and thus we have

reduced the set F . If x, y ∈ F lie in the same component of Sn+1 − A, then we

can find a finite system of points x = x0, . . . , xk = y in this component, such that

for each i, the points xi and xi+1 lie in some adequate ball Bε(u). First we may

enlarge F by adding the points x1, . . . , xk−1, and then successively suppressing

x0, . . . , xk−1. Repeating this process we get the desired result.

3.4.8 Definition. An inclusion i : A ↪→ X is said to have the homotopy extension

property –HEP for short– for a class C of topological spaces if given a homotopy

H : A× I −→ Z, where Z ∈ C, such that H(a, 0) = f(a) for all a ∈ A, then H can
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be extended to another homotopy K : X × I −→ Z such that K(x, 0) = f(x) for

all x ∈ X. In a diagram

X
j0

&&MMMMMM
f

$$
A

, �
i

;;vvvvvv

j0 ##G
GG

GG X × I
K //____ Z

A× I
+ � i×id

88qqqqq

H

;;

i is said to be a cofibration if it has the HEP for the class of all topological spaces.

The cofibration is c closed if A ⊂ X is a closed subset.

3.4.9 Exercise. Show that if i : A ↪→ X is a closed cofibration if and only if there

is a retraction r : X × I −→ (X × {0}) ∪ (A× I). (Hint: Consider the diagram

X
j0

&&LL
LLL

LL
i′

((
A

- 

i

;;wwwwww

j0 ##F
FFFF X × I

r //____ (X × {0}) ∪ (A× I)

A× I
+ � i×id

99rrrrrr

j′

66

where i′ : X −→ X × {0} ∪ (A × I) is the embedding given by x 7→ (x, 0) and

j′ : A× I −→ (X×{0})∪ (A× I) is the inclusion. Conversely, given f and H as in

the definition, define K = (f,H) ◦ r, where (f,H)(x, 0) = f(x) if (x, 0) ∈ X ×{0}
and (f,H)(a, t) = H(a, t) if (a, t) ∈ A× I.)

The following result characterizes a cofibration (see 3.1.19) using a local variant

of the concept of a deformation retraction given in 3.3.9.

3.4.10 Theorem. An inclusion i : A ↪→ X is a cofibration if and only if there is

a function u : X −→ R+ = {t ∈ R | t ≥ 0} and a homotopy φ : X × I −→ X such

that

(1) A ⊂ u−1(0),

(2) φ(x, 0) = x for all x ∈ X,

(3) φ(a, t) = a for all a ∈ A and all t ∈ I,

(4) φ(x, t) ∈ A for all x ∈ X and all t > u(x).

Proof: If i is a cofibration, then by 3.4.9 there is a retraction r : X × I −→
(X × {0}) ∪ (A× I). Define u and φ by

u(x) = max{t− projIr(x, t) | t ∈ I} and φ(x, t) = projXr(x, t) .
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Conversely, given u and φ define the retraction r : X×I −→ (X×{0})∪(A×I)
by

r(x, t) =

{
(φ(x, t), 0) , if t ≤ u(x)

(φ(x, t), t− u(x)) , if t ≥ u(x)

We finish this section with the following result about the product of two cofi-

brations.

3.4.11 Theorem. Let i : A ↪→ X and j : B ↪→ Y be cofibrations so that A ⊂ X

is closed. Then k : (A× Y ) ∪ (X ×B) ↪→ X × Y is a cofibration.

Proof: By Theorem 3.4.10, for i we have a function u : X −→ R+ and a map

φ : X × I −→ X and for j we have a function v : Y −→ R+ and a map ψ :

Y × I −→ Y , which fulfill (1)–(4). Define a function

w : X × Y −→ R+ by (x, y) 7−→ min{u(x), v(y)} ,

and define a map

η : X × Y × I −→ X × Y by (x, y, t) 7−→ (φ(x,min{t, v(y)}), ψ(y,min{t, u(x)})) .

One may now verify that w and η satisfy (1)–(4) for i× j:

(1) Take (a, y) ∈ A× Y . Then

w(a, y) = min{u(a), v(y)} = min{0, v(y)} = 0 .

Now take (x, b) ∈ X ×B. Then

w(x, b) = min{u(x), v(b)} = min{u(x), 0} = 0 .

Hence (A× Y ) ∪ (X ×B) ⊂ w−1(0).

(2) For (x, y) ∈ X × Y one has

η(x, y, 0) = (φ(x,min{0, v(y)}), ψ(y,min{0, u(x)}))
= (φ(x, 0), ψ(y, 0)) = (x, y) .

(3) Take (a, y, t) ∈ A× Y × I. Then

η(a, y, t) = (φ(a,min{t, v(y)}), ψ(y,min{t, u(a)}))
= (a, ψ(y, 0)) = (a, y) since u(a) = 0 .

Now take (x, b, t) ∈ X ×B × I. Then

η(x, b, t) = (φ(x,min{t, v(b)}), ψ(b,min{t, u(x)}))
= (φ(x, 0), b) = (x, b) since v(b) = 0 .
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(4) Suppose

t > w(x, y) = min{u(x), v(y)} =

{
u(x) if u(x) ≤ v(y)

v(y) if v(y) ≤ u(x)

In the first case,

min{t, v(y)} ≥ u(x)“ ⇒′′ φ(x,max{t, v(y)}) ∈ A ,

and in the second case,

min{t, u(x)} ≥ v(y)“ ⇒′′ ψ(y,max{t, u(x)}) ∈ B .

In any case we have

η(x, y, t) = (φ(x,max{t, v(y)}), ψ(y,max{t, u(x)})) ∈ (A× Y ) ∪ (X ×B) .

3.4.12 Exercise. Show that given two closed cofibrations A ↪→ X and B ↪→ X,

then A ∩B ↪→ X is a closed cofibration.

3.4.13 Exercise. Assume that the following

A
i //

f
��

X

g

��
B

j
// Y

is a pushout diagram. Show that if i is a cofibration, then j is also a cofibration.

Furthermore, show that if f is a homotopy equivalence, then so is g. Conclude

that if A is contractible, then the quotient map q : X −→ X/A is a homotopy

equivalence

3.4.14 Exercise. Let i : A ↪→ X be a cofibration and let H : X × I −→ Y be a

homotopy. Assume furthermore that K : (A× I)× I −→ Y is another homotopy

starting with H ◦ (i× idX) and ending with a constant homotopy K ′ : A× I −→
Y rel A × {0, 1}, namely K(a, t, 1) = K ′(a, 0) = K(a, 0, 1). Show that there is a

homotopy H ′ : H0 ≃ H1 : X −→ Y , where Hν(x) = H(x, ν), ν = 0, 1, such that

H ′ remains constant on A.

3.4.15 Exercise. Assume that i : A ↪→ X is a cofibration and that r : X −→ A

is a strong deformation retraction. Take a strong deformation H : X × I −→ X,

that is H(x, 0) = x, H(x, 1) = r(x), and H(a, t) = a, for x ∈ X, a ∈ A, and t ∈ I,

compose with the reverse homotopy of H|A×I , and apply Exercise 3.4.14. Explain

what happens!



3.5 Domain invariance 109

3.5 Domain invariance

In this section we shall prove the domain invariance theorem 1.1.8 stated in Chap-

ter 1. This theorem an its consequences about the dimension and the boundary

invariance theorems are due to Brouwer. The proof given here uses essentially the

separation property of disjoint compact sets that Rn has (and which is a con-

sequence of the Hausdorff separation axiom replacing two points by two disjoint

compact sets), as well as the retraction theorem 3.2.24 for general n, of which we

only proved the case n = 2. Other proofs make use of some algebraic topology

results.

We start with some elementary concepts. Consider a subspace X ⊂ Rn and a

point x0 ∈ Rn −X. We define the winding map by

wX,x0 = wx0 : X −→ Sn−1 , x 7−→ x− x0
|x− x0|

.

If X is compact, then Rn − X decomposes in open path-components. Only one

of these components is unbounded. In this case, X ⊂ Br(0) = {x ∈ Rn | |x| ≤ r,

and since the complement Rn − Br(0) is connected, then it is contained in one

component V of Rn −X , which is the unbounded one, all other components lie

inside the ball Br(0).

3.5.1 Proposition. Let X ⊂ Rn be compact. Then the following hold:

(a) A given point x0 ∈ Rn −X lies in the unbounded component if and only if

the winding map wX,x0 is nullhomotopic.

(b) Two points x, y ∈ Rn − X lie in the same component if and only if the

winding maps wX,x and wX,y are homotopic.

Proof: (a) Consider an affine homeomorphism a : Rn −→ Rn of the form a(x) =

rx + b, where r > 0 and b ∈ Rn. We use a to transform X to Y = a(X) and

x0 to y0 = a(x0). Then clearly wX,x0 = wY,y0 ◦ a. Since a is a homeomorphism,

wX,x0 is nullhomotopic if and only if wY,y0 is nullhomotopic. Also x0 lies in the

unbounded component of Rn−X if and only if y0 lies in the unbounded component

of Rn−Y . Choosing r large enough and b conveniently, we may assume that x0 = 0

and X ⊂ Bn (Bn the unit ball).

If we now suppose that x0 lies in the unbounded component K of Rn−X, then

there is a path σ : x0 = 0 ≃ σ(1) = z0 ∈ Rn − Bn. Consider the homotopy

H : X × I −→ Sn−1 , (x, t) 7−→ x− λ(t)

|x− λ(t)|
.
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Then H1(x) = H(x, 1) ̸= q = |z0|−1z0 and thus its image lies in the complement

Sn−1 − {z0}, which is contractible. Hence H1 is nullhomotopic.

Conversely, if the component K where 0 lies, is bounded, then K ⊂ Bn and

K ∪X is closed, since its complement is a union of components of Rn −X, which

by 1.3.6 are open. If w = wX,0 is nullhomotopic, then by 3.4.4 we can extend w to

a map W : K ∪X −→ Sn−1. Define r : Bn −→ Sn−1 by

r(x) =

{
W (x) if x ∈ K ∪X
|x|−|x if x ∈ Bn −K .

Since both parts of the definition coincide in X, then r is well defined and contin-

uous. Furthermore r|Sn−1 = idSn−1 , hence it is a retraction, and thus contradicts

the retraction theorem 3.2.24.

(b) Assume that x and y lie in different components. We may decomposeRn−X
as a disjoint union A∪B, where (A,B) is a separation such that x ∈ A and y ∈ B.

One of the two sets A or B is bounded, let us say that it is A. The map wy|X is

defined on Rn − {y}, thus in particular it is defined on on A ∪ X ⊂ Rn − {y}.
But at the end of the proof of part (a) we saw that one cannote extend wx|X
to A ∪X. But if wx and wy were homotopic, then by 3.4.4, both maps could be

simultaneously extended. ⊓⊔

We shall now prove a duality theorem for subsets of a sphere.

3.5.2 Theorem. Let X ⊂ Sn be a closed subset which is different from Sn. Then
the complement Sn − X is connected if and only if any map f : X −→ Sn−1 is

nullhomotopic.

Proof: If Sn−X is disconnected, then take points x, y ∈ Sn−X which lie in different

components. Sn −{y} is homeomorphic to Rn, and, up to the homeomorphism, x

lies in the bounded component. By 3.5.1, there is a nullhomotopic map f : X −→
Sn−1.

Conversely, if Sn − X is connected and f : X −→ Sn−1 is continuous, then

by 3.4.7, f can be extended to a continuous map g : Sn − {x} −→ Sn−1. Since

Sn − {x} is contractible, g and thus f too, is nullhomotopic. ⊓⊔

Under the same assumptions, we have the following consequences.

3.5.3 Corollary. (a) If X is contractible, then Sn −X is connected.

(b) If X is is homeomorphic to Sn−1, then there are nonnullhomotopic maps

X −→ Sn−1. Hence Sn −X has at least two components.
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Proof: (a) is immediate and (b) follows from 3.2.26.

3.5.4 Theorem. Consider A ⊂ X ⊂ Sn such that the pair (X,A) is homeomor-

phic to the pair (Bn,Sn−1). Then the complement Sn − A consists of two compo-

nents, namely Sn −X and X −A.

Proof: By Corollary 3.5.3 (a), Sn −X is connected. On the other hand, the com-

plement X − A is homeomorphic to Bn − Sn and hence it is connected. But

Sn − A = (Sn − X) ∪ (X − A), and so the two sets (Sn − X) and (X − A)

must be the components of Sn −A.

3.5.5 Theorem. (Domain invariance) Take subsets X, Y ⊂ Sn such that X is

homeomorphic to Y . Then, if X is open in Sn, Y must be open too. ⊓⊔

Proof: Let φ : X −→ Y be a homeomorphism, and take y ∈ Y . If x ∈ X is such

that y = φ(x) ∈ Y , then take a neighborhood U of x such that U is compact and

contained in X, as well as (U, ∂U) ≈ (B=n,Sn−1). Put (W,B) = (φ(U), φ(∂U)).

By 3.5.4, W − B is open. Since y ∈ W − B ⊂ Y , y is an interior point of Y and

thus Y is open.

As a consequence of the previous result, we obtain the domain invariance the-

orem for manifolds.

3.5.6 Theorem. (Domain invariance for manifolds) Let M and N be topological

manifolds of dimension n, and take subsets X ⊂ M , Y ⊂ N such that X is

homeomorphic to Y . Then, if X is open in M , Y must be open in N .

Proof: Let φ : X −→ Y be a homeomorphism, and take y ∈ Y . If x ∈ X is such

that y = φ(x) ∈ Y , then take neighborhoods U of x in M and V of y in N such

that U is contained in X, V is contained in Y , φ(U) ⊂ V , and both U and V are

homeomorphic to Rn. Let ξ : U −→ Sn and η : V −→ Sn be embeddings with open

images ξ(U) = U ′ and η(V ) = V ′. Hence we have the the map η◦φ◦ξ−1 : U ′ −→ V ′

is a homeomorphism of U ′ onto a set V ′′ ⊂ V ′. By Theorem 3.5.5, V ′′ is open in

Sn, and so it is open in V ′ too. Hence φξ−1(U ′) = φ(U) is open in V , and thus in

N too. Since y ∈ φ(U) ⊂ N , one has that Y is open.
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Chapter 4 The fundamental group

The fundamental group is probably the most important concept of algebraic

topology. This will be the first properly algebraic invariant of a topological space

to be studied in this book. We shall associate to a topological space this group,

which in general is not abelian and whose structure provides us with valuable

information about the space.

4.1 Definition and general properties

In this section we start giving the definition of the fundamental group, which in

the beginning depends on the basic concept of a path inside a topological space.

4.1.1 Definition. Let X be a topological space and take points x0, x1 ∈ X. A

path from x0 to x1 is a map ω : I −→ X such that ω(0) = x0 and ω(1) = x1 (see

Figure 4.1). As before, we denote it by ω : x0 ≃ x1. The point x0 will be called

the origin (or beginning) of ω, and x1 the destination (or end point) of ω, and both

will be called extreme points of the path. If both extreme points coincide, that is,

if x0 = x1, we say that the path is closed or simply that it is a loop based at x0.

ωX

Figure 4.1 Path in a topological space

113
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4.1.2 Examples.

(a) If x ∈ X, then cx : I −→ X given by cx(t) = x for every t ∈ I is the constant

path or constant loop.

(b) Let ZX = X × I be the cylinder over X. Then for each x ∈ X the path

ωx : I −→ ZX given by ωx(t) = (x, t) is the generatrix over x; similarly, if

CX = ZX/X ×{1} is the cone over X, the same formula for ωx determines

the generatrix over x in the cone.

(c) More generally, given f : X −→ Y , if Mf and Cf represent the mapping

cylinder and the mapping cone of f , respectively, then the maps ωx : I −→
Mf and ωx : I −→ Cf given by ωx(t) = (x, t), where the bar represents the

corresponding images in the quotient spaces, determine the generatrices of

the cylinder and the cone.

(d) If f : S1 −→ X is continuous, then λf : I −→ X given by ωf (t) = f(e2πit) is

the associated loop of f .

(e) Take n ∈ Z. The path ωn : I −→ S1 given by ωn(t) = e2πint is the loop

of degree n in the circle. It has the effect of wrapping around S1 n times

(counterclockwise if n > 0, clockwise if n < 0, and if n = 0, it does not wrap

around) as t runs along I; ωn is the associated loop of the map gn : S1 −→ S1

defined in 3.2.7(a).

(f) In the torus T 2 = S1 × S1, the paths ω1
1, ω

2
1 : I −→ T 2 given by ω1

1(t) =

(e2πit, 1) = (ω1(t), 1) and ω
2
1(t) = (1, e2πit) = (1, ω1(t)) are loops, which will

be called the unitary equatorial loop and the unitary meridional loop. (See

3.2.16.) More generally, we have in T 2 the loops ω1
m, ω

2
n : I −→ T 2 given by

ω1
m(t) = (ωm(t), 1) and ω

2
n(t) = (1, ωn(t)).

Figure 4.2 shows the generators ω1
1 and ω2

1 in the torus.

In general, as one can see in the preceding examples as well as in Figure 4.1, as

the parameter t varies from 0 to 1, the point ω(t) describes a curve or path in X

connecting the points x0 and x1. Two paths ω, σ : I −→ X are equal if as maps they

are equal, that is, if for every t ∈ I, ω(t) = σ(t). It is not enough that they have the

same images. For instance, the loops ωn in S1 defined in 4.1.2(b) are all different

from each other. Given any numbers a < b ∈ R and any map γ : [a, b] −→ X, the

canonical homeomorphism I −→ [a, b] given by t 7→ (1− t)a+ tb transforms γ into

a new path γ̂ : I −→ X such that γ̂(t) = γ((1− t)a+ tb), so that in principle, any

such map γ is canonically a path. For technical reasons, it is convenient always to

assume a = 0 and b = 1.
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ω1
1

ω2
1

Figure 4.2 The generators ω1
1 and ω2

1 in the torus

4.1.3 Exercise. Prove that giving a path σ : xo ≃ x1 in X is equivalent to giving

a homotopy H : cx0 ≃ cx1 : ∗ −→ X, where cx represents the map from the

one-point space ∗ into X with value x.

As in the case of loops, as we saw in the last chapter, it is sometimes possible

to multiply paths by each other as well as to define inverses, as we shall now see.

4.1.4 Definition. Given a path ω : I −→ X, we define the inverse path as

ω : I −→ X, where ω(t) = ω(1 − t). If ω : x0 ≃ x1, then ω : x1 ≃ x0. Two paths

ω, σ : I −→ X are connectable if ω(1) = σ(0); in this case one can define the

product of ω and σ as the path ωσ : I −→ X given by

(ωσ)(t) =

{
ω(2t) if 0 ≤ t ≤ 1

2 ,

σ(2t− 1) if 1
2 ≤ t ≤ 1.

If ω is closed, namely a loop, we may define ωω, and we denote this path by ω2.

More generally, we can in this case define ωn as ωn−1ω for n ≥ 2.

Nonetheless, in general, ωω ̸= cx0 , cx0ω ̸= ω, etc. This bad behavior is corrected

with the following definition.

4.1.5 Definition. Two paths ω0, ω1 : I −→ X are said to be homotopic if they

have the same extreme points x0 and x1 and there exists a homotopy H : I×I −→
X such that H(s, 0) = ω0(s), H(s, 1) = ω1(s), H(0, t) = x0, H(1, t) = x1, for every

s, t ∈ I; that is, H is a homotopy relative to {0, 1}. This we denote, as usual, by

H : ω0 ≃ ω1 rel ∂I; if it is not necessary to emphasize the homotopy, then the fact

that ω0 and ω1 are homotopic is simply denoted by ω0 ≃ ω1. Figure 4.3 illustrates

this concept. If a loop ω is homotopic to the constant loop cx0 , that is, ω ≃ cx0 ,

one says that it is nullhomotopic or contractible.
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x0

ω0

ω1

x1

Figure 4.3 A homotopy of paths

4.1.6 Note. The notation H : ω ≃ σ, for a homotopy of paths, that is analogous

to the notation ω : x ≃ y for a path from x to y is justified, since H can be seen as

a path in the function space Top(I,X) furnished with the compact-open topology

(see [21]).

4.1.7 Exercise. Prove that, indeed, giving a homotopy H : ω ≃ σ (not neces-

sarily relative to the extreme points, namely such that only H(s, 0) = ω(s) and

H(s, 1) = σ(s) hold), is equivalent to giving a path in Top(I,X) with origin ω and

destination σ.

In relation to the comments following Definition 4.1.4, we have the following

lemma.

4.1.8 Lemma. Let ω : x0 ≃ x1, σ : x1 ≃ x2 and γ : x2 ≃ x3 be paths in X. Then

one has the following facts.

(a) ω(σγ) ≃ (ωσ)γ.

(b) cx0ω ≃ ω , ωcx1 ≃ ω.

(c) ωω ≃ cx0 , ωω ≃ cx1.

Proof:

(a) The homotopy H : I × I −→ X given by

H(s, t) =


ω( 4s

2−t) if 0 ≤ s ≤ 2−t
4 ,

σ(4s+ t− 2) if 2−t
4 ≤ s ≤ 3−t

4 ,

γ(4s+t−3
t+1 ) if 3−t

4 ≤ s ≤ 1,

is well defined and is such that H : ω(σγ) ≃ (ωσ)γ.
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(b) The homotopies H,K : I × I −→ X given by

H(s, t) =

{
x0 if 0 ≤ s ≤ 1−t

2 ,

ω(2s+t−1
t+1 ) if 1−t

2 ≤ s ≤ 1,

K(s, t) =

{
ω( 2s

t+1) if 0 ≤ s ≤ 1+t
2 ,

x1 if 1+t
2 ≤ s ≤ 1,

are well defined and are such that H : cx0ω ≃ ω and K : ωcx1 ≃ ω.

(c) The homotopies H,K : I × I −→ X given by

H(s, t) =

{
ω(2s(1− t)) if 0 ≤ s ≤ 1

2 ,

ω(2(1− s)(1− t)) if 1
2 ≤ s ≤ 1,

K(s, t) =

{
ω(2(1− s)(1− t)) if 0 ≤ s ≤ 1

2 ,

ω(2s(1− t)) if 1
2 ≤ s ≤ 1,

are well defined and are such that H : ωω ≃ cx0 and K : ωω ≃ cx1 . ⊓⊔

In what follows, we shall frequently write the expresion

ω1ω2 · · ·ωk ,

without parentheses, which, if it is not stated otherwise, means the path

ω1ω2 · · ·ωk(t) =


ω1(kt) if 0 ≤ t ≤ 1

k ,

ω2(kt− 1) if 1
k ≤ t ≤ 2

k ,
...

...

ωk(kt− k + 1) if k−1
k ≤ t ≤ 1,

that is, all paths in the product are uniformly traveled.

Similarly to 3.1.3, we have the following.

4.1.9 Lemma. The relation ω ≃ σ is an equivalence relation.

Proof: The homotopy H(s, t) = ω(s) proves that ω ≃ ω.

If H : ω ≃ σ, then H : I × I −→ X, given by H(s, t) = H(s, 1− t), is such that

H : σ ≃ ω.

Finally, if H : ω ≃ σ and K : σ ≃ γ, then the homotopy L : I × I −→ X

defined by

L(s, t) =

{
H(s, 2t) if 0 ≤ t ≤ 1

2 ,

K(s, 2t− 1) if 1
2 ≤ t ≤ 1,

is a homotopy relative to {0, 1}, is well defined, and satisfies L : ω ≃ γ. ⊓⊔
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In what follows we shall denote the equivalence class of ω by [ω] and we shall

call it the homotopy class of ω. We are especially interested in homotopy classes

of loops based at a specific point x and in particular, in the class [cx], which will

be denoted by 1x or, if there is no danger of confusion, by 1.

If H : ω0 ≃ ω1 and K : σ0 ≃ σ1, then the homotopy HK : I −→ X given by

HK(s, t) =

{
H(2s, t) if 0 ≤ s ≤ 1

2 ,

K(2s− 1, t) if 1
2 ≤ s ≤ 1,

is well defined and is such that HK : ω0σ0 ≃ ω1σ1. Hence we may define the

product of the homotopy classes of two connectable paths ω and σ by the formula

[ω][σ] = [ωσ] .

Using this and 4.1.8 we have the following result.

4.1.10 Proposition. Let ω : w ≃ x, σ : x ≃ y, and γ : y ≃ z be paths in X. Then

the following identities hold:

(a) [ω]([σ][γ]) = ([ω][σ])[γ].

(b) 1w[ω] = [ω] = [ω]1x.

(c) [ω][ω] = 1w, [ω][ω] = 1x.

(For this reason, [ω] is denoted by [ω]−1.) ⊓⊔

Thanks to (a), we have that the product of homotopy classes of paths is asso-

ciative. Hence there shall not be any confusion if one writes simply [ω][σ][γ].

4.1.11 Exercise. Prove that if ωn : I −→ S1, n ∈ Z, is as in 4.1.2(b), then

[ωn] = [ω1]
n. (Hint: ω2

1 = ω2; proceed by induction over n.)

The concept of fundamental group depends on a base point x0 ∈ X.

If we restrict 4.1.10 to loops (closed paths), we have the following result.

4.1.12 Theorem and Definition. Let (X,x0) be a pointed space. Then the ho-

motopy set

π1(X,x0) = {[λ] | λ is a loop based at x0}

is a group with respect to the multiplication [λ][µ] = [λµ] with neutral element

1 = 1x0 = [cx0 ] and with [λ]−1 as the inverse of each [λ]. This group is called the

fundamental group of X based at the point x0. ⊓⊔
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Let f : (X,x0) −→ (Y, y0) be a pointed map. If λ : I −→ X is a loop based at

x0, then the composite f ◦ λ : I −→ Y is a loop based at y0. Besides, if cx0 is the

constant loop in X, then f ◦ cx0 = cy0 is the constant loop in Y , and given loops

λ and µ in X, one has

f ◦ (λµ) = (f ◦ λ)(f ◦ µ) .

4.1.13 Exercise. Prove the last assertion in its general form, that is, if f : X −→
Y is continuous and λ and µ are connectable paths in X, then f ◦ λ and f ◦ µ are

connectable in Y and f ◦ (λµ) = (f ◦ λ)(f ◦ µ).

4.1.14 Theorem. A pointed map f : (X,x0) −→ (Y, y0) induces a group homo-

morphism

f∗ : π1(X,x0) −→ π1(Y, y0) ,

given by f∗([λ]) = [f ◦ λ].

Proof: If H : λ0 ≃ λ1 rel ∂I is a homotopy of loops in X based at x0, that is,

H(s, 0) = λ0(s), H(s, 1) = λ1(s), H(0, t) = x0 = H(1, t), then clearly f ◦ H :

f ◦ λ0 ≃ f ◦ λ1 rel ∂I, so that the function f∗([λ]) = [f ◦ λ] is well defined.

The remarks before the statement of the theorem prove that f∗([λµ]) = [f ◦
(λµ)] = [(f ◦ λ)(f ◦ µ)] = f∗([λ])f∗([µ]), which shows that f∗ is a group homomor-

phism. ⊓⊔

In fact, the construction of the fundamental group is functorial; that is, it

behaves well with respect to maps, as the following immediate result shows.

4.1.15 Theorem. Let (X,x0), (Y, y0), and (Z, z0) be pointed spaces and let f :

(X,x0) −→ (Y, y0) and g : (Y, y0) −→ (Z, z0) be pointed maps. Then one has the

following properties:

(a) idX∗ = 1π1(X,x0) : π1(X,x0) −→ π1(X,x0).

(b) (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) −→ π1(Z, z0). ⊓⊔

The conditions (a) and (b) above show that the correspondence

X

f

��

π1(X)

f∗
��

� //

Y π1(Y )

is a functor from the category Top∗ of pointed spaces and pointed maps to the

category Grp of groups and homomorphisms (see 3.1.27).
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4.1.16 Exercise. Recall from 4.1.2(d) that given a pointed map f : S1 −→ X,

there is an induced loop λf : I −→ X. Conversely, given a loop λ : I −→ X (based

at x0), it induces a pointed map fλ : S1 −→ X, since the exponential I −→ S1

is a quotient map and λ is compatible with it. Prove that this correspondence

establishes a bijection

π1(X) ∼= [S1, X]∗ ,

where X is based at x0 and S1 is based at 1. Moreover, prove that this bijection

is natural, namely the diagram

π1(X)
∼= //

f∗
��

[S1, X]∗

f∗
��

π1(Y ) ∼=
// [S1, Y ]∗ ,

is commutative (cf. 3.1.32(b)).

4.1.17 Examples.

(a) If λ : I −→ Rn is a loop based at 0, then the homotopy H(s, t) = (1− t)λ(s)

is a nullhomotopy. Hence [λ] = 1 ∈ π1(Rn, 0). Therefore, π1(Rn, 0) = 1; that

is, the fundamental group of Rn is the trivial group.

(b) As in the previous example, one can prove that π1(Bn, 0) = 1.

(c) Recall that a subset X ⊂ Rn is convex if given two points x, y ∈ X, then for

every t ∈ I, (1 − t)x + ty ∈ X; that is, the straight line segment joining x

and y lies inside X. Given any point x0 ∈ X and any loop λ : I −→ X based

at x0, the homotopy H(s, t) = (1 − t)λ(s) + tx0 is a nullhomotopy relative

to ∂I. Therefore, [λ] = 1 ∈ π1(X,x0). Hence the fundamental group of any

convex set is trivial.

(d) If X is (strongly) contractible to x0 ∈ X, then every loop λ : I −→ X based

at x0 is nullhomotopic, as the nullhomotopy H(s, t) = D(λ(s), t) shows,

where D : X×I −→ X is a contraction, that is, D(x, 0) = x, D(x, 1) = x0 =

D(x0, t), t ∈ I. Therefore, π1(X,x0) = 1; that is, the fundamental group of

every contractible space is trivial.

4.1.18 Proposition. Let (X,x0) and (Y, y0) be pointed spaces. Then the function

φ = (projX∗,projY ∗) : π1(X × Y, (x0, y0)) −→ π1(X,x0)× π1(Y, y0)

is a group isomorphism (see 4.3.7(c)).
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Proof: The function is clearly a homomorphism. If λ : I −→ X × Y is a loop

satisfying φ([λ]) = (1, 1), then the loops λ1 = projX ◦ λ : I −→ X and λ2 =

projY ◦ λ : I −→ Y are nullhomotopic, say through the nullhomotopies H1 :

I × I −→ X and H2 : I × I −→ Y . Therefore, H = (H1,H2) : I −→ X × Y is a

nullhomotopy of the loop (λ1, λ2) = λ : I −→ X × Y . Consequently, [λ] = 1, and

φ is a monomorphism.

On the other hand, if ([λ1], [λ2]) ∈ π1(X,x0)×π1(Y, y0) is an arbitrary element,

then the loop λ = (λ1, λ2) : I −→ X × Y is such that φ([λ]) = ([λ1], [λ2]). So φ is

an epimorphism. ⊓⊔

4.1.19 Exercise. Prove that the isomorphism given in the preceding proposition

is natural (in both X and Y ; cf. 3.1.34).

Up to now, we have only had explicit examples of trivial fundamental groups.

In the next section we shall see examples of nontrivial fundamental groups.

In what follows we shall analyze the relationship between the fundamental

groups of a space X with respect to two different base points x0 and x1.

If x0 ∈ X lies in the path component X0 of X and λ is a loop in X based at x0,

then, since I is path connected, the image of λ lies in X0. Moreover, if H : λ ≃ µ

is a homotopy in X, then the image of the homotopy also lies inside X0. These

remarks establish the truth of the following statement.

4.1.20 Proposition. Let X be a pointed space with base point x0. If X0 is the

path component of X containing x0 ∈ X, then the inclusion map i : X0 ↪→ X

induces an isomorphism i∗ : π1(X0, x0)
∼=−→ π1(X,x0). ⊓⊔

Proposition 4.1.20 allows us to restrict the analysis of the fundamental group

to path-connected spaces. Indeed for such spaces the fundamental group is well

defined, up to isomorphism, independent of the base point. More precisely, we have

the following result.

4.1.21 Theorem. Let ω : x0 ≃ x1 be a path in X. There is an isomorphism

φω : π1(X,x1) −→ π1(X,x0)

given by φω([λ]) = [ω][λ][ω]−1.

Proof: Since λ is a loop based at x1, ω and λ are connectable, and so also are ωλ

and ω; therefore, the function φω is well defined, and indeed it depends only on

the class [ω].
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To see that it is a homomorphism, we have by 4.1.10 that

φω([λ][µ]) = [ω][λ][µ][ω] = [ω][λ][ω][ω][µ][ω] = φω([λ])φω([µ]) .

Hence φω is a homomorphism.

Moreover, the homomorphism φω : π1(X,x0) −→ π1(X,x1) is clearly the in-

verse of φω. ⊓⊔

4.1.22 Exercise. Check that in fact, φω ◦φω = 1π1(X,x0) and φω ◦φω = 1π1(X,x1).

If in Theorem 4.1.21 we take in particular ω to be a loop based at x0, that is,

such that [ω] ∈ π1(X,x0), then φω is precisely the inner automorphism of π1(X,x0)

given by conjugation with the element [ω].

4.1.23 Remark. Theorem 4.1.21 allows us to write π1(X) for a path-connected

space X without reference to the base point. Notice, however, that in general there

is no canonical isomorphism between the fundamental group at two different base

points. Therefore, π1(X) is really a family of isomorphic groups.

The concept introduced in what follows will be an important concept in this

textbook, as it also is in general.

4.1.24 Definition. A topological space X is said to be simply connected if it is

path connected (0-connected) and for some base point x0 ∈ X the fundamental

group π1(X,x0) is trivial. Frequently, a simply connected space is also called 1-

connected.

The spaces given in 4.1.17 are all simply connected spaces. We have the fol-

lowing characterization of this concept.

4.1.25 Proposition. Let X be a path-connected space. The following are equiva-

lent.

(a) X is simply connected.

(b) π1(X,x) = 1 for every point x ∈ X.

(c) Every loop λ : I −→ X is nullhomotopic.

(d) ω ≃ σ rel ∂I for any two paths with the same extreme points x and y.
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Proof: (a) ⇔ (b) follows from Theorem 4.1.21, since, because X is path connected,

there is always a path ω : x0 ≃ x in X.

(b) ⇒ (c), for if λ : I −→ X is a loop based at x, then [λ] ∈ π1(X,x) = 1. Hence

[λ] = 1; that is, λ is nullhomotopic.

(c) ⇒ (d), since ωσ is a loop based at x and so is nullhomotopic; that is, ωσ ≃ cx.

Therefore, by Lemma 4.1.8,

(ωσ)σ ≃ cxσ .

But by the same lemma the left-hand side is homotopic to ω(σσ) ≃ ω, while the

right-hand side is homotopic to σ. Hence, since ≃ is an equivalence relation, ω ≃ σ.

(d)⇒ (a), for if [λ] ∈ π1(X,x0), then since λ and cx0 have the same extreme points,

λ ≃ cx0 ; that is, [λ] = 1. Hence π1(X,x0) = 1, and so X is simply connected. ⊓⊔

Let f, g : (X,x0) −→ (Y, y0) be homotopic maps between pointed spaces and

let H : X × I −→ Y be a homotopy relative to {x0}. If λ : I −→ X is a loop in

X based at x0, then as we saw above, f ◦ λ and g ◦ λ are loops in Y based at y0;

moreover, the homotopy (s, t) 7→ H(λ(s), t) is a homotopy between the loops f ◦λ
and g ◦λ relative to {0, 1}, i.e., [f ◦λ] and [g ◦λ] are the same element in π1(Y, y0).

Thus, we have shown the following.

4.1.26 Proposition. Let f, g : (X,x0) −→ (Y, y0) be homotopic maps of pointed

spaces. Then f∗ = g∗ : π1(X,x0) −→ π1(Y, y0). ⊓⊔

Indeed, the result above has a stronger version; one has the following theorem.

4.1.27 Theorem. Let f, g : X −→ Y be homotopic maps and, if H : f ≃ g is a

homotopy, let γ : I −→ Y be the path given by γ(t) = H(x0, t), for some point

x0 ∈ X. Then f∗ = φγ ◦ g∗ : π1(X,x0) −→ π1(Y, f(x0)), where φγ is as in 4.1.21.

Proof: Take [λ] ∈ π1(X,x0) and let F : I × I −→ Y be given by

F (s, t) =

{
H(λ(2(1− t)s), 2st) if 0 ≤ s ≤ 1

2 ,

H(λ(1 + 2t(s− 1)), t+ (1− t)(2s− 1)) if 1
2 ≤ s ≤ 1.

It is straightforward to check that F is a homotopy relative to {0, 1} of the path

product (f ◦ λ)γ to γ(g ◦ λ). Therefore, [f ◦ λ][γ] = [γ][g ◦ λ], that is, f∗([λ]) =

φγg∗([λ]). ⊓⊔

By the theorem above, we have that the fundamental group is a homotopy

invariant; i.e., it depends only on the homotopy type of the space. The following

holds.
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4.1.28 Theorem. If f : X −→ Y is a homotopy equivalence, then the induced

homomorphism f∗ : π1(X,x0) −→ π1(Y, f(x0)) is an isomorphism for every point

x0 ∈ X.

Proof: Let g : Y −→ X be a homotopy inverse of f ; hence g ◦ f ≃ idX and

f ◦ g ≃ idY . By 4.1.27, we have

(g ◦ f)∗ = φγ : π1(X,x0) −→ π1(X, gf(x0)) ,

(f ◦ g)∗ = φµ : π1(Y, f(x0)) −→ π1(Y, fgf(x0)) ,

for certain paths γ in X and µ in Y . That is, g∗ ◦ f∗ and f∗ ◦ g∗ are group

isomorphisms with the inverse of the first being α, say. So, g∗ ◦ (f∗ ◦ α) = 1 and

((f∗ ◦α)◦ g∗)◦f∗ = f∗, but since f∗ is an epimorphism, (f∗ ◦α)◦ g∗ = 1; that is, g∗

is an isomorphism. Therefore, since (α ◦ g∗) ◦ f∗ = 1 and α ◦ g∗ is an isomorphism,

so is f∗. ⊓⊔

4.1.29 Note. Let A ⊂ X and take x0 ∈ A. Then, the inclusion i : A ↪→ X

induces a homomorphism i∗ : π1(A, x0) −→ π1(X,x0), which, as shown by the

case A = S1 ⊂ B2 = X, it is not in general a monomorphism. However, if λ is a

loop in A representing an element in π1(A, x0), then i∗([λ]) is represented by the

loop i ◦ λ, which is essentially the same loop λ, but now thought of as a loop in

X. As is shown by the special case mentioned above, the fact that λ is a loop in

A that is contractible in X does not mean that it is contractible in A; that is, if

i∗([λ]) = 0, then it does not necessarily follow that [λ] = 0.

From 3.3.11, we obtain the following statement.

4.1.30 Proposition. If A ⊂ X is a defomation retract, then the inclusion i :

A ↪→ X induces an isomorphism i∗ : π1(A, x0)
∼=
↪→ π1(X,x0). ⊓⊔

If λ : I −→ X is a loop based at x0, then λ determines a pointed map

λ̃ : (S1, 1) −→ (X,x0) given by λ̃(e2πit) = λ(t). Conversely, a pointed map

f : (S1, 1) −→ (X,x0) determines a loop λf based at x0 given by λf (t) = f(e2πit).

In other words, we have the next statement.

4.1.31 Proposition. The function π1(X,x0) −→ [S1, 1;X,x0] given by

[λ] 7→ [λ̃] is bijective. ⊓⊔

More generally, we have the following.
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4.1.32 Theorem. Let X be path connected, and let

Φ : π1(X,x0) −→ [S1, X]

be given by Φ([λ]) = [λ̃] by ignoring the base points. Then Φ is surjective. Moreover,

if α, β ∈ π1(X,x0), then Φ(α) = Φ(β) if and only if there exists γ ∈ π1(X,x0) such

that α = γβγ−1; that is, α and β are conjugates.

Proof: Every map f : S1 −→ X is homotopic to a map g : S1 −→ X such that

g(1) = x0, since if σ : f(1) ≃ x0 is some path, then the homotopy

H(s, t) =


σ(t− 3s) if 0 ≤ s ≤ t

3 ,

f(e2πi(
3s−t
3−2t

)) if t
3 ≤ s ≤ 3−t

3 ,

σ(3s+ t− 3) if 3−t
3 ≤ s ≤ 1,

is such that H(s, 0) = f(e2πis) and H(s, 1) is the product loop σλfσ; in other

words, the homotopy K : S1 × I −→ X given by K(e2πis, t) = H(s, t) starts at f

and ends at a map g such that g(1) = σ(1) = x0. This shows that Φ is surjective.

Let us now assume that Φ([λ]) = Φ([µ]); then we have a homotopy L : S1×I −→
X such that L(e2πis, 0) = λ(s) and L(e2πis, 1) = µ(s). Thus, the path σ : I −→ X

given by σ(t) = L(1, t) is a loop representing an element γ = [σ] ∈ π1(X,x0).

Thanks to the homotopy

F (s, t) =

{
H(2(1− t)s, 2st) if 0 ≤ s ≤ 1

2 ,

H(1 + 2t(s− 1), t+ (1− t)(2s− 1)) if 1
2 ≤ s ≤ 1,

which is analogous to the one in the proof of 4.1.27, where H(s, t)=L(e2πis, t), one

has λσ ≃ σµ.

Conversely, if λσ ≃ σµ, then there exists a homotopy H : λ ≃ σµσ rel ∂I. So

K(e2πis, t) = H(s, t) is a well-defined homotopy from λ̃ to σ̃µσ. On the other hand,

the homotopy

G(s, t) =


σ(3s+ t) if 0 ≤ s ≤ 1−t

3 ,

µ(3s+t−1
1+2t ) if 1−t

3 ≤ s ≤ 2+t
3 ,

σ(3− 3s+ t) if 2+t
3 ≤ s ≤ 1,

is such that G : σµσ ≃ µ and G(0, t) = σ(t) = G(1, t); therefore, it defines a

homotopy M : S1 × I −→ X such that M(e2πis, t) = G(s, t), starting at σ̃µσ and

ending at µ̃. Thus the homotopies K and M may be composed to yield one from

λ̃ to µ̃; that is, Φ([λ]) = Φ([µ]). ⊓⊔

4.2 The fundamental group of the circle

The circle S1 is path connected, and thus its fundamental group is independent

of the choice of base point. The natural base point is 1 ∈ S1. In Section 3.2 in
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the preceding chapter we did all the necessary computations to understand this

group. We shall use the results of that section, and as there, we keep close to the

approach of [23]. The following lemma will be very useful.

4.2.1 Lemma. The loop product of two loops in S1 is homotopic to the product

of the loops realized as maps with complex values.

Proof: Let λ, µ : I −→ S1 be two loops. Take the homotopy

H(s, t) =


λ(2s) if 0 ≤ s ≤ 1−t

2 ,

λ(2s−t+1
2 ) · µ(2s+t−1

2 ) if 1−t
2 ≤ s ≤ 1+t

2 ,

µ(2s− 1) if 1+t
2 ≤ s ≤ 1,

where ζ ·η represents the product in S1 of the unit complex numbers ζ and η. This

homotopy starts with the loop product λµ and ends with the complex product of

complex maps λ · µ. ⊓⊔

By the previous lemma, we have that if [λ], [µ] ∈ π1(S1, 1), then [λ][µ] = [λ ·µ],
and therefore, since the complex product is commutative, we have that [λ][µ] =

[µ][λ]; that is, we have the following consequence of the previous lemma.

4.2.2 Lemma. The fundamental group of the circle π1(S1, 1) is abelian. ⊓⊔

4.2.3 Note. One can give a direct proof of the fact that the fundamental group

of the circle is abelian. To start, let λ, µ : I −→ S1 be loops. The homotopy

H : I × I −→ S1 given by

H(s, t) =

{
µ(2st) · λ(2(1− t)s) if 0 ≤ s ≤ 1

2 ,

µ(t+ (1− t)(2s− 1)) · λ(1 + 2t(s− 1)) if 1
2 ≤ s ≤ 1,

where ζ · η is the product of the complex numbers ζ and η in S1, is such that

H : λµ ≃ µλ; that is, [λ][µ] = [µ][λ].

The homotopy above is indeed the composite of two maps, namely of the map

f : I × I −→ I × I given by

f(s, t) =

{
(2(1− t)s, 2st) if 0 ≤ s ≤ 1

2 ,

(1 + 2t(s− 1), t+ (1− t)(2s− 1)) if 1
2 ≤ s ≤ 1,

and the map g : I×I −→ S1 given by g(s, t) = µ(t)·λ(s). The map f takes the sides

{0} × I and {1} × I of the square onto the vertices (0, 0) and (1, 1), respectively,

and the sides I × {0} and I × {1} to I × {0} ∪ {1} × I and {0} × I ∪ I × {1},
respectively. On the other hand, the map g “translates” the loop λ in S1 along the

loop µ. What this looks like is shown in Figure 4.4.
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µλ

λµ

µ µ

λ

µ

f g

Figure 4.4 The fundamental group of the circle is abelian

4.2.4 Exercise. A group G is called a topological group if it is also a topological

space and both the multiplication G × G −→ G and the function G −→ G that

sends each element to its inverse, are continuous maps. Prove that the fundamental

group of every (path-connected) topological group G based at 1, that is, π1(G, 1),

is abelian. (Hint: One may use the same proof as given for 4.2.1.)

4.2.5 Exercise. Let G be a topological group (or an H-space; see [2, 2.7.2]).

Prove that if λ, µ : I −→ G are loops, then [λ][µ] = [λ · µ], where · represents
the group multiplication. Use this to show that π1(G, 1) is abelian. (Hint: Use [2,

2.10.10].)

Let us recall the function deg : [S1,S1] −→ Z defined in 3.2.5, and the function

Φ : π1(S1, 1) −→ [S1,S1] of the previous section. Let Ψ = deg ◦Φ : π1(S1, 1) −→ Z.
We summarize what we did in Section 3.2 in the following result.

4.2.6 Theorem. Ψ : π1(S1, 1) −→ Z is a group isomorphism.

Proof: By 3.2.7 and by 4.1.27, since in this case φγ is the identity, Ψ is bijective.

Thus it is enough to check that it is a group homomorphism. Take α = [λ], β =

[µ] ∈ π1(S1, 1); by 4.2.1, αβ = [λ · µ]. If λ̃, µ̃ : S1 −→ S1 are representatives of

Φ(α),Φ(µ), respectively, then Ψ(αβ) = Ψ([λ · µ]) = deg(λ̃ · µ) = deg(λ̃ · µ̃) =

deg(λ̃) + deg(µ̃) = Ψ(α) + Ψ(β), where the next to the last equality comes from

3.2.9. ⊓⊔

Let γn : I −→ S1 be given by γn(t) = e2πint = gn(e
2πit). Then Φ([γn]) = [gn],

and thus Ψ([γn]) = deg(gn) = n. Hence in particular, Ψ([γ1]) = 1 is a generator of

Z as an infinite cyclic group. We have thus the following result.

4.2.7 Theorem. π1(S1, 1) is an infinite cyclic group generated by [γ1], that is, by

the homotopy class of the loop t 7→ e2πit. ⊓⊔
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4.2.8 Definition. The class [γ1] is called the canonical generator of the infinite

cyclic group π1(S1, 1).

If one works with a path-connected space, then as we already proved in 4.1.21,

its fundamental group is essentially independent of the base point. In what fol-

lows, whenever the base point either is clear or irrelevant, we shall denote the

fundamental group of a path-connected space X simply by π1(X).

4.2.9 Examples. If a space X has the same homotopy type of S1, then π1(X) ∼=
Z; we have the following:

(a) π1(C− 0) ∼= Z. The isomorphism is defined by [λ] 7→ W (fλ, 0), the winding

number around 0 of the map fλ : S1 −→ C given by fλ(e
2πit) = λ(t).

(b) If Y is contractible and X = Y ×S1, then, by 4.1.18 and 4.1.17(d), π1(X) ∼=
π1(Y )× π1(S1) ∼= π1(S1) ∼= Z. In particular, if X = B2 × S1 is a solid torus,

π1(X) ∼= Z.

(c) If M is the Moebius band, then π1(M) ∼= Z. In fact, the equatorial loop

λe : I −→ M such that λe(t) = q(t, 12), where q : I × I −→ M is the

canonical identification, represents a generator of π1(M).

The following example, in particular, is very important. It is an immediate

consequence of 4.1.18 and 4.2.7.

4.2.10 Example. If T2 = S1 × S1 is the torus and x0 = (1, 1) ∈ T2, then

(4.2.11) π1(T2, x0) ∼= Z⊕ Z .

Moreover, if γ11 , γ
2
1 : I −→ T2 are the canonical loops γ11(t) = (γ1(t), 1), γ

2
1(t) =

(1, γ1(t)), then we may reformulate (4.2.11) by saying that π1(T2, x0) is the free

abelian group generated by the classes α1 = [γ11 ] and α2 = [γ21 ].

As a generalization of the previous example, we may prove immediately by

induction the following.

4.2.12 Proposition. Let

Tn = S1 × · · · × S1︸ ︷︷ ︸
n

.

Then π1(Tn) is the free abelian group generated by the classes [γ11 ], . . . , [γ
n
1 ] defined

by

γi1(t) = (1, . . . , γ1(t)︸ ︷︷ ︸
i

, . . . , 1) ∈ Tn .
⊓⊔
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Let gn : S1 −→ S1 be the map of degree n given by gn(ζ) = ζn. For the

canonical loop γ1 : I −→ S1, such that [γ1] is the canonical generator of π1(S1), one

has that gn◦γ1 = γn, so that (gn)∗([γ1]) = [γn] = [γ1]
n (since by the considerations

prior to 4.2.7, Ψ(γn) = n). Hence gn∗ : π1(S1) −→ π1(S1) is gn∗(α) = αn. Since

f : S1 −→ S1 has degree n implies f ≃ gn, we therefore have the following theorem.

4.2.13 Theorem. Let f : S1 −→ S1 satisfy deg(f) = n. Then the homomorphism

f∗ : π1(S1) −→ π1(S1) is given by f∗(α) = αn. ⊓⊔

4.2.14 Note. Strictly speaking, in the previous theorem one has the homomor-

phism f∗ : π1(S1, 1) −→ π1(S1, f(1)); thus the statement of the theorem can be

more precisely applied to the composite

π1(S1, 1)
f∗ // π1(S1, f(1))

(
rf(1)−1

)
∗ // π1(S1, 1) ,

where rf(1)−1 : S1 −→ S1 is the rotation in S1 given by multiplying by f(1)−1,

which is homotopic to the identity.

Another interesting and useful example is the following.

4.2.15 Example. Let facbd : S1×S1 −→ S1×S1 be given by facbd (ζ, η) = (ζa ·ηb, ζc ·
ηd), a, b, c, d ∈ Z. Then, by 4.2.13 and 4.2.10, (facbd )∗ : π1(T2) −→ π1(T2) is such

that (facbd )∗(α1) = αa1α
c
2 and (facbd )∗(α2) = αb1α

d
2, if α1, α2 ∈ π1(T2) are as in 4.2.10.

4.2.16 Exercise. Check all details of the assertions in the example above and

characterize the values of a, b, c, d for which (facbd )∗ is an isomorphism. What can

be said about the map facbd for these values?

4.2.17 Exercise. Let φ : π1(T2) −→ π1(T2) be any homomorphism. Prove that

there exists f : T2 −→ T2 such that f∗ = φ. Moreover, show that if φ is an

isomorphism, then f can be chosen to be a homeomorphism. (Hint: Use Example

4.2.15.)

4.2.18 Exercise. Prove that Tm ≈ Tn if and only if m = n.

4.2.19 Exercise. Prove that a loop λ : I −→ S1 is such that [λ] ∈ π1(S1) is a

generator if and only ifW (fλ, 0) = ±1, where fλ : S1 −→ C is given by fλ(e
2πit) =

λ(t) and W is the winding number function.

4.2.20 Exercise. If M is the Moebius band and f : S1 −→ ∂M is a homeomor-

phism, prove that the loop λf : I −→ M given by λf (t) = f(e2πit) ∈ M satisfies

[λf ] = α2 for α one of the generators of π1(M) ∼= Z (see 4.2.9(c)). Conclude that

the boundary ∂M is not a retract of M .
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4.3 The Seifert–van Kampen theorem

A very useful tool is a formula that in some cases allows us to compute the fun-

damental group of certain spaces in terms of the fundamental groups of parts of

them. Before going to the general formula, as an example of it, let us first analyze

a special case.

4.3.1 Proposition. Let X = X1 ∪ X2 with X1, X2 open subsets. If X1 and X2

are simply connected and X1 ∩X2 is path connected, then X is simply connected.

Proof: Let λ : I −→ X be a loop based at x0 ∈ X1 ∩ X2. We have that the set

{λ−1(X1), λ
−1(X2)} is an open cover of I. There exists a number δ > 0, called the

Lebesgue number of this cover (see [21]), such that if 0 ≤ t − s < δ, then [s, t] ⊂
λ−1(X1) or [s, t] ⊂ λ−1(X2). Hence, one has a partition 0 = t0 < t1 < · · · < tk = 1

of the interval I such that

λ([t0, t1]) ⊂ X1, λ([t1, t2]) ⊂ X2, . . . , λ([tk−1, tk]) ⊂ X2 .

Since λ(ti) ∈ X1 ∩ X2, there exist paths ωi : x0 ≃ λ(ti) in X1 ∩ X2, i =

1, 2, . . . , k − 1; let moreover ω0 as well as ωk denote the constant path at x0 =

λ(t0) = λ(0) = λ(1) = λ(tk). The loops

µi(t) =


ωi−1(3t) if 0 ≤ t ≤ 1

3 ,

λi(3t− 1) if 1
3 ≤ t ≤ 2

3 ,

ωi(3− 3t) if 2
3 ≤ t ≤ 1,

where λi(t) = λ((1 − t)ti−1 + tti) is the portion of λ in the interval [ti−1, ti],

i = 1, 2, . . . , k, lie in X1 or in X2, and therefore they are contractible in X1 or in

X2 and hence in X; that is, µi ≃ 0 in X. Since λ ≃ µ1µ2 · · ·µk, we have that λ is

contractible, that is, λ ≃ 0. Figure 4.5 shows the proof graphically. ⊓⊔

An important application is given in the next example.

4.3.2 Example. If n > 1, then the sphere Sn is simply connected, that is, π1(Sn) =
1. For if N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) are the poles of the sphere and

X1 = Sn − S, X2 = Sn −N , then the hypotheses of 4.3.1 hold, since X1 and X2,

being homeomorphic to Rn, are contractible, and X1∩X2 is path connected, since

X1 ∩X2 ≈ Sn−1 × (−1, 1) ≃ Sn−1.

4.3.3 Note. For n = 1, the preceding example obviously does not hold, because

(S1 − N) ∩ (S1 − S) is not path connected. Indeed, in this case, π1(S1) ∼= Z, as
shown in 4.2.7.
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x0

X1
l

ω1

ω2ω3 X2

Figure 4.5 The Seifert–van Kampen theorem in the 2-sphere

4.3.4 Exercise. Recall the suspension of a space X defined as ΣX = X × I/∼,

where (x, s) ∼ (y, t) if and only if x = y and s = t or s = t = 0 or 1. Prove that if

X is path connected, then its (reduced) suspension ΣX is simply connected.

The Seifert–van Kampen theorem is a generalization of 4.3.1, because it allows

one to compute the fundamental group of a union of open subspaces if one knows

the fundamental groups of each of them and the way that the fundamental group

of the intersection relates to these.

Since we are going to use more delicate concepts of group theory, at this point

we shall make an algebraic parenthesis to make ideas more precise.

4.3.5 Definition. Let G be a group and let A ⊂ G be any subset. The subgroup

GA = ∩{H ⊂ G | H is a subgroup such that A ⊂ H}

is called the subgroup of G generated by A and the normal subgroup

NA = ∩{H ⊂ G | H is a normal subgroup such that A ⊂ H}

is known as the normal subgroup of G generated by A. GA consists of 1 and the

elements of the form

g = an1
1 a

n2
2 · · · ank

k ,

where a1, a2, . . . , ak ∈ A and n1, n2, . . . , nk ∈ Z; similarly, NA consists of products

of all conjugates of the elements of GA, namely conjugates of elements of the form

described above. If G = GA we say that A generates G or that the elements of A

are generators of G. Analogously, if NA = G we say that A generates G normally

or that the elements of A are normal generators of G.
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4.3.6 Note. For abelian groups with the additive notation, Definition 4.3.5 can

be expressed by saying that A ⊂ G generates G if for 0 ̸= g ∈ G there exist

a1, . . . , ak ∈ A, n1, . . . , nk ∈ Z such that g = n1a1 + · · · + nkak (in this case all

elements a1, . . . , ak can be assumed to be different).

4.3.7 Examples.

(a) The empty set ∅ generates the trivial group G = 1.

(b) If G is generated by only one element a, then G is cyclic; if an ̸= 1 for every

n ∈ Z, n ̸= 0, then G is infinite cyclic and consists of all elements a0 =

1, a±1, a±2, . . . ; in this case the function n 7→ an determines an isomorphism

Z −→ G. If ak = 1 for some k > 0 and this k is minimal, then G is cyclic

of order k and consists of all elements a0 = 1, a, a2, . . . , ak−1. The function

n 7→ an determines an isomorphism Zk −→ G.

(c) Given groups G1 and G2, one has the product group G1 × G2, that as a set

is the cartesian product and is provided with the multiplication coordinate

by coordinate There are group inclusions j1 : G1 ↪→ G1 ×G2 given by g1 7→
(g1, 1), and j2 : G2 ↪→ G1 × G2 given by g2 7→ (1, g2), so that we may view

both groups as subgroups of the product. Since (g1, g2) = (g1, 1) · (1, g2) =
g1 ·g2, the group G1×G2 is generated by the elements of G1∪G2 ⊂ G1×G2.

Moreover, one has that g1 · g2 = g2 · g1.

Analogous to (c) we have the following. Let G1 and G2 be groups. We define a

group G1 ∗G2 that contains G1 and G2 as subgroups and that is generated by the

union G1 ∪G2 but does not satisfy the relation g1 · g2 = g2 · g1, as it is the case in

the product.

4.3.8 Definition. Let Gν (ν = 1, 2) be groups and let F be the set of finite

sequences (x1, . . . , xn), n ≥ 0, that satisfy

(a) xj ∈ Gν , j = 1, . . . n;

(b) xj ̸= 1, j = 1, . . . n;

(c) xj ∈ Gν =⇒ xj+1 ̸∈ Gν ; that is, two consecutive elements lie in different

groups.

In particular, for n = 0 we write ( ) for the empty sequence. Take g ∈ Gν and let

g : F −→ F be the function given by

g(x1, x2, . . . , xn) =


(x1, x2, . . . , xn) if g = 1,

(g, x1, x2, . . . , xn) if g ̸= 1 and x1 ̸∈ Gν ,

(gx1, x2, . . . , xn) if g ̸= 1, x1 ∈ Gν and gx1 ̸= 1,

(x2, . . . , xn) if g ̸= 1, x1 ∈ Gν and gx1 = 1.



4.3 The Seifert–van Kampen theorem 133

In particular, g( ) = (g) if g ̸= 1, and g(x1) = ( ) if gx1 = 1. If g, h ∈ Gν ,

g, h ̸= 1 are such that g = h, then, in particular, (g) = g( ) = h( ) = (h), so that

g = h; if 1 ∈ Gν , then 1 = 1F : F −→ F is the identity and if g, h ∈ Gν , then

gh = g ◦ h, as one may easily prove. Hence we have that g 7→ g determines an

inclusion of groups Gν ↪→ P(F ) = {f : F −→ F | f is bijective}; that is, P(F )

is the permutation group of F (this is thus a representation of the groups G1 and

G2). The free product G1 ∗ G2 is the subgroup of P(F ) generated by G1 ∪ G2.

There are canonical inclusions (group monomorphisms) i1 : G1 ↪→ G1 ∗ G2 and

i2 : G2 ↪→ G1 ∗G2.

4.3.9 Proposition. For every element g ∈ G1 ∗ G2, g ̸= 1, there is a unique

representation g = x1 · · ·xn, so that the sequence (x1, . . . , xn) lies in F , that is,

such that it satisfies conditions (a), (b), and (c) of 4.3.8.

Proof: g is a permutation of the elements of F different from the identity, that,

lying in the subgroup of P(F ) generated by G1 ∪G2, is a product x1 · · ·xn, where
each xi is a permutation of F coming from G1 or G2. Reducing (that is, eliminating

elements 1 or putting together consecutive elements that lie in the same group), if

it is necessary, we may assume that the sequence (x1, . . . , xn) satisfies conditions

(a), (b), and (c) of 4.3.8.

It is therefore enough to see that this representation is unique. If g = x1 · · ·xn is

a representation of g ̸= 1, then one may inductively verify that g( ) = (x1, . . . , xn).

If, moreover, g = y1 · · · ym, so that (y1, . . . , ym) ∈ F , then also g( ) = (y1, . . . , ym);

consequently, (x1, . . . , xn) = (y1, . . . , ym) and the representation is unique. ⊓⊔

4.3.10 Note. Given elements with unique representation g = x1 · · ·xm, h =

y1 · · · yn ∈ G1 ∗ G2, we have that g−1 = x−1
m · · ·x−1

1 is its unique representation,

and gh = x1 · · ·xmy1 · · · yn is a representation that can still be reduced, that is, if

xm, y1 ∈ Gν , then the product xmy1 can be taken as one element; if this happens

to be 1, then it is removed and one takes the product xm−1y2 as only one element,

and so forth, if necessary.

4.3.11 Remark. The following are properties of the free product:

(a) If G1 ̸= 1 ̸= G2, then G1∗G2 is not an abelian group, since by the uniqueness

of the representation of an element g proved in 4.3.9, if g = x1x2 is such that

1 ̸= x1 ∈ G1 and 1 ̸= x2 ∈ G2, then g is different from the element h = x2x1,

so that x1 and x2 do not commute.

(b) If G1 = 1, then G1 ∗ G2 = G2, since the only possible representation of

an element g ∈ G1 ∗ G2 is g = x1, x1 ∈ G2, so that the mapping g 7→ x1

determines the desired equality.
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(c) G1 and G2, as subgroups of G1 ∗G2, are such that G1∩G2 = 1; that is, their

intersection is the trivial subgroup.

(d) There is a natural epimorphism

γ : G1 ∗G2 −→ G1 ×G2

such that the kernel ker(γ) contains the commutators x1x2x
−1
1 x−1

2 such that

x1 ∈ G1, x2 ∈ G2. Namely, let x1 · · ·xn be the unique representation of an

element g ∈ G1 ∗G2. If x1 ∈ G1, then

γ(g) = (x1x3 · · · , x2x4 · · · ) ;

similarly, if x1 ∈ G2, then

γ(g) = (x2x4 · · · , x1x3 · · · ) .

γ is thus a well-defined epimorphism. If g ∈ G1 ∗ G2 is a commutator, that

is, if g = x1x2x
−1
1 x−1

2 , with x1 ∈ Gν1 and x2 ∈ Gν2 , ν1 ̸= ν2, then γ(g) =

(x1x
−1
1 , x2x

−1
2 ) = (1, 1) = 1 or γ(g) = (x2x

−1
2 , x1x

−1
1 ) = (1, 1) = 1 according

to whether ν1 = 1 or ν1 = 2.

The free group has a universal property.

4.3.12 Theorem. Let f1 : G1 −→ H and f2 : G2 −→ H be group homomor-

phisms. Then there exists a unique homomorphism f : G1 ∗ G2 −→ H such that

f ◦ i1 = f1 and f ◦ i2 = f2; that is, such that the diagram

(4.3.13)

G1
� � i1 //

f1 $$I
IIIIIIII G1 ∗G2

f
���
�
� G2

? _
i2oo

f2zzuuuuuuuuu

H .

commutes. Moreover, if g = x1x2x3 · · ·xn is the unique representation, then f is

such that

(4.3.14) f(g) = fν1(x1)fν2(x2)fν3(x3) · · · fνn(xn) ,

where fνi = fν , si xi ∈ Gν , i = 1, . . . , n, ν = 1, 2.

Proof: For g = 1, f(g) = 1; if g = x1 · · ·xn ∈ G1 ∗G2, then define f by (4.3.14); f

is well defined and makes Diagram (4.3.13) commutative. ⊓⊔

4.3.15 Note. The homomorphism γ : G1 ∗ G2 −→ G1 × G2 of 4.3.11(d), is the

one corresponding to f1 = j1 : G1 ↪→ G1 × G2 and f2 = j2 : G2 ↪→ G1 × G2,

according to the preceding theorem.
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Let f1 : G1 −→ H1 and f2 : G2 −→ H2 be group homomorphisms. If

j1 : H1 ↪→ H1 ∗ H2 and j2 : H2 ↪→ H1 ∗ H2 = H are the canonical inclusions,

then there are homomorphisms j1 ◦ f1 : G1 −→ H and j2 ◦ f2 : G2 −→ H, that

by the universal property of the free product, define a unique homomorphism

f : G1 ∗ G2 −→ H such that f ◦ i1 = j1 ◦ f1 and f ◦ i2 = j2 ◦ f2. This ho-

momorphism f is such that if x1x2x3 · · ·xn ∈ G1 ∗ G2, then f(x1x2x3 · · ·xn) =

fν1(x1)fν2(x2)fν3(x3) · · · fνn(xn) ∈ H1∗H2, where fνi = fν : Gν −→ Hν if xi ∈ Gν ,

i = 1, . . . , n, ν = 1, 2. Such an f is denoted by

f1 ∗ f2 : G1 ∗G2 −→ H1 ∗H2 .

In fact, we have that the construction of the free product is functorial, as we shall

see now.

4.3.16 Theorem. If f1 : G1 −→ H1 and f2 : G2 −→ H2, as well as f ′1 : H1 −→
K1 and f ′2 : H2 −→ K2 are group homomorphisms, then

(a) 1G1 ∗ 1G2 = 1G1∗G2 : G1 ∗G2 −→ G1 ∗G2,

(b) (f ′1 ◦ f1) ∗ (f ′2 ◦ f2) = (f ′1 ∗ f ′2) ◦ (f1 ∗ f2) : G1 ∗G2 −→ K1 ∗K2. ⊓⊔

4.3.17 Remark. Definition 4.3.8 of the free product is, indeed, independent of the

set of indices where ν runs. Equally well one may define the free productG1∗· · ·∗Gn
of any finite family of groups, or even more generally, the free product ∗ν Gν of

any family of groups {Gν}. In any case, the set of generators is ∪ν Gν ⊂ P(F ).

Let us go back again to topology and take a topological space X = X1 ∪X2,

X1 ∩X2 ̸= ∅. Take x0 ∈ X1 ∩X2; by the functoriality of the fundamental group,

the commutative diagram of inclusions of topological spaces

X1 ∩X2
� � i1 //

� _

i2
��

X1� _

j1
��

X2
� �

j2
// X

induces a commutative diagram of group homomorphisms

π1(X1 ∩X2, x0)
i1∗ //

i2∗
��

π1(X1, x0)

j1∗
��

π1(X2, x0) j2∗
// π1(X,x0) .

We have the next assertion.
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4.3.18 Lemma. If X1 and X2 are open sets in X and are such that they as well

as X1∩X2 are 0-connected, then π1(X,x0) is generated by the images of π1(X1, x0)

and π1(X2, x0) under j1∗ and j2∗, respectively. Therefore, the homomorphism

φ : π1(X1, x0) ∗ π1(X2, x0) −→ π1(X,x0)

induced by j1∗ and j2∗ according to 4.3.12, is an epimorphism.

Proof: The proof of this result is essentially the same as the one given for 4.3.1.

Namely, let [λ] ∈ π1(X,x0) be an arbitrary element and take a partition 0 = t0 <

t1 < · · · < tk = 1 such that

λ([t0, t1]) ⊂ X1, λ([t1, t2]) ⊂ X2, . . . , λ([tk−1, tk]) ⊂ Xν , ν = 1 or 2 .

Thus λ(ti) ∈ X1 ∩X2, i = 0, . . . , k. For each i, take λi(t) = λ((1− t)ti−1+ tti) and

for i = 1, . . . , k − 1 let ωi : I −→ X be a path between x0 and λ(ti) in X1 ∩X2;

moreover, take ω0 = cx0 = ωk. This way we have loops

µi(t) =


ωi−1(3t) if 0 ≤ t ≤ 1

3 ,

λi((3t− 1) if 1
3 ≤ t ≤ 2

3 ,

ωi(3− 3t) if 2
3 ≤ t ≤ 1,

that lie either in X1 or in X2, and that therefore represent elements of π1(X,x0)

either in the image of π1(X1, x0) or of π1(X2, x0). Hence, since

[µ1][µ2] · · · [µk−1][µk] = [λ1][λ2] · · · [λk−1][λk] = [λ] ,

this arbitrary element lies in the group generated by the images of j1∗ and j2∗. ⊓⊔

If we call the epimorphism φ above j1∗ · j2∗, from this last result we can deduce

that

π1(X,x0) ∼= π1(X1, x0) ∗ π1(X2, x0)/ ker(j1∗ · j2∗) .

In what follows we shall compute ker(j1∗ · j2∗).

Take α ∈ π1(X1 ∩ X2, x0). Then j1∗ · j2∗(i1∗(α)) = j1∗i1∗(α) = j2∗i2∗(α) =

j1∗ · j2∗(i2∗(α)), and so i1∗(α)i2∗(α)
−1 ∈ ker(j1∗ · j2∗). Consequently, ker(j1∗ · j2∗)

contains the normal subgroup of π1(X1, x0)∗π1(X2, x0) generated by the elements

of the form i1∗(α)i2∗(α)
−1 for α ∈ π1(X1 ∩ X2, x0). We shall see in what follows

that both groups coincide. To that end, we shall require some previous results. To

simplify the lenguage, we shall denote by G the group π1(X1, x0) ∗ π1(X2, x0), by

N ⊂ G, the normal subgroup generated by the elements of the form i1∗(α)i2∗(α)
−1

for α ∈ π1(X1 ∩X2, x0). Moreover, if λ : I −→ X is a loop based at x0 that lies

either in Xν or in X1 ∩ X2, we shall denote its homotopy class either [λ]ν ∈
π1(Xν , x0) or [λ]12 ∈ π1(X1 ∩X2, x0), ν = 1, 2, respectively. Of course, if λ lies in

X1 ∩ X2, then iν∗([λ]12) = [λ]ν ; thus, the cosets [λ]1N and [λ]2N are equal. We

have proved the following.
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4.3.19 Lemma. Let λ be a loop on X1 ∩X2 based at x0; then [λ]1N = [λ]2N ∈
G/N . ⊓⊔

Let λ : I −→ X be a contractible loop based at x0 and let H : I × I −→ X be

a nulhomotopy of λ; that is, H(s, 0) = λ(s) and H(0, t) = H(1, t) = H(s, 1) = x0,

s, t ∈ I. We have the following construction:

(a) We decompose the square I2 = I × I into a lattice of subsquares, as shown

in Figure 4.6, in such a way that for each subsquare Q either H(Q) ⊂ X1 or

H(Q) ⊂ X2. This is possible since, being X1 and X2 open sets, one may take

a Lebesgue number for the open cover {H−1(X1), H
−1(X2)} of I2 and the

length of the side of each subsquare shorter than one half of this number.

Figure 4.6 Lebesgue subdivision of the square

(b) For each vertex v of the lattice, let µv : I −→ X be an auxiliary path between

x0 and H(v), and let µv be the inverse path, so that if H(v) lies either in

Xν , ν = 1, 2, or in X1 ∩X2, then λv also lies thereon. This is possible since

all three subspaces are path connected.

(c) For each edge a of the lattice, if we consider it as a path a : I −→ I2 (in the

increasing direction), then H ◦ a : I −→ X is a path between H(a(0)) and

H(a(1)), that by (a) lies either in X1 or in X2. Therefore, λa = µa(0)(H ◦
a)µa(1) is a loop, as shown in Figure 4.7(b), that lies either in X1 or in X2, as

well. Consequently, the elements [λa]1 or [λa]2 in G are well defined. Denote

by â ∈ G/N either the coset [λa]1N or [λa]2N . By Lemma 4.3.19, if both

cosets are defined, then they coincide. Finally, let a01, . . . , a
0
n be the edges

at the bottom of the lattice and let an1 , . . . , a
n
n be the edges at the top, as

indicated in Figure 4.7(a).

4.3.20 Lemma. In G/N the equality â01â
0
2 · · · â0n = 1 holds.
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a01 a02 a0n

an1 an2 ann

ak1 ak2 akn

ak−1
1 ak−1

2 ak−1
n

x0

H ◦ a

µa(0) µa(1)

(a) (b)

a′

a

b′ b

Figure 4.7 Each edge in the Lebesgue subdivision of the square determines a loop
in X.

Proof: Let Q be a fixed subsquare with edges a, b, a′, b′, as indicated in Figure

4.7(a). In Q one has that ab ≃ b′a′ rel ∂I, since Q is simply connected (because

it is contractible). If we apply H and connect the corresponding auxiliary paths,

then we obtain that λaλb ≃ λb′λa′ rel ∂I either in X1 or in X2, according to

whether H(Q) ⊂ X1 or H(Q) ⊂ X2. In any case, âb̂ = b̂′â′ in G/N , that is, for

any subsquare Q one has the equality â = b̂′â′b̂−1.

If we now take a whole row of subsquares, as the one shown in shade in Figure

4.7(a), and multiply the corresponding equalities, then we obtain

âi−1
1 âi−1

2 · · · âi−1
n = âi1â

i
2 · · · âin ,

since the elements b̂ji corresponding to the middle edges cancel out and b̂0i = 1 = b̂ni ,

since the homotopy H is constant on the vertical sides of I2. Inductively, we obtain

the equality

â01â
0
2 · · · â0n = ân1 â

n
2 · · · ânn .

But, since H is constant also on the top side of I2, âni = 1, i = 1, 2, . . . , n, and this

proves the desired equality. ⊓⊔

We are now ready to prove the Seifert–van Kampen theorem, namely to identify

ker(j1∗ · j2∗).

4.3.21 Theorem. (Seifert–van Kampen) Take X = X1 ∪X2 with X1, X2 open.

If X1, X2 and X1 ∩X2 are nonempty and path connected, then, for x0 ∈ X1 ∩X2,

π1(X,x0) ∼= π1(X1, x0) ∗ π1(X2, x0)/N ,

where N is the normal subgroup generated by the set

{i1∗(α)i2∗(α)−1 | α ∈ π1(X1 ∩X2, x0)} .



4.3 The Seifert–van Kampen theorem 139

Proof: In terms of the notation introduced above, we have to prove that ker(j1∗·j2∗)
is N = N{i1∗(α)i2∗(α)−1|α∈π1(X1∩X2,x0)}.

Let β ∈ G be an element such that (j1∗·j2∗)(β) = 1; we shall see that β ∈ N . We

may write β = α1α2 · · ·αk ∈ G, where either αi ∈ π1(X1, x0) or αi ∈ π1(X2, x0),

even though we do not require that this decomposition is necessarily reduced.

Let λi be a loop in Xν that represents αi, ν = 1 or 2. Since (j1∗ · j2∗)(β) = 1,

[λ1][λ2] · · · [λk] = 1 in π1(X,x0), where the homotopy classes are taken in X.

We subdivide I in k subintervals of the same length and we take the loop λ :

I −→ X that in the ith interval coincides with λi conveniently reparametrized,

i = 1, 2, . . . , k. The last equality means that λ is a contractible loop. Let H : I2 −→
X be a nullhomotopy for λ. We decompose I2 in subsquares as in the preceding

construction, in such a way that each of the k subintervals of I is the union of

some of the edges a01, a
0
2, . . . , a

0
n in Figure 4.7(a). This is possible if we take n to

be a large enough multiple of k.

If the first interval, where λ1 is defined, is the union of a01, a
0
2, . . . , a

0
i1
, then λ1 ≃

λa01λa02 · · ·λa0i1 rel ∂I either in X1 or in X2, according to whether λ1 lies in X1 or in

X2. In any case, one has that α1N = â01â
0
2 · · · â0i1 in G/N . There are corresponding

equalities for the remaining k − 1 subintervals, which when multiplied with each

other, yield the equality βN = (α1N)(α2N) · · · (αkN) = â01â
0
2 · · · â0n in G/N . From

Lemma 4.3.20 we then have that βN = 1 ∈ G/N , that is, β ∈ N , as we wished to

prove. ⊓⊔

4.3.22 Corollary. Under the assumptions of 4.3.21 one has the following.

(a) If X2 is simply connected, then

j1∗ : π1(X1, x0) −→ π1(X,x0)

is an epimorphism and ker j1∗ is the normalizer of the subgroup

i1∗(π1(X1 ∩X2, x0)) .

(b) If X1 ∩X2 is simply connected, then

j1∗ · j2∗ : π1(X1, x0) ∗ π1(X2, x0) −→ π1(X,x0)

is an isomorphism.

(c) If X2 and X1 ∩X2 are simply connected, then

j1∗ : π1(X1, x0) −→ π1(X,x0)

is an isomorphism. ⊓⊔
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Take X = X1 ∪ X2 so that X1, X2 ⊂ X are closed and there are open

neighborhoods V1 of X1 and V2 of X2 in X, and strong deformation retractions

r1 : V1 −→ X1, r1 : V2 −→ X2, that restrict to a strong deformation retraction

r = r1|V1∩V2 = r2|V1∩V2 : V1∩V2 −→ X1∩X2. In this case, Theorem 4.3.21 converts

into the following.

4.3.23 Theorem. Take X = X1 ∪ X2 with X1, X2 closed sets that satisfy the

conditions above. If X1, X2, and X1 ∩X2 are nonempty and path connected, then

π1(X,x0) ∼= π1(X1, x0) ∗ π1(X2, x0)/N{i1∗(α)i2∗(α)−1|α∈π1(X1∩X2,x0)} ,

for x0 ∈ X1 ∩X2. ⊓⊔

4.3.24 Exercise. Let M be a connected n-manifold, n ≥ 3, and take M∗ =

M − B◦, where B is an n-ball embedded in M . Prove that π1(M
∗) ∼= π1(M).

(Hint: M = M1 ∪ M2, where M1 = M − {b}, and M2 = B◦, where b ∈ B◦.

Then the inclusion M∗ ↪→M1 is a homotopy equivalence, M2 is contractible, and

M1 ∩M2 ≈ Sn−1 is simply connected. Apply 4.3.22(c).)

4.3.25 Exercise. Let M and N be connected n-manifolds, n ≥ 3. Prove that

π1(M#N) ∼= π1(M) ∗ π1(N) ,

if M#N is their connected sum (2.1.32). (Hint: Apply the previous exercise.)

4.3.26 Exercise. Under the assumptions of the Seifert–van Kampen theorem

prove that the fundamental group π1(X,x0) of X has the following universal prop-

erty that characterizes it: Given homomorphisms

f1 : π1(X1, x0) −→ H and f2 : π1(X2, x0) −→ H

such that f1 ◦ i1∗ = f2 ◦ i2∗ : π1(X1 ∩X2, x0) −→ H, there exists a unique homo-

morphism

f : π1(X,x0) −→ H

such that f ◦ j1∗ = f1 and f ◦ j2∗ = f2; that is, such that if the outer square in the

diagram

π1(X1 ∩X2, x0)
i1∗

vvmmmmmmmmmmmm
i2∗

((QQQQQQQQQQQQ

π1(X1, x0)

f1 ((QQQQQQQQQQQQQQQ

j1∗ // π1(X,x0)

f
���
�
�

π1(X2, x0)
j2∗oo

f2vvmmmmmmmmmmmmmmm

H
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commutes, then the two triangles obtained also commute. (This universal property

means that π1(X,x0) is the colimit of the diagram

π1(X1 ∩X2, x0)
i1∗

vvmmmmmmmmmmmm
i2∗

((QQQQQQQQQQQQQ

π1(X1, x0) π1(X2, x0) .

(Cf. 1.2.2 and observe that the statement means that a pushout diagram in the

category Top of topological spaces maps to a pushout diagram in the category Grp
of groups under the fundamental group functor.)

4.4 Applications of the Seifert–van Kampen theo-

rem

Several constructions in topological spaces can be analyzed from the point of view

of the Seifert–van Kampen theorem in order to study their fundamental group.

Consider, in the first place, the following assertion.

4.4.1 Proposition. The fundamental group of a wedge of k copies of the circle,

S1
1 ∨ · · · ∨ S1

k, is freely generated by the elements

α1, . . . , αk ∈ π1(S1
1 ∨ · · · ∨ S1

k, x0) ,

where x0 is the base point of the wedge obtained from all of the elements 1 ∈ S1
i ,

and the class αi is represented by the canonical loop λi : I −→ S1
i ↪→ S1

1 ∨ · · · ∨ S1
k

given by λi(t) = e2πit ∈ S1
i . Therefore,

π1(S1 ∨ · · · ∨ S1︸ ︷︷ ︸
k

) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
k

.

Proof: By induction on k. For a wedge of two circles, X = S1
1 ∨ S1

2, take X1 =

S1
1 ∨ (S1

2 − {−1}) and X2 = (S1
1 − {−1}) ∨ S1

2. Then X, X1, and X2 satisfy the

hypotheses of the Seifert–van Kampen theorem, and sinceX1∩X2 is homeomorphic

to the open cross R × {0} ∪ {0} ×R, it is contractible. Thus using 4.3.22(b) and

the fact that the inclusions S1
1 ↪→ X1 and S1

2 ↪→ X2 induce isomorphisms in

the fundamental groups, one has that π1(S1
1, 1) ∗ π1(S1

2, 1) −→ π1(S1
1 ∨ S1

2, x0) is

an isomorphism. Moreover, since the classes α1 and α2 come from the canonical

generators of π1(S1
1, 1) and π1(S1

2, 1), they are the generators of π1(S1
1 ∨ S1

2, x0) as

a free group. Therefore, the group π1(S1 ∨ S1, x0) is isomorphic to Z ∗ Z.

If for a wedge of k − 1 copies of S1 the result is true, then take

X1 = S1
1 ∨ · · · ∨ S1

k−1 ∨ (S1
k − {−1}) ,
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which has the same homotopy type via the inclusion of S1
1 ∨ · · · ∨ S1

k−1, and take

X2 = (S1
1 − {−1}) ∨ · · · ∨ (S1

k−1 − {−1}) ∨ S1
k ,

which also via the inclusion has the same homotopy type of S1
k. Since X1 ∩X2 is

homeomorphic to a “star” with 2k rays, it is contractible, and, again by 4.3.22(b),

π1(S1
1 ∨ · · · ∨ S1

k−1, x0) ∗ π1(S1
k, 1) −→ π1(S1

1 ∨ · · · ∨ S1
k, x0)

is an isomorphism. And as was the case for k = 2, we have that α1, . . . , αk are its

generators as a free group, as we wanted to prove. ⊓⊔

4.4.2 Exercise. Prove the preceding proposition using version 4.3.23 of the Seifert–

van Kampen theorem insetad of 4.3.22(b).

The Seifert–van Kampen theorem can be used to study the fundamental group

of a space with a cell attached.

4.4.3 Proposition. For a path-connected space Y , let f : Sn−1 −→ Y be contin-

uous, n ≥ 3. If y0 ∈ Y , then the canonical inclusion i : Y ↪→ Y ∪f en induces an

isomorphism

i∗ : π1(Y, y0)
∼=−→ π1(Y ∪f en, y0) .

Proof: Let X = Y ∪f en and let q : Bn ⊔ Y −→ X be the identification. The

subspaces X1 = q((Bn − {0}) ⊔ Y ) and X2 = q(
◦
B
n
) are open. Notice that the

canonical inclusion Y ↪→ X1 is a homotopy equivalence and thatX2 is contractible.

Moreover, the intersection X1∩X2 ≈
◦
Bn−{0}, which has the same homotopy type

of the sphere Sn−1, is simply connected, since n ≥ 3. Therefore, by 4.3.22(c), if

x0 ∈ X1 ∩X2, then the inclusion X1 ↪→ X induces an isomorphism π1(X1, x0) −→
π1(X,x0).

Take now a path ω : x0 ≃ y0 in X1. Then the homomorphism induced by

the inclusion i∗ : π1(Y, y0) −→ π1(X, y0) factors as indicated in the commutative

diagram

π1(Y, y0)
i∗ //

∼=
��

π1(X, y0)

∼= φω

��

π1(X1, y0)

∼=φω

��
π1(X1, x0)

∼= // π1(X,x0) ,

where the unnamed isomorphisms are induced by inclusions and the φω are the iso-

morphisms of 4.1.21 in X1 and in X, respectively. Therefore, i∗ is an isomorphism,

as desired. ⊓⊔
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Let us now see what happens in the case of the attachment of a 2-cell.

4.4.4 Proposition. Let f : S1 −→ Y be continuous. If λf : I −→ Y is the loop

given by λf (t) = f(e2πit) and ω : y0 ≃ f(1) is a path in Y , then the inclusion

i : Y ↪→ Y ∪f e2 induces an epimorphism i∗ : π1(Y, y0) −→ π1(Y ∪f e2, y0), and
its kernel is the normal subgroup Nαf

generated by the element αf = [ωλfω] ∈
π1(Y, y0). Therefore,

π1(Y ∪f e2, y0) ∼= π1(Y, y0)/Nαf
.

The group Nαf
does not depend on the path ω, since the loop µf = ωλfω that

surrounds the cell is contractible in Y ∪f e2, because it can be contracted over the

cell, as shown in Figure 4.8. Before attaching the cell one has µf /≃ 0, but after

doing it, µf ≃ 0. Therefore, i∗(αf ) = [µf ] = 1 in π1(Y ∪f e2, y0). One says that

the element αf ∈ π1(Y, y0) is killed by attaching the 2-cell using the map f .

x0x0

µf

µf

e2

Y Y ∪f e
2

Figure 4.8 Killing a path by attaching a cell

Proof: Using the same notation as in the previous proof, we have that the canonical

inclusion Y ↪→ X1 is a homotopy equivalence and that X2 is contractible. More-

over, the intersection X1∩X2 ≈
◦
B2−{0} has the same homotopy type of the circle

S1 and so is not simply connected. By 4.3.22(a) the inclusion X1 ↪→ X induces an

epimorphism on the fundamental group, and so i∗ : π1(Y, y0) −→ π1(X, y0) is an

epimorphism.

On the other hand, if z0 = q(0) = q(1), then the loop λ′f : I −→ X given by

λ′f (t) = q(12e
2πit), which indeed lies inside X1∩X2, generates π1(X1∩X2, z0) ∼= Z.

Also, the deformation retraction of X2 into Y deforms λ′f in λf . Letting j : X1 ↪→
X denote the inclusion, we know from 4.3.22(a) that ker(j∗) is generated as a

normal subgroup by the element [λ′f ], and so ker(i∗ : π1(Y, f(1)) −→ π1(X, f(1)))

is generated by [λf ], and, as in the previous proof, ker(i∗ : π1(Y, y0) −→ π1(X, y0))

is generated by αf . ⊓⊔
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Inductively, it is possible to prove the following result.

4.4.5 Corollary. If the 2-cells e21, e
2
2, . . . , e

2
k are attached to Y using the maps

f1, f2, . . . , fk : S1 −→ Y , then

π1(Y ∪ e21 ∪ e22 ∪ · · · ∪ e2k, y0) ∼= π1(Y, y0)/N{αf1
,αf2

,...,αfk
} . ⊓⊔

4.4.6 Examples.

(a) For any integer k ≥ 1, let Xk = S1 ∪ e2, where the cell is attached using the

map gk : S1 −→ S1 of degree k, gk(ζ) = ζk. If [α] ∈ π1(S1, 1) is the canonical

generator, then π1(Xk, 1) ∼= π1(S1, 1)/N{αk}, where αk = [λgk ] ∈ π1(S1, 1).

By 4.2.13, αk = αk1 ∈ π1(S1, 1); that is, αk is the kth power of the canonical

generator. Therefore,

π1(Xk, 1) ∼= Z/k,

that is, this fundamental group is cyclic of order k.

(b) The construction of (a) for k = 2 produces X2 ≈ RP2, that is, the projective

plane. Therefore,

π1(RP2) ∼= Z/2.

There are several ways of grasping this fact. If, for instance, we realizeRP2 by

identifying antipodal points in the boundary of B2, then the map λ1 : I −→
B2 given by λ1(t) = eπit determines a loop λ′ in RP2 (see Figure 4.9(a)).

Since by 4.3.22(a), π1(S1) −→ π1(RP2) is an epimorphism, the class [λ′]

generates π1(RP2); that is, this group is cyclic. Defining λ2(t) = eπi(t+1) and

λ = λ1λ2, we have that λ surrounds B2 once and therefore is contractible.

Since λ1, λ2, and λ′ all determine the same homotopy class in π1(RP2),

[λ′]2 = 1 ∈ π1(RP2), that is, this group is cyclic of order 2.

(b)(a)

lf

B2 B2

l2

l1

le

lf

Figure 4.9 The square of the generator of π1(RP2) is trivial.

Another way of looking at this is the following. RP2 is obtained by attaching

a 2-cell to the Moebius band M along its boundary, which is homeomorphic
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to S1. Since M has the same homotopy type of S1, the equatorial loop λe

that surrounds the equator of M once (see 4.2.9(c)) generates π1(M) as an

infinite cyclic group. If f : S1 −→ ∂M ↪→ M is a homeomorphism onto

the boundary of M , the loop λf in RP2 = M ∪f e2 is such that it deforms

inside M to the equator to become λ2e (see Figure 4.9(b)). Consequently,

[λe]
2 = 1 ∈ π1(RP2), so we again see that this group is cyclic of order 2.

Considering RP2 as a quotient of S2 by identifying antipodal points, we may

repeat the construction above. A path λ : I −→ S2 that uniformly travels

along one-half of the equator of the sphere determines in RP2 a loop µ,

generating π1(RP2) and whose square comes from λ2. Since it travels along

the whole equator of S2, the loop λ2 can be deformed into a constant loop,

and so [µ]2 = 1 in π1(RP2).

(c) As we saw in 3.3.18, the orientable surface of genus g, Sg, is obtained by

attaching a 2-cell to the wedge of 2g circles S1
2g = S1

a1 ∨ S1
b1
∨ · · · ∨ S1

ag ∨ S1
bg

with the map fg : S1 −→ S1
2g, such that as the argument travels around

the circle counterclockwise, the values of the map first go around S1
a1 coun-

terclockwise, then S1
b1

also counterclockwise, then again S1
a1 but now clock-

wise, and then S1
b1

clockwise, and so on, and finishing by going around S1
bg

clockwise. Then the associated loop λg = λfg : I −→ S1
2g is the loop prod-

uct λa1λb1λa1λb1λa2 · · ·λagλbg , where λai and λbi are the canonical loops in

S1
ai = S1 and S1

bi
= S1, and λai and λbg are their inverses, i = 1, . . . , g. By

4.4.1, π1(S
1
2g) is freely generated by the classes αi = [λai ], βi = [λbi ].

By 4.4.4, π1(Sg) ∼= π1(S
1
2g)/Nαfg

. That is,

π1(Sg) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
2g

/Nα1β1α
−1
1 β−1

1 ···αgβgα
−1
g β−1

g
,

where αi is the generator of the (2i − 1)th copy of Z and βi of the 2ith,

i = 1, . . . , g. In terms of generators and relations, this fact is usually written

as

π1(Sg) = ⟨α1, β1, . . . , αg, βg | α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g ⟩ ,

and one says that this group has as generators the elements α1, β1, . . . ,

αg, βg subject only to the relation

α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g = 1 .

(d) Analogously to (c) we can compute the fundamental group of a nonorientable

surface Ng of genus g defined as the result of attaching a 2-cell to a wedge of

g circles S1
g = S1

a1 ∨ · · · ∨S1
ag but now with the map fg : S1 −→ S1

g such that

as the argument travels around the circle counterclockwise, the values of the
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map first go around S1
a1 counterclockwise, then S1

a2 also counterclockwise,

and so on, and finishing by going around S1
ag counterclockwise. Therefore,

we now have

π1(Ng) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
g

/Nα2
1···α2

g
,

where αi is the generator of the ith copy Z. In terms of generators and

relations, one has

π1(Ng) = ⟨α1, . . . , αg | α2
1 · · ·α2

g⟩ ;

that is, this group has as generators the elements α1, . . . , αg subject to the

one relation α2
1 · · ·α2

g = 1.

Using examples (c) and (d) above, we can distinguish surfaces of different genus.

4.4.7 Corollary. No two surfaces in the list

S0, S1, S2, . . . , N1, N2, . . .

have the same homotopy type, and in particular, they are not homeomorphic.

Proof: If the fundamental groups of these surfaces are abelianized, we have

π1(Sg)
ab ∼= Z2g , π1(Nh)

ab ∼= Zh−1 × (Z/2) .

Here Z0 denotes 0. Since no two of these groups are isomorphic, we have that no

two of these surfaces have the same homotopy type. This implies that no two of

them are homeomorphic. ⊓⊔

4.4.8 Remark. Given a 0-connected topological space X, one may define its first

homology group by

H1(X) = π1(X)ab .

This is in fact a theorem, but it may be used as an ad hoc definition.

4.4.9 Exercise. Let x1, x2, . . . , xk ∈ R2 be different points.

(a) Prove that R2 − {x1, x2, . . . , xk} contains as a (strong) deformation retract

a subspace Xk homeomorphic to S1 ∨ · · · ∨ S1︸ ︷︷ ︸
k

.

(b) Prove that

π1(R2 − {x1, . . . , xk}) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
k

;

that is, it is free in k generators. Deduce that R2 − {x1, x2, . . . , xk} and

R2 − {x1, x2, . . . , xl} are homeomorphic if and only if k = l.
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4.4.10 Exercise. Compute the fundamental groups of the following spaces:

(a) S1 ∨ S2, S1 ×RP2, RP2 ∨RP2, RP2 ×RP2.

(b) R3 − C, where C is the circle x2 + y2 = 1, z = 0.

(c) (S1 × S1) ∪ e2, where the 2-cell is attached using the map f(ζ) = (ζ2, ζ3).

4.4.11 Exercise. Prove the theorem on invariance of dimension 1.1.9 for m = 2

and n > 2; in other words, prove that R2 and Rn (resp. S2 and Sn, B2 and Bn),
n > 2, are not homeomorphic. (Hint: π1(R2 − {x}) ∼= Z, while π1(Rn − {y}) = 1

for n > 2. Cf. the proof of 4.4.3, or 4.3.2.)

4.4.12 Exercise. Let G be a finitely presented group, that is G has finitely

many generators a1, . . . , ak and finitely many relations r1, . . . , rl; in symbols, G =

⟨a1, . . . , ak | r1, . . . , rl⟩. Prove that there is a topological spaceX such that π1(X) ∼=
G. (Hint: Take Y =

∨k
j=1 S1

j and kill the relations in π1(Y ) by attaching 2-cells as

in 4.4.4.)

To finish this chapter, let us recall that every 3-dimensional closed, connected,

and orientable manifold is the union of two handle bodies (see 2.3.14). Applying

the Seifert–van Kampen theorem to this decomposition, we can compute the fun-

damental group of any 3-manifold of this kind, at least potentially, since necessarily

we need to know in each case, what the corresponding Heegaard decomposition

looks like.

4.4.13 Example. Take the handle body Hg defined in 2.3.13, with genus g ≥ 1.

By the classification theorem for surfaces 2.2.23 we know that Ag = ∂HG ≈ Sg,

where Sg is the connected, closed, and orientable surface of genus g. Therefore,

π1(Ag) = ⟨α1, β1, . . . , αg, βg | α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g ⟩. On the other hand,

as indicated in 3.3.16(c), Hg ≃ S1
1 ∨ · · · ∨ S1

g, so that π1(Hg) is a free group of

rank g. Let i : Ag ↪→ Hg be the inclusion. We may choose the generators of

π1(Ag) in such a way that i∗(α1), . . . , i∗(αg) is a set of generators of π1(Hg) and

i∗(β1) = · · · = i∗(βg) = 1. If we denote by q : Hg ⊔H ′
g −→ M = Hg ∪φ H ′

g, Hg =

H ′
g, the identification along a homeomorphism φ : Ag −→ Ag, we have elements

aν = q∗(αν), bν = q∗(βν), a
′
ν = q∗φ∗(αν), b

′
ν = q∗φ∗(βν) ∈ π1(M) such that, indeed,

b1 = · · · = bg = b′1 = · · · = b′g = 1. Moreover, the homeomorphism φ : A3 −→ A3

is such that φ∗(αν) = rν(α1, β1, . . . , αg, βg), φ∗(βν) = sν(α1, β1, . . . , αg, βg), where

rν and sν are certain words in the generators α1, β1, . . . , αg, βg.

If we call W = q(Hg) and W
′ = q(H ′

g), and T = q(Ag) = q(φ(Ag)), Ag ⊂ Hg,

we have that M = W ∪W ′ and T = W ∩W ′ ≈ Ag ≈ Sg. By the choice of the
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generators,

π1(W ) = ⟨a1, . . . ag|−⟩ ,

π1(W
′) = ⟨a′1, . . . a′g|−⟩ .

Besides, π1(T ) has two possible systems of generators:

{x1, y1, . . . , xg, yg}, xν = q∗(αν) , yν = q∗(βν) ,

{x′1, y′1, . . . , x′g, y′g}, x′ν = q∗φ∗(αν) , y
′
ν = q∗φ∗(βν) ,

ν = 1, . . . , g, that are related to each other via the equations

x′ν = rν(x1, y1, . . . , xg, yg) , y′ν = sν(x1, y1, . . . , xg, yg) .

Since the inclusions j : T ↪→W , j′ : T ↪→W ′ are such that j∗(xν) = aν , j∗(yν) = 1,

j′∗(x
′
ν) = a′ν , j

′
∗(y

′
ν) = 1, the equations

a′ν = rν(a1, 1, . . . , ag, 1) , 1 = b′ν = sν(a1, 1, . . . , ag, 1)

hold. So we have, applying version 4.3.23 of the Seifert–van Kampen thorem, that

π1(M) ∼= ⟨a1, . . . , ag, a′1, . . . , a′g|a−1
ν rν(a1, 1, . . . ag, 1), sν(a1, 1, . . . ag, 1)⟩ ,

and since a1, . . . , ag can be expressed in terms of a′1, . . . a
′
g, these last elements are

enough to generate π1(M), and we obtain

π1(M) ∼= ⟨a′1, . . . , a′g | sν(a1, 1, . . . ag, 1) para 1 ≤ ν ≤ g⟩ .

This can be easily interpreted by stating that π1(M) is generated by the equa-

torial loops a′ν in ∂W ′. And given the relation φ∗(βν) = sν(α1, β1, . . . , αg, βg),

the relation sν(a1, 1, . . . ag, 1) = 1 holds, since the meridional loops βν and β′ν are

nullhomotopic in M .

4.4.14 Example. It is interesting to see now the result of 4.3.2 in the context

of the previous example, when n = 3, namely to compute the fundamental group

of the 3-sphere be decomposing it as the union of two solid tori, according to

proposition 2.3.6. In this case, S3 = H1 ∪φ H ′
1, where H1 = H ′

1 = S1 × B2, and

φ : S1 × S1 −→ S1 × S1 is such that φ(x, y) = (y, x). With the notation above, it

results that a′1 = r1(a1, b1) = b1 = 1, 1 = b′1 = s1(a1, b1) = a1 ∈ π1(S3), and thus

π1(S3) = ⟨a′1 | a′1⟩, but obviously, this is the trivial group.

4.4.15 Note. The last year of the nineteenth century Henri Poincaré proposed

a conjecture that has puzzled topologists being one of the most powerful motors

of research on 3-manifolds during all of the twentieth century, and that all along

the century could not be either proved or disproved by showing a counterexample.
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In the preceding example we proved again that the 3-sphere is simply connected.

Poincaré conjectured that this is the only such 3-manifold:

The Poincaré conjecture. Every closed, connected, and simply connected 3-

manifold is homeomorphic to S3.

Hempel’s book [14] deals with several aspects of this conjecture.

Let us recall that a group is finitely presented if it is given by a finite number

of generators and a finite number of relations among them. Examples of finitely

presented groups are the fundamental groups of the closed surfaces (see 4.4.6(c)

and (d)), as well as the fundamental groups of the closed 3-manifolds (see 4.4.13).

It is interesting to observe the following theorem about 4-manifolds, whose

proof lies beyond the scope of this book. For its proof we refer the reader to [11].

4.4.16 Theorem. For every finitely presented group G there is a closed 4-manifold

M such that π1(M) ∼= G. ⊓⊔

4.4.17 Note. Compare this result with 4.4.12.

4.4.18 Note. We remarked in Chapter 2 that it is not possible to classify all

4-manifolds. Under this fact lies an algebraic result that states that there is no

algorithm that allows to decide whether a finitely presented group is the trivial

group or not. This, due to Theorem 4.4.16, makes very complicated to decide

whether two 4-manifolds are homeomorphic or not; therefore, it is not clear how to

produce an algorithm to classify all 4-manifolds. This explains why it is necessary

to ask for Freedman’s restriction in his classification theorem 2.3.16 that the 4-

manifolds are simply connected.

4.4.19 Note. If M is a 4-manifold of the same homotopy type of the 4-sphere

S4, then, since the homology of both coincides, and consequently also the associ-

ated bilinear forms are isomorphic, then by Freedman’s theorem 2.3.16, M must

be homeomorphic to S4. Therefore, as a corollary of this theorem, the Poincaré

conjecture in dimension 4 is established as follows.

4.4.20 Theorem. If a 4-dimensional topological manifold M is homotopy equiv-

alent to S4, then M is homeomorphic to S4. ⊓⊔
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Chapter 5 Covering maps

In this chapter we shall analyze the concept of covering map. This is an

important notion in several branches of mathematics. We shall study it here with

respect to its relationship to the fundamental group.

5.1 Definitions and examples

In this section we shall give the definition of a covering map, and we shall analyze

some examples.

5.1.1 Example. Consider the exponential map p : R −→ S1, given by p(t) = e2πit.

One way to visualize this map is shown in Figure 5.1.

Take the open set U = S1 − {1}. Then p−1(U) = R − Z. Clearly one has

R−Z = ⊔n∈Z(n, n+ 1) and for each n, the restriction p|(n,n+1) : (n, n+ 1) −→ U

is a homeomorphism, whose inverse is a branch of the logarithm. More generally:

(i) If U ⊂ S1 is any open set different from S1, then p−1(U) = ⊔n∈ZŨn and the

restriction p|
Ũn

: Ũn −→ U is a homeomorphism.

It is precisely this property what was used implicitly to define the degree, namely

to show that:

(ii) Given a loop λ : I −→ S1 based on 1, there is a unique path λ̃ : I −→ R
such that λ̃(0) = 0 and p ◦ λ̃ = λ.

The first property means that p is a covering map. The second property is the

so-called unique path lifting property, which all covering maps have.

5.1.2 Definition. Consider a topological space X. A covering map over X is a

map p : X̃ −→ X, X̃ ̸= ∅ such that each point x ∈ X has a neighborhood U in X

satisfying

151
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p

1

S1

−2

−1

0

R

1

2

−1

− 3
2

− 1
2

1
2

3
2

Figure 5.1 The universal covering map of S1

(a) The inverse image of U , p−1(U), is the disjoint union of open sets Ũj ⊂ X̃,

j ∈ J , donde J is some nonempty set of indexes.

(b) For each j ∈ J , the restriction p|
Ũj

: Ũj −→ U is a homeomorphism.

In particular, by (a), p is surjective. Furthermore, if we assume that X and X̃ are

path-connected, then we shall say that p is a path-connected covering map. The

space X is called the base space of the covering map, the space X̃ is called the

total space of the covering map (or covering space). For each x ∈ X, the inverse

image p−1(x) is called the fiber over x of the covering space. The fiber p−1(x) is

nonempty, since p is surjective. A neighborhood U which satisfies (a) and (b) is

said to be evenly covered by p and the sets Ũj are called the leaves over U (see

Figyre 5.2).

U

p

p−1(U)

Figure 5.2 A covering map seen locally

We have the following result.
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5.1.3 Proposition. Let p : X̃ −→ X be a covering map such that X is connected.

Take x, y ∈ X. Then the fibers p−1(x) and p−1(y) have the same cardinality.

Proof: By 5.1.2(a), the set A of all points of X whose fibers have the same car-

dinality of p−1(x) is open. If p−1(y) had a different cardinality, then the set B of

all points whose fibers have a different cardinality from that of p−1(x) would be a

nonempty open set complementary to A, thus contradicting the connectedness of

X. ⊓⊔

The cardinality of the fibers of a covering map is called the multiplicity of the

covering map. It might be finite or infinite. If it is finite, say of cardinality n, then

we say that we have an n-fold covering map.

The next result gathers several properties of a covering map.

5.1.4 Theorem. Let p : X̃ −→ X be a covering map. Then the following hold:

(a) For each x ∈ X, the fiber p−1(x) is a discrete space.

(b) If a connected subspace Ã ⊆ X̃ lies over an evenly covered neighborhood U ,

namely, it is such that p(Ã) ⊂ U , then Ã lies inside a leaf, i.e., Ã ⊂ Ũj for

some j ∈ J .

(c) If U is an evenly covered neighborhood of x in X and V is another neighbor-

hood of x such that V ⊂ U , then V is evenly covered.

(d) The neighborhoods in X which are evenly covered by p form a basis for the

topology of X. Furthermore, the leaves which lie over the evenly covered

neighborhoods form a basis for the topology of X̃.

(e) p is a local homeomorphism. Furthermore, if X is connected, then p is con-

tinuous, surjective and open, so that it is an identification. ⊓⊔

5.1.5 Examples. Not every local homeomorphism f : Y −→ X is a covering

map. For instance,

(a) if Y = R ⊔ R/ ∼, where the corresponding negative real numbers of each

copy of R are identified (see 2.1.9), then the natural projection Y −→ R is a

local homeomorphism, but it is not a covering map, since no neighborhood

of 0 is evenly covered by f ;

(b) also the map f : (0, 3) −→ S1 given by f(t) = e2πit, is a local homeomor-

phism, which is not a covering map, since no neighborhood of 1 ∈ S1 is

evenly covered by f .
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The next result will be useful below.

5.1.6 Proposition. Let X be locally connected, let p : X̃ −→ X and p′ : X̃ ′ −→ X

be covering maps, and let q : X̃ ′ −→ X̃ be surjective and such that p◦q = p′, namely

such that the triangle

X̃ ′
q //

p′   A
AA

AA
AA

X̃

p
��~~

~~
~~

~

X

commutes. Thus q is also a covering map.

Proof: Take x̃ ∈ X̃ and let x = p(x̃). Since p and p′ are covering maps, there is a

connected U ∈ Nx which is evenly covered by both p and p′. Thus, in particular,

p−1(U) = ⊔j∈J Ũj , and p̃|Ũj
: Ũj −→ U is a homeomorphism. Let Ũ = Ũj0 be such

that x̃ ∈ Ũj0 . Since U is also evenly covered by p′, p′−1(U) = ⊔i∈J ′Ũ ′
i . For each

j ∈ J put J ′
j = {i ∈ J ′ | q(Ũ ′

i) ⊂ Ũj . Then J ′
j ̸= ∅, since each Ũ ′

i is connected and

q is surjective. Therefore q−1(Ũj) = ⊔i∈J ′
j
Ũ ′
i and in particular q−1(Ũ) = ⊔i∈J ′

j0
Ũ ′
i .

Since for each i ∈ J ′
j , the following diagram

Ũ ′
i

q|
Ũ′
i //

p′|
Ũ′
i   A

AA
AA

AA
A Ũj

p|
Ũj~~}}

}}
}}

}}

U ,

commutes for all j and in particular for j0, and since p|
Ũj

as well as p′|
Ũ ′
i
in the

diagram are homeomorphisms, one has that q|
Ũ ′
i
: Ũ ′

i −→ Ũj is a homeomorphism.

Consequently each Ũj and in particular Ũ , is evenly covered by q. Therefore q is a

covering map. ⊓⊔

5.1.7 Definition. Two covering maps p : X̃ −→ X and p′ : X̃ ′ −→ X over

the same space X are said to be equivalent, if there exists a homeomorphism

φ̃ : X̃ ′ −→ X̃ such that p ◦ φ̃ = p′, namely such that the diagram

X̃ ′

p′   A
AA

AA
AA

φ̃ // X̃

p
��~~

~~
~~

~

X

commutes. Hence φ is a fiberwise homeomorphism, namely, it maps bijectively

fibers onto fibers.
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5.1.8 Examples.

(a) The homeomorphisms are the one-leaf covering maps (or 1-fold covering

maps).

(b) The exponential map defined in Example 5.1.1 p : R −→ S1 is a covering

map, whose fiber is (equivalent to) Z.

(c) If F is a discrete space and we define p : E = F × X −→ X to be the

projection onto X, then p is a covering map. These are the so-called product

covering maps.

(d) A covering map p : E −→ X is said to be trivial if there is a homeomorphism

φ : X × F −→ E such that p ◦ φ = projX . Such homeomorphism φ is called

a trivialization of p.

5.1.9 Exercise. Prove that a map p : E −→ X is a covering map if and only if

it has discrete fibers and it is locally trivial, namely there is an open cover U of X

such that pU = p|p−1(U) : p
−1(U) −→ U is a trivial covering map.

There are some constructions that start with covering maps and yield new

covering maps.

5.1.10 Proposition. Given covering maps p1 : X̃1 −→ X1 and p2 : X̃2 −→ X2,

the product map p = p1 × p2 : X̃1 × X̃2 −→ X1 ×X2 is a covering map.

Proof: If U1 ⊂ X1 and U2 ⊂ X2 are open sets which are evenly covered by p1 and

p2, respectively, then U = U1 × U2 is evenly covered by p. More precisely, if Ũi is

a leaf over U1 and Ṽj is a leaf over U2, then Ũi × Ṽj is a leaf over U . In particular,

the fiber of p over the point (x1, x2) is p
−1
1 (x1)× p−1

2 (x2). ⊓⊔

The covering map p in the previous proposition is called the product of p1 and

p2.

5.1.11 Proposition. Given covering maps p1 : X̃1 −→ X and p2 : X̃2 −→ X

over the same space, consider X̃1 ×X X̃2 = {(y1, y2) ∈ X̃1 × X̃2 | p1(y1) = p2(y2)}
and p : X̃ = X̃1 ×X X̃2 −→ X defined by p(y1, y2) = p1(y1) = p2(y2). Then p is a

covering map.

Proof: If U ⊂ X is evenly covered by p1 and V ⊂ X is evenly covered by p2,

then U ∩ V is evenly covered by p. The fiber of p over x ∈ X is the product

p−1
1 (x)× p−1

2 (x). ⊓⊔
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The covering map p in the previous proposition is called the fibered product of

p1 and p2 (the space X̃1×X X̃2 is also called the fibered product of the total spaces).

5.1.12 Proposition. Let p : X̃ −→ X be a covering map and let f : Y −→ X be

a continuous map. If Ỹ = {(y, x̃) ∈ Y × X̃ | f(y) = p(x̃)} and q : Ỹ −→ Y is given

by q(y, x̃) = y, then q is a covering map.

Proof: If the open set U ⊂ X is evenly covered by p, then its inverse image

V = f−1(U) ⊂ Y is evenly covered by q. ⊓⊔

The covering map q is called the covering map induced by p over f and is

usually denoted by f∗(p) : f∗(X̃) −→ Y .

5.1.13 Exercise. Show that in the previous construction, the fiber of q over y ∈ Y

is the same as the fiber of p over f(y), namely q−1(y) = {y} × p−1(f(y)). In

particular, notice that any fiber of p over x is the total space of the covering map

induced by p over the inclusion {x} ↪→ X and the fibered product p : X̃1×X X̃2 −→
X is the covering map induced by the product covering map p1×p2 : X̃1× X̃2 −→
X ×X over the diagonal map ∆ : X −→ X ×X.

5.1.14 Exercise. Let p : E −→ X and q : E′ −→ Y be covering maps and

consider the following commutative diagram:

E′ f̃ //

q

��

E

p

��
Y

f
// X ,

where f̃ |q−1(y) : q
−1(y) −→ p−1(f(y)) is a bijection. Show that q is equivalent to

the covering map induced by p over f .

5.1.15 Exercise. Check all details of the proofs of the three previous proposi-

tions.

5.1.16 Exercise. Let p : X̃ −→ X be a covering map and take Y ⊂ X. Show

that the restriction p|p−1Y : p−1Y −→ Y is a covering map, namely the so-called

restriction of p to Y . Furthermore, show that if i : Y ↪→ X is the inclusion map,

then the induced covering map q = i∗(p) : Ỹ = i∗(X̃) −→ Y is equivalent to the

restriction of p to Y .
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5.1.17 Exercise. Consider the space X̃ = X̃1×X X̃2 defined in Proposition 5.1.11

and take the (restriction of) the first projection q : X̃1 ×X X̃2 −→ X̃1. Show that

q is a covering map. Indeed, it is the covering map induced by p2 over p1.

5.1.18 Exercise. Let p : X̃ −→ X be a covering map. Show the following func-

torial properties of the induced covering maps.

(a) If f = idX , then f∗X̃ ≈ X̃, where the homeomorphism is given by the

associated map f̃ : (x, x̃) 7→ x̃.

(b) If we have maps f : Y −→ X and g : Z −→ Y , then (f ◦ g)∗(X̃) = g∗(f∗X̃).

5.1.19 Exercise. Let p : X̃ −→ X and p′ : X̃ ′ −→ X ′ be covering maps. Show

that if f̃ : X̃ −→ widetildeX ′ is a morphism of covering maps, that is, there exists

a continuous map f : X −→ X ′ such that f ◦ p′ = p ◦ f̃ , and for each x ∈ X, the

restriction to the fiber f̃x : p−1(x) −→ p′−1(f(x)) is bijective, then X̃ ≈ f∗X̃ ′.

Passing to a more geometrical setting, we recall some other examples of covering

maps that have been present in the text.

5.1.20 Examples.

(a) Take n ≥ 1 and consider the n-sphere Sn. Then the quotient space obtained

by identifying each pair of antipodal points x ∼ −x determines real projective

space of dimension n, namely RPn = Sn/∼. The quotient map p : Sn −→
RPn is a 2-fold covering map.

(b) The product of two copies of the covering map p : R −→ S1 of Example 5.1.1

yields a covering map R2 −→ T2, where T2 = S1 × S1 is the 2-dimensional

torus. The fiber of this covering map over any point is of the form Z×Z and

looks like in Figure 5.3.

In the prior example 5.1.20 (a), in the case n = 1, the projective space RP1 is

homeomorphic to S1. In other words, the map π : S1 −→ S1 given by ζ 7→ ζ2 is

equivalent to p : S1 −→ RP1. One can see this, by observing that the map π is

continuous and surjective from a compact space to a Hausdorff space. Hence it is

an identification. Furthermore, it identifies exactly two points if and only if they

are antipodal, just as p does. In particular, this shows that there may be nontrivial

covering maps, for which the total and the base space are the same space.
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R2

p× p

T2

Figure 5.3 The universal covering space of the torus

5.1.21 Exercise. Consider the map gk : S1 −→ S1 given by gk(ζ) = ζk. Show

that gk is a k-fold covering map.

5.1.22 Definition. Let G be a (discrete) group. A (left) action of G on a space

X is a continuous map

µ : G×X −→ X ,

where we write gx instead of µ(g, x), which satisfies

1x = x

g1(g2x) = (g1g2)x .

Hence each element g ∈ G determines a homeomorphism X −→ X, given by

x 7→ gx (and inverse given by x 7→ g−1x) and the equations above mean that the

function G −→ Homeo(X), determined by the action, where Homeo(X) is the

(topological) group of homeomorphisms ofX onto itself, is a group homomorphism.

We say that a group action is even∗ if every point x ∈ X has a neighborhood

V such that V ∩ gV = ∅ if and only if 1 ̸= g ∈ G, where gV = {gx | x ∈ V }.
Hence, for g1 ̸= g2 ∈ G, one has g1V ∩ g2V = ∅. Therefore, if G acts evenly on

X and 1 ̸= g ∈ G, then for every x ∈ X, x ̸= gx. This means that the action is

free. Given x ∈ X, the set Gx = {gx | g ∈ G} is called the orbit of x under the

action of G on X. Thus, if one has a free action of G on X, then for each x ∈ X,

the mapping G −→ X given by g 7→ gx is an embedding. Hence, in this case,

each orbit is homeomorphic to the group. Otherwise, this mapping has a ”kernel”,

namely, there is a subgroup Gx such that gx = x if and only if g ∈ Gx. In this case,

the the mapping G −→ X given by g 7→ gx defines a mapping from the quotient

(which is not necessarily a group) G/Gx −→ X which is an embedding.

∗Most authors say that the action is properly discontinuous, but we find this designation contradictory,
since the action is continuous.
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The orbit space or quotient space of the action of G on X is the quotient space

X/G = X/∼, where x1 ∼ x2 if and only if x2 = gx1 for some g ∈ G. The quotient

map q : X −→ X/G is called the orbit map.

5.1.23 Example. The (additive) group R acts on the topological space R by

(g, x) 7→ g + x. This action is free, but it is not even (since R is not discrete).

However, the restriction of this action to the subgroup Z of R is even, and thus it

is free.

5.1.24 Exercise. Show that if G is a finite (discrete) group that acts freely on a

Hausdorff space X, then the action must be even. (This is the case, for instance,

for the antipodal action of Z2 on any sphere Sn, given by 1x = x and (−1)x = −x
for any x ∈ Sn.)

Even actions of groups on topological spaces are a source of covering maps. We

have the following result.

5.1.25 Theorem. If a group G acts evenly on X, then the orbit map q : X −→
X/G is a covering map, whose multiplicity is the cardinality of the group G.

Proof: Take x ∈ X and a neighborhood V of x such that g1V ∩ g2V = ∅ if

g1 ̸= g2 ∈ G. Then U = q(V ) ⊂ X/G is a neighborhood of q(x) which is evenly

covered by q. Namely, q−1(U) = ⊔g∈GgV ⊂ X and hence each fiber is equivalent

as a set to G, since the mapping G −→ q−1(q(x)) = {gx | g ∈ G} given by g 7→ gx

is clearly bijective. Thus the multiplicity of q is the cardinality of G. ⊓⊔

5.1.26 Examples.

(a) According to 5.1.24, the antipodal action Z2 × Sn −→ Sn is even. Hence

the orbit map Sn −→ Sn/Z2 is a covering map. Since Sn/Z2 = RPn, this
covering map is the one mentioned in 5.1.20 (a).

(b) The cyclic group of order k, Zk (seen as the group of the kth roots of unity),

acts on S1 ⊂ C as follows. If a ∈ Zk is the canonical generator, namely

a = e2πi/k (the primitive kth root of 1), then aζ = e2πi/kζ is given by the

product of complex numbers. In other words, one can see Zk as a subgroup of

S1 and the action is given by the multiplication in the group S1. This action

is clearly even, and so the orbit map q : S1 −→ S1/Zk is a covering map. On

the other hand, the map p : S1 −→ S1 given by p(ζ) = ζk, is an identification

for which p(ζ) = p(ξ) if and only if ζ = bξ, where b is a kth root of 1. Hence

there is a homeomorphism S1 −→ S1/Zk, up to which p corresponds to q.

We have thus shown that the mapping of degree k, gk : S1 −→ S1 given by

gk(ζ) = ζk, is a covering map of multiplicity k. (Cf. comment before 5.1.21.)
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(c) Generalizing 5.1.20 (b), we have that the free abelian group in n generators

Zn acts evenly on Rn via (g, x) 7→ g + x. Therefore p : Rn −→ Rn/Zn
is a covering map with countably many leaves, which up to homeomor-

phism, coincides with the product covering map Rn −→ S1 × · · · × S1 (n

factors), obtained as the product of n copies of the covering map of example

5.1.1. In other words, p maps (x1, . . . , xn) to (e2πix1 , . . . , e2πixn). Hence one

has the mapping p(x1, . . . , xn) 7→ (e2πix1 , . . . , e2πixn) is a homeomorphism

Rn/Zn −→ S1× · · ·×S1 (n factores). The space Tn = S1× · · ·×S1 is called

the n-torus or n-dimensional torus.

(d) There is an even action of Z on R2 given by (n, (x1, x2)) 7→ (n+x1, (−1)nx2).

In the associated covering map p : R2 −→ R2/Z, the base space is an open

Moebius strip, namely without its boundary (see 1.4.11).

(e) Let G be a subgroup of the group of rigid transformations of Rn (i.e. ro-

tations, translations, and reflections), whose natural action on Rn is even.

Then the orbit map p : Rn −→ Rn/G is a covering map. The base space

Rn/G is called Euclidean space form. It is a smooth n-manifold which inher-

its from Rn a natural Euclidean geometric structure. Examples (c) and (d)

have this form. The group G is called crystalogrphic group of Rn.

5.1.27 Exercise. Let G be the subgroup of the group of rigid transformations of

R2 generated by the transformations

(x1, x2) 7−→ (x1 + 1, x2) and (x1, x2) 7−→ (−x1, x2 + 1) .

Show that the action is even and verify that the orbit space R2/G is homeomorphic

to the Klein bottle.

5.1.28 Exercise. Considering the (2n− 1)-sphere S2n−1 as

S2n−1 = {z = (z1, . . . , zn) ∈ Cn | |z1|2 + · · ·+ |zn|2}

and Z/k as the multiplicative group of the kth roots of unity in S1, there is an

action given by (ζ, z) 7→ (ζz1, . . . , ζzn). Show that this action is even and thus one

has a covering map p : S2n−1 −→ S2n−1/Zk. If k is prime, the space S2n−1/Zk
is called lens space, which we denote by L2n−1

k , where 2n − 1 is the dimension of

this manifold. The case k = 2 corresponds to the real projective spaces of odd

dimension, i.e. L2n−1
2 = RP2n−1.

5.1.29 Exercise. Show that the mapping T2 −→ T2 given by

(ζ, ξ) 7→ (ζaξb, ζcξd) ,

with a, b, c, d ∈ Z, if m = ad− bc ̸= 0, is a |m|-fold covering map.
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5.1.30 Exercise. Construct a 2-fold covering map onto the Klein bottle T2 −→
K.

5.1.31 Exercise. Recall that the quaternions are the elements x of R4 written

as x = x0 + ix1 + jx2 + kx3, where x0 is short for (x0, 0, 0, 0) and is called the

real part of x, and i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1), which are the

generators of the imaginary part of the quaternions. The set H of quaternions has

a multiplicative structure, generated by

i2 = j2 = k2 = −1 and

ij = k = −ji, jk = i = −kj, ki = j = −ik .

Consider S3 ⊂ R4 = H as the set of quaternions of norm 1. Taking R3 as the

subset of H consisting of all quaternions of real part 0, show:

(a) If x ∈ S3, then the mapping fx : R3 −→ R3 given by fx(y) = xyx−1, is

an orthogonal transformation with determinant +1. Hence it restricts to a

mapping f : S3 −→ SO3, such that x 7→ fx, where SO3 denotes the group of

orthogonal transformations of R3 with determinant +1).

(b) The map f : S3 −→ SO3 is continuous and surjective (hence an identification)

and fx = fx′ if and only if x = ±x′.

(c) f : S3 −→ SO3 is a 2-fold covering map.

(d) f induces a homeomorphism RP3 −→ SO3.

5.2 Lifting properties

The fundamental property of the covering maps is the “lifting property”, which

we shall analyze in this section.

5.2.1 Definition. Let p : X̃ −→ X be a covering map and let f : Y −→ X be

continuous. A map f̃ : Y −→ X̃ is said to lift f if p ◦ f̃ = f . In a diagram:

X̃

p

��
Y

f
//

f̃
??�

�
�

�
X
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Of special importance in the theory of covering maps is the path lifting property,

namely the following: Given a path ω : I −→ X, there is a path lifting ω, namely

a path ω̃ : I −→ X̃ such that p ◦ ω̃ = ω.

In a figure it would look as shown in Figure 5.4, where several paths lifting the

same path are shown.

ω

ω̃1

ω̃2

ω̃3

ω̃4

x0

x̃1

x̃2

x̃3

x̃4

Figure 5.4 In a covering map there are several paths lifting a given path in the
base space

A typical problem of the theory is the lifting problem which asks about the

solution of the following problem:

Given p : X̃ −→ X a pointed covering map, i.e. such that p(x̃0) = x0 for some

x̃0 ∈ X̃ and x0 ∈ X, and given a map f : Y −→ X and a point y0 ∈ Y such that

f(y0) = x0, does there exist a map f̃ : Y −→ X̃ lifting f , such that f̃(y0) = x̃0.

In a sequence of steps, we shall analyze the solutions to the lifting problem. In

any case, there is only one solution if it exists, in the sense of the following result.

5.2.2 Proposition. Let p : X̃ −→ X be a covering map. If Y is a connected space

and f̃ , g̃ : Y −→ X̃ are continuous maps such that p ◦ f̃ = p ◦ g̃, then f̃ = g̃ if and

only if there is a point y ∈ Y for which f̃(y) = g̃(y).

Proof: Take y ∈ Y and let U be a neighborhood of pf̃(y) = pg̃(y) which is evenly

covered by p. If Ũ1 is the neighborhood of f̃(y) and Ũ2 is the neighborhood g̃(y),

and they are such that p : Ũ1 ≈ U and p : Ũ2 ≈ U , then V = f̃−1(Ũ1)∩ g̃−1(Ũ2) is

a neighborhood of y in Y . If f̃(y) = g̃(y), then Ũ1 = Ũ2 and f̃(y′) = g̃(y′) for every

point y′ ∈ V . Thus the set on which the two maps f̃ and g̃ coincide is open. If on

the other hand f̃(y) ̸= g̃(y), then Ũ1 ∩ Ũ2 = ∅ and hence f̃(y′) ̸= g̃(y′) for every

point y′ ∈ V . Hence the set on which f̃ and g̃ are different is also open. By the

connectedness of Y and the fact that there is a point at which f̃ and g̃ coincide,
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the second open set must be empty. Therefore both maps coincide at every point

of Y . ⊓⊔

We shall now start with the analysis of the paths ω̃ : I −→ X̃ lifting ω : I −→
X. The fundamental result of the theory of covering maps is the following.

5.2.3 Theorem. (unique path-lifting) Consider a covering map p : X̃ −→ X.

For each path ω : I −→ X and for each point x̃ such that p(x̃) = ω(0), there is a

unique path ω̃ : I −→ X̃ lifting ω, such that ω̃(0) = x̃. We denote this lifting path by

L(ω, x̃). Furthermore, if ω0 and ω1 are paths in X such that ω0 ≃ ω1 rel ∂I and x̃

is a point such that p(x̃) = ω0(0) = ω1(0), then L(ω0, x̃) ≃ L(ω1, x̃) rel ∂I in X̃. In

particular, the ends of both lifting paths coincide, namely L(ω0, x̃)(1) = L(ω1, x̃)(1).

Before passing to the proof of this theorem, consider the following assertion,

which will be necessary for the last part of the proof.

5.2.4 Lemma. Let p : X̃ −→ X be a covering map. Then for each continuous

map H : I2 −→ X and for each point x̃ on the fiber over H(0, 0), there is a unique

map H̃ : I2 −→ X̃, such that p ◦ H̃ = H and H̃(0, 0) = x̃.

Proof: The uniqueness follows immediately from 5.2.2. We show the existence.

Since I is compact, there is a sufficiently fine partition 0 = t0 < t1 < · · · < tn = 1 of

I so that each square Qij = [ti−1, ti]×[tj−1, tj ] is mapped byH into a neighborhood

Uij which is evenly covered by p (this follows by taking the partition so fine that

the diameter of each square is smaller than the Lebesgue number of the cover of

I × I defined by {f−1U | U ⊆ X is evenly covered by p}. For a leaf which is not

yet determined, Ũij over Uij , let pij : Ũij −→ Uij be the homeomorphism given by

pij = p|
Ũij

, and let H̃ij : Qij −→ X̃ be given by H̃(s, t) = p−1
ij H(s, t). We shall see

that it is possible to choose the leaves Ũij in such a way that the partial mappings

H̃ij define a continuous map H̃ as desired.

Let first Ũ1 1 be the leaf that contains x̃. A consequence of this will be that

H̃(0, 0) = x̃. Since the set H̃1 1(Q1 1 ∩Q2 1) lies over U2 1, there is a (unique) leave

Ũ2 1 which contains it. If we choose it, then H̃1 1 and H̃2 1 will coincide in Q1 1∩Q2 1.

Analogously, leaves U3 1, . . . , Un 1 are successively chosen and with them the desired

map H̃ on the row Q1 1 ∪ · · · ∪ Qn 1 is obtained. To do the corresponding on the

second row, one first chooses Ũ1 2 to be the leaf that contains H̃1 1(Q1 2 ∩ Q2 2).

In the next step, we have two choices: either to take the leaf Ũ2 2 which contains

H̃1 2(Q1 2 ∩ Q2 2), or the leaf that contains H̃2 1(Q2 1 ∩ Q2 2). However there is no

ambiguity, since either leaf must contain the point H̃1 2(t1, t1) = H̃2 1(t1, t1), and

thus both must be the same. This way, after choosing Ũ2 2, one has that H̃1 2 = H̃2 2
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and H̃2 1 = H̃2 2 in the intersection of their domains. Successively, one constructs

H̃ over the second row, and similarly on the following rows. ⊓⊔

We may now use this lemma to prove Theorem 5.2.3.

Proof of 5.2.3: Given the path ω : I −→ X, take the homotopy H : I × I −→ X

given by H(s, t) = ω(s). Then H(0, 0) = ω(0) and if p(x̃) = ω(0), then by the

previous lemma, there is a homotopy H̃ : I × I −→ X̃ such that H̃(0, 0) = x̃ and

p◦ H̃ = H. Therefore the path ω̃ : I −→ X̃ given by ω̃(s) = H̃(s, 0), is a path such

that ω̃(0) = x̃ and p◦ ω̃ = ω. That is, ω̃ lifts ω starting at x̃ and by the uniqueness,

we know that it is unique.

Finally if ω0, ω1 : I −→ X are paths such that ω0 ≃ ω1 rel ∂I, and H :

I2 −→ X is a corresponding homotopy, then by 5.2.4, we know that there is a

homotopy H̃ : I2 −→ X̃ such that p ◦ H̃ = H and H̃(0, 0) = x̃. But the path

t 7→ H̃(0, t) lies over the fiber of ω0(0) = ω1(0). Since this fiber is discrete, the

path must be constant. Analogously, the path t 7→ H̃(1, t) must be constant. Hence

H̃(0, t) = x̃, t ∈ I, and H̃(1, t) = ỹ for some fixed point ỹ ∈ X̃ on the fiber over

ω0(1) = ω1(1) and for all t ∈ I. On the other hand, the path s 7→ H̃(s, 0) lifts

ω0 starting at x̃. Hence, by the uniqueness of the lifting paths, which follows from

5.2.2, H̃(s, 0) = ω̃0(s). Analogously H̃(s, 1) = ω̃1(s). This means that the lifting

H̃ of H is a homotopy ω̃0 ≃ ω̃1 rel ∂I, as desired. ⊓⊔

Given a covering map p : X̃ −→ X, the unique path-lifting theorem yields to

each path ω : I −→ X and each point x̃ on the fiber over ω(0) a lifting L(ω, x̃),

namely it defines a function

L : XI ×X X̃ = {(ω, x̃) ∈ XI × X̃ | ω(0) = p(x̃)} −→ X̃I ,

which we call lifting-function of the covering map p.

5.2.5 Exercise. Given a covering map p : X̃ −→ X, show that its lifting-function

L : XI ×X X̃ −→ X̃I is continuous if XI and X̃I are endowed with the compact-

open topology, and the domain of L has the relative topology induced by the

product topology.

The following corollary of the unique path-lifting theorem summarizes the fun-

damental properties of the path L(ω, x̃), which are convenient to have at hand in

the applications of the theorem. The proof consists of immediate applications of

the existence and uniqueness of the lifting paths and is left as an exercise.
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5.2.6 Corollary. Let p : X̃ −→ X be a covering map and let L : XI×X X̃ −→ X̃I

be its path lifting function, then the following hold.

(a) The path L(ω, x̃) is uniquely determined by the conditions p ◦ L(ω, x̃) = ω

and L(ω, x̃)(0) = x̃.

(b) If λ is a nullhomotopic loop, then L(λ, x̃) is a nullhomotopic loop.

(c) The set {L(ω, x̃) | x̃ ∈ p−1(ω(0))} consists of all lifting paths of ω. Therefore

they are as many as the cardinality of the fiber p−1(ω(0)) and hence as the

multiplicity of the covering map.

(d) If ω and σ are connectable paths in X, then

L(ωσ, x̃) = L(ω, x̃)L(σ, ỹ) ,

where ỹ is the destination of the lifting path L(ω, x̃), which lies in the fiber

of the origin σ(0) of σ. Furthermore, L(ω, x̃) = L(ω, z̃), where z̃ is the des-

tination of L(ω, x̃). ⊓⊔

5.2.7 Exercise. Let p : X̃ −→ X be a covering map and let x̃0 ∈ X̃ and x0 ∈ X

be base points such that p(x̃0) = x0. Let Y be a simply connected and locally

path connected space with base point y0. Show that every pointed continuous

map f : Y −→ X has a unique lifting map f̃ : Y −→ X̃, such that f̃(y0) = x̃0 and

p◦ f̃ = f . (Hint: For each y ∈ Y take σ : y0 ≃ y and define f̃(y) = L(f ◦σ, x̃0)(1).)

5.2.8 Note. The statement of the previous exercise is not true in general if the

space Y is not simply connected, namely, if one takes the covering map p : R −→ S1

of 5.1.1, one may take Y = S1 and f = idS1 , then there is no map lifting p, since

otherwise, if s : S1 −→ R were such that p ◦ s = idS1 , then we would get a

contradiction. To see this, one would have the following commutative diagram of

spaces

R
p

!!B
BB

BB
BB

B

S1

s
??��������

idS1
// S1 ,

which would induce the following commutative diagram of fundamental groups

π1(R, 0)
p∗

&&MMMMMMMMMM

π1(S1, 1)

s∗
88rrrrrrrrrr

1π1(S1,1)

// π1(S1, 1) .

Since π1(S1) ∼= Z and π1(R) = 1, this would mean that the identity homomorphism

of Z factors through the trivial group, and this is impossible.
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The following exercises are an application of Exercise 5.2.7.

5.2.9 Exercise. Let p : X̃ −→ X be a covering map, such that its total space

X̃ is contractible. Show that if Y is simply connected and locally path connected,

then every continuous map f : Y −→ X is nullhomotopic.

5.2.10 Exercise. Show that if n > 1, then one has

[Sn,S1] = 0 , [Sn,S1 × S1] = 0 y [RPn,S1] = 0 ,

where [X,Y ] stands for the set of homotopy classes of the maps X −→ Y .

As we saw in Remark 5.2.8, given a covering map, it is not always possible

to find a map lifting a given map into the base space to the total space. What is

the most general condition so that given a covering map p : X̃ −→ X and a map

f : Y −→ X, there exists a map lifting f , namely a map f̃ : Y −→ X̃ such that

p ◦ f̃ = f?

If such a lifting map exists, then the following diagram commutes:

π1(X̃, x̃0)

p∗
��

π1(Y, y0)

f̃∗
88pppppppppp

f∗
// π1(X,x0) .

This implies in particular that f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)), namely, this is a

necessary condition for the existence of the lifting map. We shall see that it is also

sufficient.

5.2.11 Theorem. (Map lifting) Let p : X̃ −→ X be a covering map and let

x̃0 ∈ X̃ and x0 ∈ X be base points such that p(x̃0) = x0. Let Y be a connected and

locally path connected space with base point y0 and let f : Y −→ X be continuous

such that f(y0) = x0, then the following are equivalent:

(a) There is a map f̃ : Y −→ X̃ such that f̃(y0) = x̃0 and p ◦ f̃ = f .

(b) f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

If (a) and thus also (b) hold, then the map f̃ is unique.

Proof: We already saw that (a) =⇒ (b). If we now assume (b), we shall explain

how to construct f̃ . Take y ∈ Y and let σ : y0 ≃ y be a path. Define f̃(y) =

L(f ◦ σ, x̃0)(1). We shall prove that this definition does not depend on the choice
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of the path and that it determines a continuous map. Since p(L(f ◦ σ, x̃0)(1)) =
f(σ(1)) = f(y), f̃ should be the desired lifting map.

To show that f̃(y) does not depend on the path σ, assume that γ : y0 ≃ y is

another path. Then the loop σγ represents an element of the fundamental group

π1(Y, y0). By (b), there is a loop λ̃ in X̃ based at x̃0, such that f∗([σγ]) = p∗([λ̃]).

Hence f◦σ ≃ (p◦λ̃)(f◦γ) rel ∂I inX. By the lifting theorem 5.2.3 and its corollary

5.2.6(d), one has L(f ◦ σ, x̃0) ≃ L((p ◦ λ̃)(f ◦ γ), x̃0) = λ̃L(f ◦ γ, x̃0) rel ∂I. Hence,

in particular, these paths have the same end points, namely

L(f ◦ σ, x̃0)(1) = (λ̃L(f ◦ γ, x̃0))(1) = L(f ◦ γ, x̃0))(1) ,

and this shows that f̃(y) is well defined and, in fact, it shows also that f̃(y0) = x̃0,

since the constant path lifts to the constant path.

Now we have to verify that the defined function f̃ : Y −→ X̃ is continuous. To

do it, we shall make use of the local-connectedness assumption. Let us take y ∈ Y

and let Ũ be the leaf over some evenly-covered neighborhood of f(y), on which f̃(y)

lies. Since f is continuous, f−1U is a neighborhood of y in Y . Let V ⊂ f−1U be a

path-connected neighborhood of y, take y′ ∈ V and let γ : y0 ≃ y be a path in Y

and let µ : y ≃ y′ be a path in V . Then f̃(y′) = L(f◦(σµ), x̃)(1) = L(f◦µ, f̃(y))(1).
But since Ũ is the leaf on which f̃(y) lies, and given that f ◦ µ is a path in U ,

the path L(f ◦ µ, f̃(y)) and in particular its destination f̃(y′) lie on Ũ . We have

thus shown that f̃(V ) ⊂ Ũ and since any neighborhood of f̃(y) contains one like

Ũ , this shows the continuity of f̃ .

The uniqueness of f̃ is a consequence of 5.2.2. ⊓⊔

Let p : X̃ −→ X be a covering map and let x̃0 ∈ X̃ and x0 ∈ X be base

points such that p(x̃0) = x0. If λ̃0, λ̃1 : I −→ X̃ are loops based at x̃0 such that

p∗([λ̃0]) = [p◦ λ̃0] = [p◦ λ̃1] = p∗([λ̃1]). Then p◦ λ̃0 ≃ p◦ λ̃1 rel ∂I. From the lifting

lemma 5.2.3 one obtains that λ̃0 ≃ λ̃1 rel ∂I, that is [λ̃1] = [λ̃2]. We have shown

part of the following.

5.2.12 Theorem and Definition. Let p : X̃ −→ X be a covering map and let

x̃0 ∈ X̃ and x0 ∈ X be base points such that p(x̃0) = x0. Then the homomorphism

induced by p between the fundamental groups

p∗ : π1(X̃, x̃0) −→ π1(X,x0)

is a monomorphism. The image p∗(π1(X̃, x̃0)) ⊂ π1(X,x0) consists precisely of the

classes [λ] ∈ π1(X,x0) such that the lifting path L(λ, x̃0) is a loop. This subgroup

is called characteristic subgroup of the covering map p : X̃ −→ X.
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Proof: It is enough to prove the second statement. If [λ] ∈ p∗(π1(X̃, x̃0)), then

[λ] = [p ◦ λ̃] for some loop λ̃ in X̃ with base point x̃0. Therefore L(λ, x̃0) ≃
L(p ◦ λ̃, x̃0) = λ̃ rel ∂I, namely L(λ, x̃0) is a loop, since λ̃ is a loop.

Conversely, if λ̃ = L(λ, x̃0) is a loop, then [λ] = [p ◦ λ̃] = p∗([λ̃]), namely

[λ] ∈ p∗(π1(X̃, x̃0)). ⊓⊔

An interesting consequence of the previous theorem is the following.

5.2.13 Corollary. Let X be a connected and locally path-connected space and let

p : X̃ −→ X and p′ : X̃ ′ −→ X be covering maps such that their total spaces X̃

and X̃ ′ are connected. If x̃0 ∈ X̃, x̃′0 ∈ X̃ ′ and x0 ∈ X are base points such that

p(x̃0) = x0 = p′(x̃′0), then both covering maps are equivalent if and only if

p∗(π1(X̃, x̃0)) = p′∗(π1(X̃
′, x̃′0)) ,

or, equivalently, if both have the same characteristic subgroup.

Proof: An equivalence φ̃ : X̃ ′ −→ X̃ such that p ◦ φ̃ = p′, is a lifting of p′, which

is a homeomorphism. Clearly, if this homeomorphism exists, then the images of

the fundamental groups of both total spaces must coincide. Conversely, if if these

subgroups coincide, since p and p′ are covering maps, then applying 5.2.12 to both,

one obtains maps φ̃ : X̃ ′ −→ X̃ lifting p′, and φ̃′ : X̃ −→ X̃ ′ lifting p. Furthermore,

the composites φ′ ◦ φ : X̃ ′ −→ X̃ ′ and φ ◦ φ′ : X̃ −→ X̃ are maps lifting p′ to X̃ ′

and lifting p to X̃, which fix x̃′0 and x̃0, respectively, since id
X̃′ and id

X̃
are also

maps lifting p′ to X̃ ′ and lifting p to X̃. Then, by the uniqueness of the lifting

maps, one has φ ◦ φ′ = id
X̃

and φ′ ◦ φ = id
X̃′ . ⊓⊔

The characteristic subgroup of a covering map depends on the base point x̃0 ∈
p−1(x0). In the following theorem we shall study this dependence.

5.2.14 Theorem. Let p : X̃ −→ X be a covering map and take a base point

x0 ∈ X and points x̃0, x̃
′
0 ∈ p−1(x0). Then the following hold:

(a) If ω̃ : x̃0 ≃ x̃′0 is a path in X̃, and α = [p◦ω̃] ∈ π1(X,x0), then p∗(π1(X̃, x̃0)) =

αp∗(π1(X̃, x̃
′
0))α

−1. Hence, if X̃ is path connected, then two characteristic

subgroups of p are always conjugate.

(b) If H ⊂ π1(X,x0) is a conjugate group of the characteristic subgroup p∗(π1(X̃, x̃0)),

then H is a characteristic subgroup, namely, H = p∗(π1(X̃, x̃
′
0)), for some

point x̃′0 ∈ p−1(x0).
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Proof: (a) By 4.1.21, the elements of π1(X̃, x̃0) are of the form [ω̃]γ[ω̃]−1, where γ

varies in π1(X̃, x̃
′
0). Applying p∗, the statement follows.

(b) Take the subgroup H = α−1π1(X̃, x̃0)α for some element α = [ω] ∈
π1(X,x0). If ω̃ = L(ω, x̃0), take x̃

′
0 = ω̃(1). Then H = p∗(π1(X̃, x̃

′
0)). ⊓⊔

As a consequence of the previous results, we have that the characteristic sub-

groups of a covering map, whose total space is path connected, build up the fam-

ily of all conjugate subgroups of a certain fixed subgroup, that is, the family

C(X̃, p) = {p∗(π1(X̃, x̃0)) | x̃0 ∈ p−1(x0)} builds up a complete conjugacy class of

subgroups of π1(X,x0), which we call characteristic conjugacy class of the covering

map p : X̃ −→ X. Its relevance is shown in the next result, which is somehow a

reformulation of 5.2.13.

5.2.15 Proposition. Let X be a connected and locally path-connected space and

let p : X̃ −→ X and p′ : X̃ ′ −→ X be covering maps, such that their total spaces

X̃ and X̃ ′ are connected. Both covering maps are equivalent if and only if their

characteristic conjugacy classes C(X̃, p) and C(X̃ ′, p′) coincide.

Proof: If p and p′ are equivalent, it is clear that their characteristic conjugacy

classes coincide. Conversely, if C(X̃, p) and C(X̃ ′, p′) coincide, then p∗(π1(X̃, x̃0)) ∈
C(X̃ ′, p′). Therefore

p∗(π1(X̃, x̃0)) = p∗(π1(X̃
′, x̃′0))

and thus, by 5.2.13, p and p′ are equivalent. ⊓⊔

Given a covering map p : X̃ −→ X, let x̃0, x̃1, · · · ∈ p−1(x0) be all the points of

the fiber, whose number is the multiplicity of p. For i = 0, 1, . . . , let ω̃i : x̃0 ≃ x̃i

be a path in X̃. Then αi = [p ◦ ω̃i] ∈ π1(X,x0) and the cosets

α0(p∗π1(X̃, x̃0)) , α1(p∗π1(X̃, x̃0)) , . . .

in the group π1(X,x0) are all different cosets of the subgroup p∗(π1(X̃, x̃0)) in

π1(X,x0). The number of such cosets is the index of the subgroup p∗(π1(X̃, x̃0))

in π1(X,x0), namely [π1(X,x0) : p∗(π1(X̃, x̃0))]. We have shown the next result.

5.2.16 Theorem. The multiplicity of a path connected covering map p : X̃ −→ X

is the index of its characteristic subgroup in the fundamental group of the base

space, namely, it is n = [π1(X,x0) : p∗(π1(X̃, x̃0))] (n can be infinite). ⊓⊔

5.2.17 Example. For the covering map p : R −→ S1 given by p(t) = e2πit, one

has π1(S1, 1) ∼= Z and π1(R, 0) = 1. Then the characteristic subgroup is trivial.
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The characteristic conjugacy class C(R, p) consists of only one element, and the

multiplicity of p, which is infinite, coincides with [Z : 1], which is the cardinality

of Z.

On the other hand, if pn : S1 −→ S1 is the map of degree n, given by ζ 7→ ζn,

then pn∗ : π1(S1, 1) −→ π1(S1, 1) corresponds to the homomorphism µn : Z −→ Z,
given by µn(k) = nk. Hence the characteristic subgroup is nZ and the multiplicity

of pn is [Z : nZ] = n.

5.2.18 Exercise. Take X̃ = R×Z∪Z×R ⊂ R2 and X = S1∨S1 ⊂ S1×S1. Let

p : X̃ −→ X be given by (s, n) 7→ (e2πis, 1) and (m, t) 7→ (1, e2πit), where m,n ∈ Z
and s, t ∈ R. Show the following:

(a) p : X̃ −→ X is a covering map of infinite multiplicity.

(b) π1(X̃, (0, 0)) is a free group of infinite rank (i.e., with an infinite number of

generators).

(c) The characteristic subgroup p∗(π1(X̃, (0, 0))) is the commutator of π1(X,x0) =

⟨a, b | −⟩, namely of the free group with two generators a, b.

(d) This commutator is free of infinite rank. For each natural number n there is

a free subgroup of ⟨a, b | −⟩ of rank n.

5.3 Universal covering maps

Under the adequate assumptions on X it is possible to obtain any covering map

over X as the quotient of a “universal” covering map. In this section we shall see

how to construct such covering map, we shall study its properties, and we shall

analyze the consequences of its existence.

5.3.1 Definition. A covering map p : X̃ −→ X is called universal if the total

space X̃ is simply connected. The total space X̃ is called universal covering space.

5.3.2 Proposition. Let p : X̃ −→ X be a covering map. Then the following are

equivalent:

(a) p : X̃ −→ X is universal.

(b) The characteristic conjugacy class C(X̃, p) consists only of the trivial sub-

group 1 ⊂ π1(X,x0).
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(c) No loop in X based on x0, unless it is nullhomotopic, lifts to a loop in X̃. ⊓⊔

Assume that X is locally path connected. By 5.2.15, any two universal covering

maps over X are equivalent. Hence, there is no essential ambiguity if one talks

about the universal covering map of X, when it exists. By 5.2.16, its multiplicity

is the order of the group π1(X,x0). By the lifting theorem 5.2.11, if p′ : X̃ ′ −→ X

is any covering map, then there is a map q : X̃ −→ X̃ ′ lifting p. We have the

following.

5.3.3 Proposition. Let X be a connected and locally path connected space. As-

sume that p : X̃ −→ X is the universal covering map and let p′ : X̃ ′ −→ X be any

path connected covering map. Then there is a unique covering map q : X̃ −→ X̃ ′

such that p′ ◦ q = p, that is, p is initial among all covering maps. It is from this

fact that it is called universal covering map.

Proof: We have already mentioned how to construct q such that p′ ◦ q = p. By

5.1.6, it is enough to prove that q is surjective, to show that it is a covering map.

Take a point x̃′ ∈ X̃ ′ and let x = p′(x̃′) ∈ X. There is a point x̃ ∈ X̃ such that

p(x̃) = x. Take x̃′0 = q(x̃). Since X̃ ′ is path connected, there is a path ω̃′ : x̃′0 ≃ x̃′.

Then ω = p′ ◦ ω̃′ is a loop in X based at x. Since p is a covering map, there is

a path ω̃ lifting ω to X̃ with starting point x̃. Then the path q ◦ ω̃ lifts ω to X̃ ′

with starting point x̃0. Therefore, by the uniqueness of the lifting paths, the path

q ◦ ω̃ coincides with the given path ω̃′. Hence, in particular, x̃′ = ω̃′(1) = q(ω̃(1)).

Therefore q is surjective. Figure 5.5 depicts the proof. ⊓⊔

X

q

p
p′

x̃′

x̃′0

ω̃′

x

ω

ω̃
x̃

X̃ X̃ ′

Figure 5.5 The universal covering map is initial among all covering maps
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5.3.4 Proposition. Let p : X̃ −→ X be the universal covering map and let p′ :

X̃ ′ −→ X be any other covering map. Then there is a unique covering map q :

X̃ −→ X̃ ′, such that p′ ◦ q = p, namely, p es initial among all covering maps

Proof: We already mentioned how to construct q such that p′ ◦ q = p. By 5.1.6, q

is a covering map. ⊓⊔

5.3.5 Examples. The universal covering spaces of the circle S1 and of the torus

S1 × S1 are R and R2, respectively. If n ≥ 2, the sphere Sn is simply connected,

and consequently the covering map Sn −→ RPn is universal. Since this covering

map has two leaves, the fundamental group of RPn has two elements. Hence we

have the following result.

5.3.6 Proposition. Take n ≥ 2. Then the fundamental group of the n-dimensional

projective space RPn is cyclic of order 2, namely

π1(RPn) ∼= Z2 . ⊓⊔

In what follows we shall analyze the conditions under which a topological space

X admits a universal covering map p : X̃ −→ X. Most interesting spaces, which

play an important role in different branches of mathematics, satisfy these condi-

tions, so that they have a universal covering map. This is a reason why the theory

of covering maps has successful applications in other branches.

Before stating the required definitions, assume that p : X̃ −→ X is a universal

covering map and thatX is path connected y locally path connected. Given x ∈ X,

there is a path connected neighborhood U of x, which is evenly covered by p.

Therefore, if λ is a loop in U , this loop lifts to a loop λ̃ to X̃. Now, since X̃ is simply

connected, the loop λ̃ is nullhomotopic. Consequently, λ = p ◦ λ̃ is nullhomotopic

in X. This establishes a necessary condition on X in order to admit a universal

covering map. We have the next.

5.3.7 Definition.

(a) A topological space X is said to be semilocally simply connected if each point

x ∈ X has a neighborhood U , such that each loop in U is nullhomotopic in

X.

(b) A topological space X is said to be sufficiently connected if X is path con-

nected, locally path connected and semilocally simply connected.
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As we already saw, the condition that X is semilocally simply connected is

necessary in order that X has a universal covering map. We shall see that a suffi-

cient condition in order for a space X to have a universal covering map, is that it

is sufficiently connected.

Notice that a sufficient condition in order for a space X to be semilocally

simply connected, is the condition that it is locally simply connected, namely, that

each point of X has a simply connected neighborhood. For instance, a contractible

neighborhood. Therefore, all manifolds are semilocally simply connected.

5.3.8 Exercise. For each natural number n, let Cn ⊂ R2 be the circle with center

at ( 1
2n , 0) and radius 1

2n , and define C = ∪nCn. This space is usually called the

hawaiian earring.

C1C2C3C4

Figure 5.6 The hawaiian earring

(a) Show that C is connected and locally path connected, but it is not semilocally

simply connected.

(b) Let X ⊂ R3 be the cone over C, that is, the union of all line segments

joining a point in C with the point (0, 0, 1). Show that X is semilocally

simply connected, but it is not locally simply connected.

5.3.9 Theorem. (Existence of the universal covering map) If X is a sufficiently

connected space, then X admits a universal covering map p : X̃ −→ X.

Proof: The idea of the proof is the following. Assume that we already have the

a universal covering map p : X̃ −→ X. Cover X with a collection {Uj | j ∈
J } of evenly covered open sets. Each inverse image p−1(Uj) consists of as many

homeomorphic open sets, as there are elements in the fundamental group π1(X,x0).
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In other words, p−1(Uj) is homeomorphic to Uj × π1(X,x0), where we consider

the group π1(X,x0) as a discrete space. The homeomorphisms Uj × π1(X,x0) −→
p−1(Uj) are assembled together in such a way that one may define an identification

Y = ⊔jUj × π1(X,x0) −→ X̃ .

Namely, we take the leaves Uj × {α}, for each α ∈ π1(X,x0), over each Uj sepa-

rately, and then we glue them conveniently. Let us now proceed with the proof.

As a first step, assume that each open set Uj is such that every loop in it is

nullhomotopic in X. Then we fix a path in X, µj : I −→ X starting at x0 and

ending at some point in Uj , in such a way that the following holds:

(a) If x0 ∈ Uj , then µj is the constant path cx0 .

If x ∈ Ui ∩ Uj , take gij(x) = [µiωiωjµj ] ∈ π1(X,x0), where ωi and ωj are paths

in Ui or Uj from µi(1) and µj(1), respectively, to x. Since any loop in Ui or Uj is

nullhomotopic in X, the element gij(x) does not depend on the choices made, and

the following conditions hold:

(b1) If x ∈ Ui, then gii(x) = 1,

(b2) If x ∈ Ui ∩ Uj , then gij(x) = gji(x)
−1

(b3) If x ∈ Ui ∩ Uj ∩ Uk, then gij(x)gjk(x) = gik(x).

These are called cocycle conditions (see [2]).

(c) If W ⊂ Ui ∩ Uj and W is path connected, then gij(x) = gij(y) for any

x, y ∈W .

For the second step, take the product X × π1(X,x0) × J , where π1(X,x0)

and J have the discrete topology, and consider the subspace Y of the triples

(x, α, j), where x ∈ Uj . Then the space Y is the disjoint union of the open sets

Uj × π1(X,x0) × {j} (as we already have mentioned in the introduction of this

proof). We declare two triples (x, α, j) and (y, β, i) as equivalent, if x = y and

β = gij(x)α. By (b), this is an equivalence relation ∼.

Let X̃ = Y/∼ be the quotient space under this relation, and let q : Y −→ X̃

be the identification.

(d) If V ⊂ Uj is open in X, then q(V × {α} × {j}) is open in X̃ for all α.
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To verify this, let us see that the intersection q−1q(V ×{α}×{j})∩Ui×{β}×{i})
is open in Y for all β and all i. Indeed, this intersection consists of the triples

(y, β, i) with y ∈ V ∩ Ui and β = gij(y)α. If W ⊂ V ∩ Ui is a path connected

neighborhood of y in X, then by (c), W × {β} × {i}) also lies in the intersection.

Hence it is open.

For the third step of the proof let us take the projection projX : Y −→ X

given by (x, α, j) 7→ x and define p : X̃ −→ X, such that p ◦ q = projX . Since

p is well defined and q is an identification, then p is continuous. By (d), Ũj,α =

q(Uj × {α} × {j}) is open in X̃ and since gjj(x) = 1, one has Ũj,α ∩ Ũj,β = ∅ if

α ̸= β. Furthermore, it is clear that p−1(Uj) is the union of the sets Ũj,α, with

α ∈ π1(X,x0). Thus, for each α, p|
Ũj,α

: Ũj,α −→ Uj is continuous, bijective, and

by (c), it is open. Consequently, p|
Ũj,α

is a homeomorphism. Consequently Uj is

evenly covered by p, and so p is a covering map.

We still have to check that X̃ is simply connected. This will be the fourth

step. Let λ : I −→ X be a loop based at x0 and let q(x0, α, j) be a point in the

fiber over x0, where x0 ∈ Uj . We have the following:

(e) The path lifting λ̃ that starts at q(x0, α, j), has q(x0, [λ]
−1α, j) as destination.

From this it follows that any two points q(x0, α, j) and q(x0, β, j) can be joined

by a path, namely by the image of a representative ω of αβ−1. From this we may

deduce that X̃ is path connected. Furthermore, a loop λ lifts to a loop if and only

if α = [λ]−1α for some α, since gjj(x0) = 1, that is, if and only if [λ] = 1. In other

words, the only loops that lift to loops are the nullhomotopic loops. This proves

that p : X̃ −→ X is universal. Thus it is enough to prove (e).

To do it, take a partition 0 = t0 < t1 < · · · < tn = 1 and choose sets

Uj1 , Uj2 , . . . , Ujn , among all sets Uj defined in the first step, in such a way that

λ([tν−1, tν ]) ⊂ Ujν , for ν = 1, 2, . . . , n. Put xν = λ(tν) and let λ̃ : I −→ X̃ be such

that

λ̃(t) =



q(λ(t), α, 1) for t0 ≤ t ≤ t1,

q(λ(t), g21(x1)α, 2) for t1 ≤ t ≤ t2,

q(λ(t), g32(x2)g21(x1)α, 3) for t2 ≤ t ≤ t3,
...

q(λ(t), gn,n−1(xn−1) · · · g21(x1)α, n) for tn−1 ≤ t ≤ tn.

This is a continuous path continua, such that p ◦ λ̃ = λ and λ̃(0) = q(x0, α, 1),

that is, it is the desired path lifting λ. From the definition of the cocycles gij ,

one may conclude from the first part that gn,n−1(xn−1) · · · g21(x1) = [λ]−1. Thus

λ̃(1) = q(x0, [λ]
−1α, 1), since g1n(x0) = 1. This proves (e). ⊓⊔
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5.3.10 Exercise. Let S be a closed surface different from S2 and RP2. Then

π1(S) is an infinite group. Therefore, its universal covering map has infinite mul-

tiplicity. The universal covering space S̃ is homeomorphic to R2.

5.3.11 Exercise. In the product B2×{1, 2, . . . , n} (where {1, 2, . . . , n} is discrete)
take the equivalence relation (x, i) ∼ (x, j) given by x ∈ S1 and 1 ≤ i, j ≤ n. Show

that the quotient space X̃ obtained is the universal covering space of X = S1∪ne2.
Which is the covering map?

5.3.12 Example. Take X = S1 ∨ S1, as shown in Figure 5.7.

a b

Figure 5.7 The wedge of two circles S1 ∨ S1

As we know, π1(X,x0) is a free group in two generators, that is Z ∗ Z. Its
universal covering space X̃ can be constructed as an infinite tree, namely as the

picture shown in Figure 5.8, where a part of the tree is depicted.

The line segments in the tree, with decreasing size, are to be considered as

equally long intervals. They are drawn so to avoid overlapping. The figure shows

how to identify one with the others, namely with infinitely many copies of the

interval I. Each line segment is mapped onto one of the copies of the circle in

X: the horizontal line segments are all mapped onto one, while the vertical line

segments are mapped onto the other circle. The mapping restricted to each segment

is the usual exponential map I −→ S1, given by s 7→ e2πis.

5.3.13 Exercise. Let X be the wedge S1
1 ∨ S1

2 of two copies of the circle, and

let X̃ be as described in the previous example. Take p : X̃ −→ X be such that

its restriction to each copy of I is the exponential map s 7→ e2πis, either onto the

copy S1
1 if the line segment is horizontal, or onto the copy S1

2 if the line segment is

vertical.

(a) Show that X̃ is simply connected and that p is the universal covering map

of X.

(b) Show that the free group Z ∗Z acts evenly on X̃. (Hint : The generator 11 of

the first copy of Z acts by shifting each horizontal line segment to the next
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a
a

b
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bb

b b

a
ab

a
ab

Figure 5.8 The universal covering space of S1 ∨ S1

horizontal line segment on the right, and with it also the vertical ones. On the

other hand, the generator 12 of the second copy of Z does the same thing, but

vertically upwards.) Deduce from the former, that the fundamental group of

X is the given free group.

(c) Generalize the previous construction to a wedge of k copies of the circle.

(Hint : Take k linearly independent directions instead of 2, namely, build the

corresponding tree as if it were in Rk.)

5.3.14 Exercise. Show that the universal covering space of X = R2 − 0 can be

realized as the open right half-plane X̃ = {(r, θ) ∈ R2 | r > 0,−π < θ < π} with

the map given in polar coordinates

p(r, θ) = (r cos(θ), r sin(θ)) .

Show furthermore, that it can also be realized as all the complex plane X̃ ′ = C,

with the exponential map z 7→ ez. Determine an equivalence between both covering

maps.

Consider a connected locally path-connected space X and let CX by the set

of conjugacy classes of all subgroups H ⊂ π1(X,x0). Given any path-connected
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covering map p : E −→ X, just before Proposition 5.2.15 we defined the character-

istic conjugacy class C(E, p) as the set {p∗(π1(E, ei)) ⊂ π1(X,x0) | ei ∈ p−1(x0)},
which is a complete set of conjugacy classes of a subgroup of π1(X,x0). By 5.2.15,

we have that the assignment [p] 7→ C(E, p) gives a well defined injective mapping,

where [p] denotes the class of all covering maps which are equivalent to p. This

proves, among other things, that the equivalence classes of all connected covering

maps over the space X constitute a set, which we denote by Cov(X). Thus we have

a well-defined injective function

Ξ : Cov(X) −→ CX

given by Ξ[p] = C(E, p). Indeed we have the following classification theorem, which

asserts that covering maps over a space X are classified, up to equivalence, by the

conjugacy classes of subgroups H ⊂ π1(X,x0).

5.3.15 Theorem. Let X be a sufficiently connected space. Then the function

Ξ : Cov(X) −→ CX

is a bijection.

Proof: We only have to prove that given any subgroup H ⊂ π1(X,x0), there is

a connected covering map p : E −→ X such that the subgroup p∗(π1(E, e0)) ⊂
π1(X,x0), where p(e0) = x0, is conjugate to H. We sketch the construction of p.

It follows the same steps as the construction of the universal covering map over

X̃ −→ X given in the proof of Theorem 5.3.9.

The only change is to choose the identification space Y −→ E adequately. Then

follow the same steps.

In particular, in the second step, take the product X×(π1(X,x0)/H)×I. Then
define Y as the subset of triples (x, αH, j), where x ∈ Uj and αH is a coset of H

in π1(X,x0)/H. Now declare two triples (x, αH, j) and (y, βH, i) as equivalent, if

x = y and αH = gij(x)βH or, equivalently, if α−1gij(x)β ∈ H. Define E as Y/∼.

The rest of the proof is essentially the same. Just the fourth step deserves some

argumentation. Indeed we have to prove that the characteristic subgroup of p is

conjugate to H. To do this we apply 5.2.12. We shall show that a loop λ such that

[λ] ∈ H is characterized by the fact that it lifts to a loop λ̃. Thus by 5.2.12 the

characteristic subgroup of p must be H.

Take a loop λ in X based at x0. Then, similarly to (e) in the proof of 5.3.9, we

may prove the next:

• The path lifting λ̃ that starts at q(x0, αH, j), has q(x0, [λ]
−1αH, j) as desti-

nation.



5.4 Deck transformations 179

This states, in other words that a loop λ lifts to a loop λ̃ if and only if [λ] ∈ αHα−1.

5.3.16 Exercise. Verify all details of the previous proof sketch. In particular, for

the last part of the proof, namely that the characteristic conjugacy class of the

constructed covering map p : E −→ X is the conjugacy class of H in π1(X,x0).

5.4 Deck transformations

Covering maps codify information in many different forms. In the previous section

we saw that the fundamental group of the base space is involved in the fiber. Indeed,

the number of leaves of an arbitrary path connected covering map p : X̃ −→ X

is the index of the subgroup p∗(π1(X̃, x̃0)) in the fundamental group of the base

space π1(X,x0). In particular, when p is the universal covering map, this number

of leaves is the order of the fundamental group of the base space.

In this section we shall again extract information from the covering maps, but

in a different way.

5.4.1 Definition. A deck transformation of a covering map p : X̃ −→ X is a

fiberwise homeomorphism f : X̃ −→ X̃, namely such that p ◦ f = p. Hence f

maps each fiber p−1(x) onto itself. Under composition, the deck transformations

constitute a group D(X̃, p), which is simply called group of deck transformations.

Next examples show the type of information kept inside D(X̃, p).

5.4.2 Examples.

(a) The covering map p : R −→ S1, p(t) = e2πit (5.1.1) has as the only possible

deck transformations the homeomorphisms R −→ R given by x 7→ x + n,

n ∈ Z. Thus the group of deck transformations D(R, p) is in this case Z.

(b) In the case of the torus p×p : R×R −→ S1×S1, the deck transformations are

the homeomorphismsR×R −→ R×R given by (x, y) 7→ (x+m, y+n),m,n ∈
Z. Therefore in this case the group of deck transformations D(R×R, p× p)

is isomorphic to Z× Z.

(c) If we take the covering map gn : S1 −→ S1 of degree n given by gn(ζ) = ζn,

then the deck transformations are the rotations of S1 by angles that are

a multiple of 2π/n. Hence the group of deck transformations D(S1, gn) is

isomorphic to the cyclic group Zn of order n.
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(d) The covering map p : Sn −→ RPn of 5.1.20 (a) has as the only deck trans-

formations the identity idSn and the antipodal map −idSn . Thus the group

of deck transformations D(Sn, p) is Z2.

(e) It is obvious that for the identical covering map idX : X −→ X, the group

of deck transformations D(X, idX) consists only of the identity idX , so that

it is the trivial group 1.

(f) If G acts evenly on X̃, then f : X̃ −→ X̃ is a deck transformation for the

associated covering map p : X̃ −→ X̃/G, if it is a homeomorphism f such

that the following is a commutative diagram

X̃
f //

p
  B

BB
BB

BB
B X̃

p
~~||

||
||

||

X̃ .

Namely if for each x̃ ∈ X̃, p(f(x̃)) = p(x̃). This means that the orbit of

x̃ coincides with the orbit of f(x̃). This is the case if and only if, for some

element x̃ ∈ X̃ and some g ∈ G, one has p(x̃) = gx̃. The maps g, f : X̃ −→ X̃

both lift the orbit map X̃ −→ X̃/G and coincide in a point. Hence, by the

unique map lifting theorem 5.2.2, both maps g and f are equal. This means

that the group of deck transformations D(X̃, p) of the orbit covering map of

a group G acting evenly on a space X̃, coincides with the group G.

If we complete what we proved in (f), then we have that indeed any path

connected covering map is the orbit map of an even action of some group on the

total space. We have the following.

5.4.3 Theorem. Let p : X̃ −→ X be a path connected covering map. The group

of deck transformations D = D(X̃, p) acts evenly on X̃, in such a way that in

particular no deck transformation which is different from id
X̃

has fixed points, and

two deck transformations that coincide in one point are the same. Furthermore,

if the fundamental group π1(X) is abelian, then the orbit map X̃ −→ X̃/D is a

equivalent, as a covering map, to p.

Proof: Let x̃ ∈ X̃ be an arbitrary point and let Ũ be the leaf that contains x̃

over an evenly covered neighborhood U of x = p(x̃). It is now enough to check

that if f ̸= id
X̃

is a deck transformation, then Ũ ∩ f(Ũ) = ∅. This is true, since

otherwise one would have a point ỹ ∈ Ũ such that f(ỹ) ∈ Ũ . Due to the fact that

p(ỹ) = pf(ỹ) and that p|
Ũ
is injective, then ỹ = f(ỹ). Again by 5.2.2, this can only

be true if f = id
X̃
.
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To prove the second part of the theorem, observe first that if f ∈ D, then

p(f(x̃)) = p(x̃). Therefore there is φ : X̃/D −→ X such that the diagram

X̃
q

}}||
||

||
|| p

��=
==

==
==

=

X̃/D φ
//_______ X

commutes. Clearly φ is surjective, since p is surjective. In fact, it is a covering

map, hence it is open, so it is enough to verify that it is injective.

To see that φ is injective, take two points x̃0, x̃1 ∈ X̃ such that p(x̃0) = p(x̃1) =

x. We shall construct a deck transformation f : X̃ −→ X̃ such that f(x̃0) = x̃1.

Then both points will represent the same orbit in the orbit space X̃/D. To do this,

let ω̃ : x̃0 ≃ x̃1 be a path in X̃ and let ω = p ◦ ω̃ be the induced loop in X. If

α = [ω] ∈ π1(X,x), then αp∗(π1(X̃, x̃0))α
−1 = p∗(π1(X̃, x̃1)). But since π1(X,x)

is abelian, we have αp∗(π1(X̃, x̃0))α
−1 = p∗(π1(X̃, x̃0)). Therefore, by the lifting

theorem 5.2.11, the lifting problem

X̃

p

��
X̃

f
>>|

|
|

|

p
// X ,

such that f(x̃0) = x̃1, has a solution. As in the proof of 5.2.15, f is a homeomor-

phism. Hence it is a deck transformation as desired. ⊓⊔

5.4.4 Note. In the last part of the last theorem on requires that π1(X) is abelian.

If we omit this hypothesis, then the map φ : X̃/D −→ X exists, is continuous and

surjective, but not necessarily injective. It is an exercise to search for examples of

covering maps for which φ is not injective.

Since each covering map is determined, up to isomorphism, by its characteristic

conjugacy class C(X̃, p) (5.2.15), there must be a relation between this class and

the group D(X̃, p). Recall that given a group G and a subgroup H ⊂ G, the

normalizer NG(H) of H in G, is the maximal subgroup of G that contains H as a

normal subgroup. It is given by

NG(H) = {g ∈ G | g−1Hg = H} .

If p : X̃ −→ X is a covering map, let

N (X̃, x̃0, p) = Nπ1(X,x0)(p∗(π1(X̃, x̃0))) .

We obtain a more general result than the last part of the previous theorem.
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5.4.5 Theorem. Let p : X̃ −→ X be a path-connected covering map, whose

base space X is locally path connected, and take a point x̃0 ∈ X̃ over x0 ∈ X.

Then for each α = [ω] ∈ N (X̃, x̃0, p) ⊂ π1(X,x0), there exists a unique deck

transformation fα : X̃ −→ X̃ given by fα(x̃0) = L(ω, x̃0)(1). The assignment

α 7→ fα determines a group epimorphism Φ : N (X̃, x̃0, p) −→ D(X̃, p) such that

ker(Φ) = p∗(π1(X̃, x̃0)), so that it determines an isomorphism (equally denoted by)

Φ : N (X̃, x̃0, p)/p∗(π1(X̃, x̃0)) −→ D(X̃, p). In other words, D(X̃, p) is isomorphic

to the quotient group NH/H, for a subgroup H ⊂ π1(X,x0) which belongs to the

class C(X̃, p).

Proof: Put x̃′0=L(ω, x̃0)(1). Since α=[ω] lies in the normalizer, by 5.2.14(a),

p∗(π1(X̃, x̃0)) = α−1p∗(π1(X̃, x̃0))α

= p∗(π1(X̃, x̃
′
0)) .

Therefore, by 5.2.11, since X and consequently X̃ are locally path connected, it is

possible to solve the lifting problem

X̃

p

��
X̃ p

//

f̃
>>~

~
~

~
X ,

in such a way that f̃(x̃0) = x̃′0. As in the proof of 5.2.15, one has that f̃ is a

homeomorphism and hence a deck transformation. By 5.4.3, f̃ is unique, and by

5.2.3, f̃ depends only from the homotopy class α = [ω]. Put Φ(α) = f̃ . With this

is Φ defined.

Let us see now that Φ es un homeomorphism. To see this, take β = [σ] ∈
N (X̃, x̃0, p) and Φ(β) = g̃. Then by 5.2.6, one has

L(σω, x̃0)(1) = (L(σ, x̃0)L(ω, g̃(x̃0)))(1)

= L(ω, g̃(x̃0))(1)

= g̃(L(ω, x̃0)(1))

= g̃f̃(x̃0) .

Therefore, the deck transformations Φ([σω]) = Φ(βα) and g̃ ◦ f̃ = Φ(β)Φ(α)

coincide on x̃0 and hence they are the same.

The fact that ker(Φ) = p∗(π1(X̃, x̃0)) is immediately deduced from 5.2.12 and

5.4.3. We still have to check that Φ is surjective. To see this take f̃ ∈ D(X̃, p) and

let ω̃ : x̃0 ≃ f̃(x̃0) and let α = [p ◦ ω̃] ∈ π1(X,x0). From 5.2.14(a) we obtain

α−1p∗(π1(X̃, x̃0))α = p∗(π1(X̃, f̃(x̃0)))

= p∗f̃∗(π1(X̃, x̃0))

= p∗(π1(X̃, x̃0)) .



5.4 Deck transformations 183

Consequently, α lies in the normalizer of p∗(π1(X̃, x̃0)) and from the definition of

Φ and from 5.4.3 one gets Φ(α) = f̃ . ⊓⊔

As a particular case of the former theorem, for the case of the universal covering

map, we obtain the following.

5.4.6 Corollary. If p : X̃ −→ X is the universal covering map of a locally path-

connected space X and x̃0 is such that p(x̃0) = x0, then for each α = [ω] ∈
π1(X,x0) there is a unique deck transformation fα : X̃ −→ X̃ such that fα(x̃0) =

L(ω, x̃0)(1). The function Φ : π1(X,x0) −→ D(X̃, p) is a group isomorphism. ⊓⊔

Of course, the previous corollary allows us, in many cases, to compute the

fundamental group, as one can see in the following.

5.4.7 Examples.

(a) For the universal covering map p : R −→ S1, one has that D(X̃, p) consists

of the translations in R, given by adding integers, so that D(X̃, p) ∼= Z ∼=
π1(S1).

(b) For the universal covering maps Sn −→ RPn of the real projective spaces,

with n > 1, the only deck transformations f : Sn −→ Sn are f = idSn or

f = −idSn , as one can easily verify. Hence D(X̃, p) ∼= Z2
∼= π1(RPn).

(c) If G acts evenly on a simply connected space Y , then Y −→ Y/G is the

universal covering map, so that, by 5.4.2(f), D(Y, p) = G. Hence π1(Y/G) ∼=
G.

5.4.8 Exercise. Show that for a path connected covering map p : X̃ −→ X the

following statements are equivalent:

(a) For each pair of points x̃0, x̃1 ∈ p−1(x), the equality p∗π1(X̃, x̃0)=p∗π1(X̃, x̃1)

holds. Namely, the conjugacy class C(X̃, p) consists of one subgroup of π1(X,x).

(b) For each x̃ ∈ p−1(x), p∗π1(X̃, x̃) ⊂ π1(X,x) is a normal subgroup.

(c) If a loop ω in X based at x has a loop that lifts it, then any other path lifting

ω is a loop.

Show that if one and, hence, all these conditions hold for some point x ∈ X, then

they hold for any other point in X. Such a covering map is called regular.
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Notice that any universal covering map is regular, as is also any covering map

de X if π1(X) is abelian (as we saw in 5.4.3). Furthermore, every 2-fold covering

map is regular (since every subgroup of index 2 is always normal).

5.4.9 Exercise. Show that given a regular covering map p : X̃ −→ X, there is

an isomorphism

Φ : π1(X,x)/p∗π1(X̃, x̃) −→ D(X̃, p) .

5.4.10 Exercise. If p : X̃ −→ X is an n-fold covering map, and {x̃1, x̃2, . . . , x̃n} =

p−1(x), show that then the following are equivalent.

(a) There is a deck transformation of X̃ such that x̃1 7→ x̃2 7→ . . . 7→ x̃n 7→ x̃1.

(b) The group p∗π1(X̃, x̃) ⊂ π1(X,x) is a normal subgroup such that the group

π1(X,x)/p∗π1(X̃, x̃) is cyclic of order n.

5.5 Classification of covering maps over paracom-
pact spaces

The goal of this section is to classify covering maps whose base space is para-

compact, by means of classifying spaces. These classifying spaces will be config-

uration spaces. This result is extracted from [2]. Before starting, we recall what

paracompact spaces are. We follow [21].

5.5.1 Definition. A topological space X is paracompact if it is Hausdorff and

satisfies the following condition:

(PC) Every open cover of X admits a locally finite open refinement.

5.5.2 Definition. Let X be a topological space and let f : X −→ R be continu-

ous. The support of f is the closed set

supp(f) = {x ∈ X | f(x) ̸= 0} .

5.5.3 Definition. Let {ηλ : X −→ R}λ∈Λ be a family of continuous functions.

The family is called a partition of unity if

(a) ηλ(x) ≥ 0 for all x ∈ X.
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(b) The collection of supports {supp(ηλ)}λ∈Λ is locally finite, namely, for all

x ∈ X a neighborhood V of x exists such that V ∩ sop(ηλ) ̸= ∅ only for

finitely many elements λ ∈ Λ. In this case,
∑

λ∈Λ ηλ(x) is well defined, since

it is a finite sum, and it is continuous since the sum remains finite inside a

neighborhood of each point.

(c)
∑

λ∈Λ ηλ(x) = 1 for all x ∈ X.

Thus the family of supports {supp(ηλ)} is a locally finite closed cover of the

space X.

5.5.4 Definition. Let {Uλ}λ∈Λ be an open cover of the topological space X. We

say that a partition of unity {ηλ}λ∈Λ en X is subordinate to the cover if for every

λ ∈ Λ, supp(ηλ) ⊂ Uλ.

The following characterization is what we shall need below. It is proved in [21,

9.5.23].

5.5.5 Theorem. Let X be a Hausdorff space. Then X is paracompact if and only

if every open cover of X has a subordinate partition of unity.

We now pass to give the results for establishing the desired classification the-

orem. We prove a general result about covering maps.

5.5.6 Lemma. Assume that p : E −→ X×I is a covering map whose restrictions

to X × [0, a] and to X × [a, 1] are trivial for some a ∈ I. Then p : E −→ X × I

itself is trivial.

Proof: By assumption we have homeomorphisms φ1 : (X× [0, a])×F −→ p−1(X×
[0, a]) and φ2 : (X× [a, 1])×F −→ p−1(X× [a, 1]) over the respective base spaces.

These homeomorphisms induce a map

(X × {a})× F
φ1| // p−1(X × {a})

φ2|−1

// (X × {a})× F

of the form (x, a, y) 7→ (x, a, g(x)(y)), where g : X −→ Bij(F ) is locally constant

and Bij(F ) is the group of bijections of F , and φ1| and φ2| are the appropriate

restrictions.

Now we define φ : (X × I)× F −→ E by

φ(x, t, y) =

{
φ1(x, t, y) if t ≤ a ,

φ2(x, t, g(x)(y)) if t ≥ a .

Then φ is the desired trivialization. ⊓⊔
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5.5.7 Lemma. Let p : E −→ X × I be a covering map. Then there is an open

cover U of X such that p|p−1(U×I) : p
−1(U×I) −→ U×I is trivial for every U ∈ U .

Proof: Take x ∈ X. Then for each t ∈ I there are neighborhoods Ut of x in X

and Vt of t in I such that p−1(Ut × Vt) −→ Ut × Vt is trivial. Since I is compact,

there is a finite subcover {Vtr | r = 1, . . . ,m} of the cover {Vt | t ∈ I}. If we set

Ux =
∩m
r=1 Utr , and choose 0 = s0 < s1 < · · · < sn = 1 such that the differences

si− si−1 for i = 1, . . . , n are less than a Lebesgue number of the cover {Vtr}, then
the restricted covering map p−1(Ux × [si−1, si]) −→ Ux × [si−1, si] is trivial. And

so by iterating and using Lemma 5.5.6 we have that p−1(Ux × I) −→ Ux × I is

trivial as well. If we repeat this construction for every x ∈ X we obtain an open

cover {Ux} of X such that each p−1(Ux × I) −→ Ux × I is trivial. ⊓⊔

5.5.8 Proposition. Let p : E −→ X × I be a covering map, where X is a para-

compact space. Let r : X × I −→ X × I be the retraction given by r(x, t) = (x, 1)

for (x, t) ∈ X × I. Then there is a commutative diagram

E
f //

p

��

E

p

��
X × I r

// X × I

such that f restricted to each fiber is a bijection. Consequently, there is a homeo-

morphism φ : E −→ r∗E = {(x, t, e) ∈ X × I × E | p(e) = (x, 1)}.

Such a pair of maps (f, r) is a morphism of covering maps.

Proof: Using 5.5.7 and the paracompactness of X there is a locally finite open

cover {Uλ}λ∈Λ of X together with a subordinate partition of unity {ηλ}λ∈Λ (see

Theorem 5.5.5) such that p−1(Uλ× I) −→ Uλ× I is trivial. For each λ ∈ Λ, define

µλ : X −→ I by

µλ(x) =
ηλ

max{ηλ′(x) | λ′ ∈ Λ}
.

Due to the fact that only a finite number of the ηλ′(x) are nonzero, the function

max{ηλ′(x) | λ′ ∈ Λ} is continuous and nonzero. Therefore, µλ is continuous, has

support in Uλ and for each x ∈ X it satisfies max{µλ(x)} = 1.

Let φλ : Uλ×I×F −→ p−1(Uλ×I) for each λ ∈ Λ denote a local trivialization.

For each λ ∈ Λ we then define a morphism of covering maps

E
fλ //

p

��

E

p

��
X × I rλ

// X × I
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by setting, in the base space, rλ(x, t) = (x,max{µλ(x), t}) for (x, t) ∈ X × I and

by setting, in the total space, fλ to be the identity outside of p−1(Uλ × I) and by

setting fλ(φλ(x, t, v)) = φλ(x,max{µλ(x), t}, v) inside of p−1(Uλ × I). Now let us

choose a well-ordering ≺ on Λ. By local finiteness we have that for each x in X

there is a neighborhood Wx of x such that Wx ∩ Uλ is nonempty only for finitely

many λ ∈ Λ, say for λ ∈ Λx = {λ1, λ2, . . . , λm} with λ1 ≺ λ2 ≺ · · · ≺ λm. We now

define r : X × I −→ X × I by

r = rλm ◦ rλm−1 ◦ · · · ◦ rλ1

and we define f : E −→ E by

f |p−1(Wx×I) = fλm ◦ fλm−1 ◦ · · · ◦ fλ1 .

Since rλ on Wx× I and fλ on p−1(Wx× I) are the identity if λ /∈ Λx, we can view

r and f as infinite composites of maps almost all (i.e. all except finitely many) of

which are the identity in a neighborhood of any point. Since each fλ is a bijection

on every fiber, the composite f also is a bijection on every fiber. ⊓⊔

5.5.9 Theorem. Let p′ : E′ −→ X ′ be a covering map and let X be a paracompact

space. Assume that we have two homotopic maps f, g : X −→ X ′. Then we a

homeomorphism φ : f∗E′ ≈ g∗E′ such that q ◦φ = p, where p(x, e′) = x = q(x, e′).

Proof: Let F : X×I −→ X ′ be a homotopy from f to g. Also let inu : X −→ X×I
be the inclusion iν(x) = (x, ν), ν = 0, 1. It then follows that f = F ◦ i0 and

g = F ◦ i1.

Let r : X × I −→ X × I be the retraction defined by r(x, t) = (x, 1). Then by

applying 5.1.18, 5.5.8, and 5.1.19 we have that f∗E′ = (F ◦ i0)∗E′ ≈ i∗0(F
∗E′) ≈

i∗0(r
∗(F ∗E′)) ≈ (r ◦ i0)∗(F ∗E′) = i∗1(F

∗E′) ≈ (F ◦ i1)∗E′ = g∗E′, where we have

used r ◦ i0 = i1. ⊓⊔

5.5.10 Definition. Let X be a topological space. We define its nth configuration

space Fn(X) by

Fn(X) = {(x1, x2, . . . , xn) ∈ Xn | xi ̸= xj for i ̸= j} .

If Σn denotes the symmetric (or permutation) group of the set {1, 2, . . . , n},
then there is a right free action of this group on Fn(X) given by

(x1, x2, . . . , xn)σ = (xσ(1), xσ(2), . . . , xσ(n)) , xi ∈ X .

If X is a Hausdorff space, then by 5.1.24 the action is even. Hence it is free and by

5.1.25 the quotient map qn : Fn(X) −→ Fn(X)/Σn is a covering map of multiplicity
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n!. There is also an n-fold covering map, that is, a covering map of multiplicity

n, πn : En(X) −→ Fn(X)/Σn associated to Fn(X) defined as follows. The total

space is given by En(X) = {(C, x) ∈ (Fn(X)/Σn)×X | x ∈ C} and the projection

is given by πn(C, x) = C.

We shall consider only the case X = Rk, where 1 ≤ k ≤ ∞. It can be shown

that the space Fn(R∞) is contractible (exercise).

5.5.11 Exercise. Consider two covering maps p : E −→ X and p′ : E′ −→ X

over the same base space, such that there is a morphism (φ, idX) from p to p′,

that is, if φ is a continuous map such that p′ ◦ φ = p and for all x ∈ X, φ|p−1(x) :

p−1(x) −→ p−1(x) is bijective. Show that this morphism is an equivalence of

covering maps, i.e. show that φ is a homeomorphism.

5.5.12 Lemma. p : E −→ X and q : E′ −→ X ′ be covering maps. Assume that

there are maps F : E −→ E′ and f : X −→ X ′ such that q ◦ F = f ◦ p and for

every x ∈ X, F |p−1(x) : p−1(x) −→ q−1(f(x)) is bijective. Then p : E −→ X is

equivalent to the covering map q′ : f∗E′ −→ X induced from q by f .

Proof: Consider the pullback diagram

f∗E′ f̃ //

q′

��

E′

q

��
X

f
// X ′ .

Define φ : E −→ f∗E′ by φ(e) = (p(e), F (e)). Then fiberwise φ coincides with F

so that it is a bijection of the fibers and thus it is an equivalence. ⊓⊔

5.5.13 Definition. Let p : E −→ X be an n-fold covering map. A Gauss map

for p is a map g : E −→ Rk, 0 ≤ k ≤ ∞, such that g|p−1(x) : p−1(x) −→ Rk is

injective for each x ∈ X.

5.5.14 Proposition. Let p : E −→ X be an n-fold covering map. Then there is a

Gauss map for p if and only if there is a map f : X −→ Fn(Rk)/Σn such that p is

equivalent to the pullback q : f∗En(Rk) −→ X. The map f is called a classifying

map of p.

Proof: First assume that g is a Gauss map for p and define f : X −→ Fn(Rk)/Σn

as follows. For each x ∈ X choose a bijection h : n −→ p−1(x), where n =

{1, 2, . . . , n}. Since g ◦ h : n −→ Rk is injective, put

f(x) = πn(gh(1), gh(2), . . . , gh(n)) .
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This is well defined, since given any other bijection h′ : n −→ p−1(x), the composite

σ = h′−1 ◦ h is a permutation that belongs to Σn and

(gh′(1), gh′(2), . . . , gh′(n))σ = (gh(1), gh(2), . . . , gh(n)) .

To see that f is continuous, take an open cover U of X such that each open

set U ∈ U is evenly covered by p. Then we have a homeomorphism φU : p−1U −→
U × n. For each x ∈ U we have that the composite

p−1(x)
φU | // U × n

proj // n

is a bijection and f(x) = πn(g((proj ◦ φU )−1(1)), . . . , g((proj ◦ φU )−1(n))). Now

define F : E −→ En(Rk) by F (e) = (fp(e), g(e)) and thus get a commutative

diagram

E
F //

p

��

En(Rk)

πn
��

X
f

// Fn(Rk)/Σn .

Since F is a bijection on fibers, by Lemma 5.5.12, f∗En(Rk) ≈ E.

Conversely, let h : E −→ f∗En(Rk) be an equivalence of covering maps. Then

g : E −→ Rk given by the composite

f∗En(Rk)
f̃ // En(Rk)

� � // (Fn(Rk)/Σn)×Rk

proj

��
E

h

OO

g
//_______________ Rk

is clearly a Gauss map. ⊓⊔

5.5.15 Exercise. Let p : E −→ X be an n-fold covering map.

(a) Show that the construction above establishes a one-to-one correspondence

between the set of morphisms of the form

E
f̃ //

p

��

En(Rk)

πn
��

X
f

// Fn(Rk)/Σn

and the set of Gauss maps g : E −→ Rk.
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(b) Show that if G : E × I −→ Rk is a homotopy such that for each t ∈ I, the

map Gt : E −→ Rk given by Gt(e) = G(e, t), is a Gauss map, then we can

use the construction above to obtain a morphism of covering maps

E × I
F̃ //

p×id

��

En(Rk)

πn
��

X × I
F

// Fn(Rk)/Σn

with the property that if fν : X −→ Fn(Rk)/Σn is the function associated

to Gν for ν = 0, 1, then F is a homotopy between f0 and f1.

Now we prove that every n-fold covering map p : E −→ X, n = 1, 2, · · · , over
a paracompact space has a Gauss map. We need the following result.

5.5.16 Lemma. Let p : E −→ X be an n-fold covering map over a paracompact

space X. Then there exists a countable open cover W = {Wn | n ∈ N} of X such

that p|p−1Wn
: p−1Wn −→Wn is trivial for all n ∈ N.

Proof: Let U = {Uλ | λ ∈ Λ} be an open cover of X such that the restriction

p|p−1Uλ
: p−1Uλ −→ Uλ is trivial for all λ ∈ Λ. Since X is paracompact, there is

a partition of unity {ηλ | λ ∈ Λ} subordinate to U . For each x ∈ X define S(x)

to be the finite set of those λ ∈ Λ for which ηλ(x) is nonzero. Also, for each finite

subset S ⊂ Λ, set W (S) = {x ∈ X | ηλ(x) > ηµ(x) whenever λ ∈ S and µ /∈ S}.

We claim that W (S) ⊂ X is open. Indeed, the set Bλ,µ = {x ∈ X | ηλ(x) <
ηµ(x)} is clearly open, since Bλ,µ = (ηµ − ηλ)

−1(0, 1]. Now for any given point

x0 ∈ W (S), there is a neighborhood Vx0 of x0 such that ηλ is different from zero

in Vx0 only for λ = µ1 dots, µr for some finite r. Put N =
∩
λ∈S(Bλ,µ1 , . . . , Bλ,µr),

which is open since it is a finite intersection of open sets. Then x0 ∈ N∩Vx0 ⊆W (S)

and hence W (S) is open.

If S and T are two different subsets of Λ, each one containing m elements, the

W (S) ∩W (T ) = ∅, since otherwise an element λ ∈ S would exist such that λ /∈ T

and an element µ ∈ T would exist such that µ /∈ S. Hence x ∈ W (S) ∩W (T )

would imply ηλ(x) > ηµ(x) and ηµ(x) > ηλ(x), which is a flagrant contradiction.

Now define Wn =
∪
{W (S(x)) | |S(x)| = n}, where | · | denotes the cardinality

of a set.

If λ ∈ S(x), then W (S(x)) ⊂ η−1
λ (0, 1] ⊂ Uλ, and therefore we have that that

the restricted covering map p|p−1W (S(x)) : p−1W (S(x)) −→ W (S(x)) is trivial.

Since for each n the open set Wn is a disjoint union of open sets of the form

W (S(x)), it follows that p|p−1Wn
: p−1Wn −→Wn is trivial, as desired. ⊓⊔
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5.5.17 Proposition. Every n-fold covering map p : E −→ X over a paracompact

space X has a Gauss map.

Proof: Since X is paracompact, by Lemma 5.5.16 there is a countable trivializing

open cover W = {Wi | i ∈ N} of X. Let φi : p
−1Wi −→Wi × n be a trivialization

and let {ηi} be a partition of unity subordinate to W. For each i ∈ N define

gi : E −→ R by

gi(e) =

{
ηi(p(e)) · projφi(e) if e ∈ p−1Wi ,

0 if e /∈ p−1Wi ,

where proj;Wi × n −→ n ⊂ R is the projection.

Now define g : E −→ R∞ by g(e) = (g1(e), g2(e), . . . , gi(e), . . . ). ⊓⊔

5.5.18 Definition. If X is a paracompact space, then denote by Cn(X) the set

of equivalence classes of n-fold covering maps over X.

By Propositions 5.5.14 and 5.5.17 we have the following result, which is the

classification theorem of n-fold covering maps.

5.5.19 Theorem. Let X be a paracompact space. Then there is a bijection

[X,Fn(R∞)/Σn] −→ Cn(X)

given by [f ] 7→ [f∗En(R∞)].

Proof: By Theorem 5.5.9, the function is well defined. Propositions 5.5.14 and

5.5.17 show that the function is surjective.

To see that the function is injective, consider R∞
1 = {(ti) ∈ R∞ | t2j =

0, j = 1, 2, 3, . . . } and R∞
2 = {(ti) ∈ R∞ | t2j+1 = 0, j = 0, 1, 2, . . . }, so that

R∞ = R∞
1 ⊕R∞

2 . Now define homotopies h1, h2 : R∞ × I −→ R∞ by

h1((t1, t2, t3, . . . ), t) = (1− t)(t1, t2, t3, . . . ) + t((t1, 0, t2, 0, t3, 0, . . . ) ,

h2((t1, t2, t3, . . . ), t) = (1− t)(t1, t2, t3, . . . ) + t((0, t1, 0, t2, 0, t3, . . . ) ,

where (t1, t2, t3, . . . ) ∈ R∞ and t ∈ I. These homotopies start with the identity

and end with maps which we denote by

h11 : R∞ −→ R∞
1 ⊂ R∞ and h12 : R∞ −→ R∞

2 ⊂ R∞ .

The composites h1ν ◦ p2 : En(R∞) −→ R∞ for ν = 1, 2 are Gauss maps, where

p2 : En(R∞) −→ R∞ is the projection on the second coordinate. By 5.5.15(a),



192 5. Covering maps

these maps induce two morphisms of covering maps, namely,

En(R∞)
φ̃ν //

πn
��

En(R∞)

πn
��

Fn(R∞)/Σn φν
// Fn(R∞)/Σn , ν = 1, 2 .

The composites hν ◦ (p2 × id) : En(R∞) × I −→ R∞ for ν = 1, 2 are homotopies

that start with p2, since h
ν(q × id)(e, 0) = hν(p2(e), 0) = p2(e) for e ∈ En(R∞),

and that end with hν1 ◦p2. Furthermore, the restrictions of these homotopies to the

slices at each fixed t ∈ I are Gauss maps. Using 5.5.15(b) we then have that φν for

ν = 1, 2 is homotopic to the map induced by p2, which is obviously the identity.

Hence we have shown that φν ≃ id for ν = 1, 2.

We are now in position to show that the function is injective. Assume that we

are given fν : X −→ Fn(R∞)/Σn for ν = 1, 2 such that f∗1En(R∞) ≈ f∗2En(R∞).

To prove injectivity we must show that f1 and f2 are homotopic.

Denote by E the space f∗1En(R∞) and use the isomorphism above to obtain

two morphisms of covering maps

E
f̃ν //

� �

En(R∞)

��
X

fν
// Fn(R∞)/Σn , ν = 1, 2 .

Let gν : E −→ R∞ for ν = 1, 2 be the associated Gauss map, namely gν = p2 ◦ f̃ν .

Consider the composites hν ◦gν : E −→ R∞ for ν = 1, 2. They are Gauss maps,

and according to 5.5.15(a), they induce morphisms of covering maps of the form

E
f̃ν //

��

En(R∞)

��

φ̃nu // En(R∞)

��
X

fν
// Fn(R∞)/Σn φν

// Fn(R∞)/Σn , ν = 1, 2 .

We then define G : E × I −→ R∞ by G(e, t) = (1 − t)h11g1(e) + th21g2(e) for

(e, t) ∈ E × I. This is a homotopy between h11 ◦ g1 and h21 ◦ g2, and since h11(R∞)

and h21(R∞) have no points in common with the exception of 0, it follows that Gt is

a Gauss map for each t ∈ I. Therefore, using 5.5.15(b) we have that φ1◦f1 ≃ φ2◦f2.
But we already know that φν ≃ id for ν = 1, 2. So f1 ≃ f2 as desired. ⊓⊔



Chapter 6 Knots and links

In this chapter we shall introduce a very interesting branch of topology,

namely the branch called knot theory. It handles topological objects, which in some

sense are as simple, as 1-manifolds are. But they are not studied as topological

spaces, but it rather studies the very different ways in which they are embedded

as subspaces of R3. Knot theory has had its own development in the sense that

many of its methods have been specially designed for studying these embeddings.

However it uses many aspects of algebraic topology. Its is worth noticing that knots

have found astonishing applications in other branches of mathematics, as well as

in other disciplines like physics, chemistry and biology (see [10, Cap.4], [20]).

6.1 1-manifolds and knots

In Chapter 2, Section 2.3 we proved that the only connected manifolds of dimension

1 are, up to homeomorphism, the circle S1 and the real line R. This last hat little

topological interest; on the other hand, the circle is richer, as we already saw in

3.2. Notwithstanding, it is interesting to study not only the circle as a topological

space, but how one can embed it into R3.

It is important to notice that the circle cannot be embedded into R, as the

Borsuk-Ulam theorem in dimension 1 shows (see 3.2.39). On the other hand, the

Jordan curve theorem (see 3.2.29) implies that the only embedding of the circle

into R2 up to homeomorphism is the canonical one, namely, for any embedding

there is a homeomorphism of R2 onto itself that sends the the given embedding to

the canonical inclusion (exercise). For Rn with n ≥ 4 the same happens, namely,

for any embedding of the circle into Rn there is a homeomorphism of Rn onto

itself that sends the given embedding to the canonical embedding into the plane

determined by the first two coordinates, as one can verify using arguments of

differential topology (transversality). Therefore the only interesting embeddings

are those of the circle into R3.

The next is a first provisional definition of the concept of a knot. Below we

shall describe the concept of a tame knot, which will be our object of study in

193
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what follows.

6.1.1 Definition. A knot is a subspace K of R3 which is homeomorphic to S1.

Figure 6.1 shows five knots, which carry a special name. The necessity to draw

them on the plane forces us to do it using their regular projections, which codify

somehow the embedding of the knot into the space. The (connected) portion of

the diagram that goes from one undercrossing to the next will be called arc or

strand

Trivial Trefoil Figure eight

Stevedor’s Lover’s

Figure 6.1 Knots

The first of them, the trivial knot or “unknot”, is represented by the unit circle

in the plane. If the reader ties each of these five knots with a rope, whose ends are

joined thereafter, she/he will be convinced that it is impossible to convert one to

each other, unless we could let the rope cross itself or, of course, if we loosen the

ends. The next definition might be the natural way of stating the equivalence of

knots.

6.1.2 Definition. Two knots K0 and K1 are isomorphic if there is a homeomor-

phism φ : R3 −→ R3 such that φ(K0) = K1.

For instance, Figure 6.2 represents a trivial knot, that is, a knot which is

isomorphic to circle in the plane R2 ⊂ R3, even though it does not seem plausible

at first sight. This means that playing around with the rope adequately, we may

unknot it. This is equivalent to saying that there is a homeomorphism of the space

that maps this knot onto the circle.
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Figure 6.2 Nasty trivial knot

However, the definition includes among all possible homeomorphisms of the

space a reflection on a plane, which would transform the trefoil knot into its mirror

image. Both are shown in Figure 6.3. But if we tray to play around with the rope

and try to transform one into the other, we shall never be able to do it.

Left-handed trefoil knot Right-handed trefoil knot

Figure 6.3 Mirror knots

If we look for a definition which involves the sliding of portions of the knot

to convert it to another, we might have difficulties, since if we “tighten” the knot

enough, we would obtain the trivial knot, as Figure 6.4 suggests.

��

Figure 6.4 Forbidden deformation

To avoid this situation, the deformation of the knot must be such that it de-

forms neighboring points of the Euclidean space without collapsing them.
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Recall that a homeomorphism φ : R3 −→ R3 is isotopic to the identity if

there is an isotopy H : f ≃ g, namely a homotopy such that (i) for each t ∈ I,

Ht : R3 −→ R3 is a homeomorphism, and (ii) H0 = φ and H1 = idR3 . If K ⊂ R3

is a knot, then Kt = H1−t(K) ⊂ R3 is a knot for each t. Moreover K0 = K and as

t varies from 0 to 1 K deforms inside R3. We say that such a homeomorphism φ

preserves the orientation.

6.1.3 Definition. Two knots K0 and K1 are equivalent if there is an orientation

preserving homeomorphism φ : R3 −→ R3.

We shall study here the so-called tame knots, namely knots which are equivalent

to polygonal knots,, i.e., knots which are built up by a finite number of straight

line segments. The opposite to tame are the wild knots, an example of which is a

knot that has an infinite sequence of knottings, which are smaller and smaller as

shown in Figure 6.5.

Figure 6.5 Wild knot

The figures of knots that we have shown, as we already said, imply a certain

code to be represented with no ambiguity in the plane. This allows us to work

with them adequately. These drawings represent a projection of the knot into the

plane, in such a way that (i) it has only finitely many crossings, (ii) there are at

most two portions of the knot meet at each crossing, and (iii) the crossings are

transverse, namely, they build a positive angle. Such a projection is called regular.

The following result is true, as one easily sees intuitively. The proof involves

small deformations of the knot, which correct possible defects in their projection,

but we shall omit it.

6.1.4 Theorem. Every tame knot is equivalent to one that has a regular projection

on the plane. ⊓⊔

In what follows, every time we refer to a knot we shall always mean a tame

knot. We shall see also that it is possible and convenient to generalize the concept

of knot.
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6.1.5 Definition. A link is a disjoint union of a finite family of knots in R3. That

is, knots that might be intertwined, but they do not intersect.

Similarly to a knot, a link has regular projection, in which at most two compo-

nents cross transversely. Corresponding to 6.1.4, we have the following.

6.1.6 Theorem. Every link is equivalent to one which has a regular projection on

the plane. ⊓⊔

Figure 6.6 shows (regular projections of) several links.

(a) (b) (c)

Figure 6.6 Links

6.2 Reidemeister moves

The regular projections of equivalent knots may be quite different, as we already

saw in Figure 6.2, which shows a projection which looks quite differently from the

canonical projection of the trivial knot, or as one can see in Figure 6.7, which

shows two different projections of the figure eight knot.

In this section we shall see how to play around with the regular projections of

a knot or a link, in order to compare them. We shall make changes around one,

two, or three crossings, each of a particular configuration, without modifying the

rest of the projection diagram.

6.2.1 Definition. The Reidemeister moves in the regular projection diagram of

a knot or link are described as follows.
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Figure 6.7 Dos proyecciones del knot de la figure eight

Type I. Twist and untwist the strand in either direction.

Type II. Move one loop completely over another.

Type III. Move a strand completely over or under a crossing.

They are shown in Figure 6.8.

∼ ∼

∼ ∼

Type I

Type II Type III

Figure 6.8 Reidemeister moves

Two regular projections are said to be equivalent if it is possible to pass from

one to the other after applying a finite sequence of Reidemeister moves of types I,

II, and III and an orientation preserving homeomorphism of the plane (namely, a

homeomorphism isotopic to the identity).

The following theorem is due to Reidemeister. We shall omit its proof, but we

refer the reader to [1] for a proof.



6.3 Knots and colors 199

6.2.2 Theorem. Two knots or links are equivalent if and only if all its regular

projections are equivalent. ⊓⊔

6.2.3 Example. The projections K1 and K2 shown in Figure 6.9 seem two repre-

sent to rather different knots. indeed, during a good part of the twentieth century

everybody thought that they were different. It was not until 1970 that the north

American lawyer K. A. Perko proved that it is possible to transform K1 into K2

after quite a large number of Reidemeister moves. This pair of diagrams is known

as Perko pair knots (see Figure 6.9).

K1 K2

Figure 6.9 Perko pair knots

6.2.4 Note. The number of Reidemeister moves needed to transform a projection

of a knot into another, can be in general rather huge. In [13] it is proven that there

is a positive constant c such that 2c·n Reidemeister moves are needed to transform

a a given regular projection of the trivial knot, like for example the one shown in

Figure 6.2, into a circle, where n is the number of crossings of the given projection.

The order of magnitude of c is 1011. So, to have an idea of this number, let us recall

that the age of the universe is around 5 · 1012 days or less than 5 · 1017 seconds.∗

According to this estimate, the number of Reidemeister moves needed to unknot

a regular projection of the trivial knot with 7 crossings would have the order of

210
11·7 or approximately 1010

10·21, that is, very many orders of magnitude the age

of the universe in seconds (or even in nanoseconds).

The Reidemeister theorem 6.2.2 transforms the problem of studying knots and

links to the problem of analyzing their regular projections. From here on, we shall

not distinguish between knot or a link and its regular projection, and we shall

work exclusively with regular projections.

∗The age of the universe is estimated nowadays in around 13.7 · 109 years.
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6.3 Knots and colors

In some sense, knots are more complicated than surfaces. The problem of distin-

guishing among them involves the way they are embedded in space. It was not until

the twenties that one could prove the existence of nontrivial knots, namely that the

knots really exist. Obviously, it was somehow clear that the trefoil knot was not

trivial, but there was no proof for that. Even the use of Reidemeister moves is not

a simple business for calculation, as we already said in Note 6.2.4. The first person

to prove that the trefoil knot is not trivial was presumably Reidemeister. He did it

as follows. He discovered a property which is not at all obvious, whose formulation

indicates the possibility of coloring each strand (arc) of a regular projection of a

knot with one of three different colors, in such a way that at least two of the three

colors are used, and that at each crossing either all three colors are used for all

three arcs that come together, or just one color for all of them. In other words,

in no crossing may one use two colors only. For instance, if the trefoil knot, in its

simplest representation, as in Figure 6.1, which consists of three arcs, each arc is

colored with one of the three different colors, then the rules are fulfilled. Then we

say that the trefoil knot is tricolorable. Reidemeister proved that this property is

invariant under the Reidemeister moves (see Theorem 6.3.6). However, the circle,

since it has no crossings, does not have this property, so it cannot be equivalent

to the trefoil knot.

With the goal to face with more generality the question of distinguish different

knots, we shall introduce a procedure that generalizes the tricolorability. It was

introduced by R. Fox around 1960. We shall call it the color game and the rules

are as follows.

Take a wheel with an odd number of radii, which are uniformly distributed. To

each radius assign a label (which we can call “color”). For instance we can label

the radii by

r = red , g = green , y = yellow , p = purple , and b = blue ,

as shown in Figure 6.10 for the case n = 5.

6.3.1 Definition. We define the color game as follows. Using the n different

colors of the wheel, we shall paint (label) each of the arcs of the knot projection

according to the following rules:

(a) One must use at least two colors.

(b) At every crossing, either all arcs have the same color, or the color of the over-

crossing arc must be the average color (or the bisectrix) with respect to the
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r

g

y

p

b

Figure 6.10 Color wheel for n = 5

color wheel, of the two colors of the arcs corresponding to the undercrossing.

(Since n is odd, the two colors that correspond to the undercrossing arcs

determine uniquely the color of the overcrossing arc.)

A coloring that fulfills the rules (a) and (b) will be called n-admissible coloring.

These rules are illustrated in Figure 6.11.

b

r

g

Figure 6.11 Admissible coloring

It is worth noticing again that the use of an odd number of colors guarantees

that given any two colors, there is a unique color which corresponds to the angle

bisectrix, (if n were even, ten there might be either two bisectrices or none).

6.3.2 Example. The figure eight knot, K8, shown in Figure 6.12(a) is colored

using the five colors of the wheel shown in Figure 6.11, so that the game rules are

fulfilled. However it is impossible to color the trefoil knot T of Figure 6.12(b) with

five colors according to the game rules.

On the other hand, if instead of using the five-color wheel, we use the three-

color wheel, as in Figure 6.13, then it is possible to color the trefoil knot, as we

saw already at the start of this section. We can easily check that it is impossible

to color the figure eight knot using three colors.

6.3.3 Definition. Given a regular projection of a knot, we define its chromatic

number to be the minimal odd number n greater than 1 such that the projection
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yr p

b
(a)

b

r

g

(b)

Figure 6.12 Colorings

r

gb

Figure 6.13 Color wheel for n = 3

admits an n-coloring, according to the rules 6.3.1(a) and (b). If the projection

does not admit any coloring, then we define the chromatic number to be 1 (like,

for instance, any projection of the trivial knot).

6.3.4 Exercise. Show that a regular projection of a knot is n-colorable if and

only if its arcs can be labeled with the integers 0, 1, 2, . . . , n − 1, such that the

following rules are fulfilled:

(a) At least two numbers are used.

(b) At a given crossing, if the overcrossing arc has the label k and the two arcs

of the undercrossing have the labels l and m, then n|2k − l − m. In other

words, 2k ≡ l +m (n).

(Hint : Notice that in order that the congruences have a unique solution, n must

be odd. Notice too, that the cyclic group with n elements can be realized as a

subgroup of S1 ⊂ C, by taking the nth roots of unity.)

6.3.5 Exercise. Take the projection of the Ochiai knot given in Figure 6.14.

Show that its chromatic number is 1, namely, it does not admit any n-coloring

for all n > 1. (Hint : Use the description of the previous exercise and solve the

congruences as diophantine equations, i.e. equations in Z.)
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Figure 6.14 knot de Ochiai

The use of the word invariant for the chromatic number is justified by the

following result, which allows to apply it not only to a knot projection, but to the

knot itself.

6.3.6 Theorem. If two regular projections are equivalent, then they have the same

chromatic number.

Proof: We must show that if some projection admits an n-coloring for some n,

then any modification of it using any one of the Reidemeister moves still admits

an n-coloring.

For the type I move, we have that if a certain coloring around a crossing is

admissible, as seen in Figure 6.15, then a = b, so that all three colors are the same,

say a.

a

ab

Figure 6.15 Admissible coloring and the type I move

For the type II move, notice that if we assume that in Figure 6.16 the coloring

on the left with colors a, b, c and d, is admissible, then a is the bisectrix of b and

c and it is also a bisectrix of c and d. This is only possible if b = d. Therefore the

coloring on the right must be admissible.

For the type III move we have that if the coloring given on the left of Figure

6.17 using the colors a, b, c, d, e and f , is admissible, then on the right the colors

a, b, c, d and e must be correct according to the rules. One must only check if it is
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a b

c

a d a b

Figure 6.16 Admissible coloring and the type II move

possible to find in the color wheel a color x, such that the coloring is admissible.

But it is indeed always possible to take color x in such a way that b is the bisectrix

of the angle formed by c and x. Now it is routine to verify that a is the bisectrix

of the angle formed by d and x.

a b c a b c

f

x

d b e d b e

Figure 6.17 Admissible coloring and the type II move

⊓⊔

6.3.7 Exercise. Restate the previous proof using the description of the n-coloring

given in Exercise 6.3.4.

By the previous theorem we have that the number of colors required for coloring

certain knot projection is an invariant of the knot. Namely, it only depends on

the knot as such, and not on any of its regular projections. We shall call this

invariant, namely, the minimal number of colors required for coloring one of its

regular projections, or 1, the chromatic number of the knot.

6.3.8 Example. The figure eight knot has chromatic number 5, and not 3. The

trefoil knot has chromatic number 3, and not 5. From this, we conclude that the

figure eight knot and the trefoil knot are not equivalent. It is impossible to modify

one, without cutting and pasting, to obtain the other.

Figure 6.18 shows the trefoil knot and its mirror image. This poses the question,

if this two knots are equivalent. Maybe the daily experience allows us to say that

they are not, but our color game is not enough to tell the two knots apart. Namely,
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a b b a

c c

TI TD

Figure 6.18 Admissible colorings for the left- and the right-handed trefoil knots

if one of the trefoil knots is admissibly colored with the three colors a, b, c, then

when we put it in front of a mirror, we obtain automatically an admissible coloring

for the other: hence both have the same chromatic number equal to 3. In fact, we

have the next result.

6.3.9 Proposition. If the chromatic number of a knot is n, then the chromatic

number of its mirror image is also n. ⊓⊔

6.3.10 Exercise. Compute the chromatic number of each of the knots shown in

Figure 6.1.

6.4 Knots, links, and polynomials

The chromatic number introduced in the previous section does not distinguish

between a knot and its mirror image. A knot is said to be an amphicheiral knot if

it is equivalent to its mirror image. Are all knots amphicheiral knots?

We shall now introduce a finer invariant, than the chromatic number, which

will be a polynomial ([17] or [18]).†

6.4.1 Definition. The Kauffman bracket assigns to a projection of a knot or link

K a polynomial in the indeterminates x, y and d with integral coefficients, denoted

by [K] ∈ Z[x, y, d], according to the following recurrence rules:

(a)
[ ]

= x
[ ]

+ y
[ ]

This rule states that we can replace the bracket of the original projection

as follows: if we are walking in an “overcrossing” of a knot projection, then

we can go left and multiply the resulting bracket by x, and we can go right

†I am grateful to Michael Barot and to Francisco González Acuña for their valuable comments regarding
this section.
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and multiply the resulting bracket by y, and then add both results. This way

we reduce the computation of the bracket of some knot projection to the

computation of the brackets of two projections each with one crossing less.

Example: [ ]
= x

[ ]
+ y

[ ]
(b) [K ⊔⃝] = d[K].

This rule establishes that if a link has an unlinked component, which is a

trivial knot, then we can eliminate it by multiplying the resulting bracket by

d.

Example: [ ]
= x

[ ]
+ y

[ ]
= xd

[ ]
+ y

[ ]
= (xd+ y)

[ ]
and

[ ]
= x [⃝⃝] + y [⃝]

= xd [⃝] + y [⃝]

= (xy + d) [⃝]

(c) [⃝] = 1.

Finally, this rule states that the bracket of the projection of the trivial knot

is the trivial polynomial 1. Thus we have that

[ ]
= (xd+ y)

[ ]
= (xd+ y)(xd+ y) = (xd+ y)2

6.4.2 Lemma. The Kauffman bracket [ ] is invariant under the type II Reide-

meister move if and only if xy = 1 and d = −x2 − x−2.

Proof: Consider the following series of equalities:[ ]
= x

[ ]
+ y

[ ]
= x

(
x
[ ]

+ y
[ ])

+ y
(
x
[ ]

+ y
[ ])

=
(
x2 + y2 + xyd

) [ ]
+ xy

[ ]
=

[ ]
.



6.4 Knots, links, and polynomials 207

The last of them holds if and only if xy = 1, namely if and only if y = x−1 and

x2 + y2 + xyd = 0, i.e., if d = −x2 − x−2. ⊓⊔

6.4.3 Corollary. If xy = 1 and d = −x2 − x−2, then the Kauffman bracket [ ]

is invariant under the type III Reidemeister move .

Proof:
[ ]

= x
[ ]

+y
[ ]

. Furthermore,
[ ]

= x
[ ]

+y
[ ]

.

But by the invariance under the type II move,
[ ]

=
[ ]

=
[ ]

.

Therefore,
[ ]

=
[ ]

. ⊓⊔

Denote by ⟨K⟩ ∈ Z[x, x−1] the Kauffman bracket [K] for the case xy = 1

and d = −x2 − x−2 and call it the fine Kauffman bracket. Hence ⟨K⟩ is a Laurent

polynomial, namely a polynomial in positive and negative powers of x. Now we can

finish the computation of the bracket of the trefoil knot. We still have to compute⟨ ⟩
= x

⟨ ⟩
+ x−1

⟨ ⟩
= x

(
−x3

)
+ x−1

(
x ⟨⃝⟩+ x−1 ⟨⃝⃝⟩

)
= −x4 + 1 + x−2

(
−x2 − x−2

)
= −x4 − x−4 .

Hence we have for the left-handed trefoil knot that⟨ ⟩
= x

(
x6

)
+ x−1

(
−x4 − x−4

)
= −x−5 − x3 + x7 .

If we take the mirror image of the projection of a knot, the only thing that

changes is the “orientation”, namely “left” changes to “right” and viceversa. Thus

rule 6.4.1(a) implies that in the bracket of the mirror image, the powers of x are

exchanged with those of y. But since we convene that y = x−1, then the powers of

x in the fine bracket of the mirror image have opposite signs to those of the fine

bracket of the original projection. Therefore, for the projection of the right-handed

trefoil knot we have that⟨ ⟩
= x−7 − x−3 − x5 .

Consequently, both projections have different polynomials.

As we have already seen, if one modifies the projection diagram K of a knot

using Reidemeister moves of the types II or III, then its polynomial ⟨K⟩ does not
change. However, the type I move does alter ⟨K⟩. Namely,⟨ ⟩

= −x3
⟨ ⟩

,(6.4.4) ⟨ ⟩
= −x−3

⟨ ⟩
.
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Hence the fine Kauffman bracket is not an invariant of knots nor links. In order

to correct this misbehavior, we need the following.

6.4.5 Definition. Given a knot or link projection diagram K, we define the

wreath w(K) of a knot or link projection as follows. To each knot-component of

the link, assign an orientation and count how many positive crossings and how

many negative crossings there are in the whole diagram, according to Figure 6.19.

+ −

Figure 6.19 Oriented crossings

Then w(K) is the number of positive crossings minus the number of negative

crossings. Observe that in the case of a knot, if one takes the opposite orientation,

then the both directions in a crossing are changed. Hence the orientation of the

crossing remains the same, and thus if K is the projection diagram of a knot, then

the wreath w(K) does not depend on the orientation chosen.

6.4.6 Exercise. To each knot in Figure 6.1 assign an orientation and compute

the wreath in each case.

6.4.7 Exercise. Put an orientation on each component of the Whitehead link

and of the Borromean rings shown in Figure 6.20, and compute the corresponding

wreaths.

Whitehead link Borromean rings

Figure 6.20 Links

It is an easy exercise to prove the following statement.

6.4.8 Proposition. The wreath of the projection diagram of a knot is invariant

under the Reidemeister moves II and III. ⊓⊔



6.4 Knots, links, and polynomials 209

As we already said, it is a simple exercise to prove the next.

6.4.9 Proposition. The wreath of the projection diagram of a knot is independent

of the given orientation. ⊓⊔

6.4.10 Example. As one may appreciate in Figure 6.21, the left-handed trefoil

knot TL has wreath +3 and the right-handed trefoil knot TR, has wreath −3.

−

− −

+

+ +

w(TL) = −3 w(TR) = +3

Figure 6.21 The wreath of the left- and right-handed trefoil knots

6.4.11 Definition. Given a projection diagram of a link K, there is a polynomial

defined by

fK(x) = (−x3)−w(K)⟨K⟩ .

6.4.12 Theorem. The polynomial fK(x) of the projection diagram K of a knot

or a link, is invariant under the type I, II, or III Reidemeister move. Therefore it

is a knot or link invariant.

Proof: By (6.4.4), getting rid of a loop in K corresponds to multiplying ⟨K⟩ by

x3 or x−3, according to the orientation of the loop. Since this modification of the

diagram reduces the wreath in 1 or −1, the final effect in the polynomial ⟨K⟩
is that it remains invariant under a type I Reidemeister move. By 6.4.8, fK es

invariante under type II or III Reidemeister moves. Hence it remains invariant

under all three moves and therefore, it is an invariant of the knot or link itself. ⊓⊔

In particular, for the left-handed trefoil knot, we have

fTL(x) = (−x3)3(−x−5 − x3 + x7) = x4 + x12 − x16 ;

while fort the right-handed trefoil knot, we have

fTR(x) = (−x3)−3(x−7 − x−3 − x5) = −x−16 + x−12 + x−4 .

Therefore, we have shown the following.



210 6. Knots and links

6.4.13 Proposition. The left-handed trefoil knot TL and the right-handed trefoil

knot TR are not equivalent, namely, the trefoil knots are not amphicheiral. They

are cheiral (or chiral). ⊓⊔

It can be shown, that for any knot K the polynomial fK(x) has powers that

are always multiple of 4. Therefore, we can simplify it by replacing x by t−1/4. This

way, we obtain the so-called Jones polynomial of K, namely VK(t) = fK(t
−1/4),

which now is a polynomial in powers of the indeterminate t, (see [16]). In particular,

for the trefoil knots we have

VTL(t) = −t−4 + t−3 + t−1 ,

VTR(t) = t+ t3 − t4 .

One can show that the value m obtained by evaluating the Jones polynomial,

when t = −1 and defining m = |VK(−1)|, is divisible by the chromatic number n

of the given knot K, which we introduced in Section 6.3. In the case of the trefoil

knots, |VTI (−1)| = 3 = |VTD(−1)|. It is an interesting exercise to compute the

Jones polynomial of the figure eight knot K8, to obtain

VK8(t) = t−2 − t−1 + 1− t1 + t2 .

One can now verify that |VK8(−1)| = 5, which is the chromatic number of K8.

6.4.14 Exercise. Compute the Jones polynomials of the stevedor’s and the true

lovers’ knots shown in Figure 6.1, as well as of the Ochiai knot shown in Figure

6.14. In each of the three cases, compute also n = |VK(−1)| and confirm that n is

odd and that one can color the corresponding knot with n colors, according to the

rules 6.3.1.

6.4.15 Definition. Given the regular projections of two knots K and K ′, one

can define a new removing a small portion of an arc in each of the projections and

then gluing the ends of the remaining diagrams, as shown in Figure 6.22. The new

knot is called the connected sum of K and K ′ and is denoted by K#K ′. Of course,

in order to realize this operation, we have to assume that the original diagrams

do not overlap, and that the arcs chosen to be removed are “outside”. If a knot

is the connected sum of two other nontrivial knots, then the knot is said to be a

composed knot. The connected sum of a knot K with a trivial knot is again the

same knot K. If a knot is not composed, that is, it is not the connected sum of

any two nontrivial knots, then it is said to be a prime knot.

Notice that the definition of the connected sum of knots is in some sense a

special case of the connected sum of manifolds 2.1.32, given in Chapter 2.
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K K′ K#K′

Figure 6.22 Connected sum of knots

6.4.16 Exercise.

(a) Show that the fine Kauffman bracket of a connected sum of two (regular

diagrams of) knots is the product of their brackets of each summand, namely

⟨K#K ′⟩ = ⟨K⟩⟨K ′⟩ .

(b) Show that the wreath of a connected sum of two (regular diagrams of) knots

is the sum of their wreaths, namely

w(K#K ′) = w(K) + w(K ′) .

(c) Conclude that the Jones polynomial of a connected sum of two (regular

diagrams of) knots is the product of their Jones polynomials, namely

VK#K′(t) = VK(t)VK′(t) .

(d) Making use of (c), compute the Jones polynomials of granny’s knot and of

the square knot, which are depicted in Figure 6.23.

Granny’s knot Square knot

Figure 6.23 Connected sums of trefoil knots

6.4.17 Exercise.

(a) Show that if two knots K and K ′ have the same chromatic number n, then

el chromatic number of their connected sum is also n.
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(b) More generally, show that if n(K) denotes the chromatic number of a knot

K, then one has

n(K#K ′) = min{n(K), n(K ′)} ,

where min represents the minimum of both numbers.

6.4.18 Exercise. Making use of the previous exercises, compute the chromatic

numbers n and n′ of granny’s knot K and of the square knot K ′, and verify that

these numbers do not coincide with m = |VK(−1)| nor m′ = |VK′(−1)|. Check
that, however, n|m and n′|m′.

6.4.19 Note. The book [1] contains a table of polynomials of all prime knots with

no more than nine crossings.

6.5 The knot group

Given two equivalent knots K1 and K2, notice that there is a homeomorphism

φ : R3 −→ R3, which preserves the orientation and is such that φ(K1) = φ(K2).

Hence, by restriction, we obtain a homeomorphism R3 −K1 ≈ R3 −K2. Thus we

have proved the following.

6.5.1 Proposition. Equivalent knots have homeomorphic complements. ⊓⊔

Once more we are facing the homeomorphism problem. The previous propo-

sition implies that if two knots have nonhomeomorphic complements, then they

are not equivalent knots. Therefore, each invariant which allows us to distinguish

topological spaces, up to homeomorphism, will in principle be useful to distinguish

between knots.

6.5.2 Note. Notice that a knot and its mirror image have homeomorphic comple-

ments, since some reflection of R3 is a homeomorphism that maps any knot onto

its mirror image. As we mentioned in the Introduction, a few years ago Gordon and

Luecke [12] proved the converse of Proposition 6.5.1. More precisely, they showed

that two knots, or one of them and the mirror image of the other, are equivalent if

and only if their complements are homeomorphic. This way, the equivalence prob-

lem of knots is equivalent to the homeomorphism problem in the case of certain

3-dimensional submanifolds of R3.

A good invariant to distinguish between two knots is the fundamental group

of their complements.
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6.5.3 Definition. Let K ⊂ R3 be a knot. The fundamental group π1(R3−K) is

called knot group of K and is denoted by π(K).

Hence, the following holds immediately.

6.5.4 Proposition. The knot group π(K) is an invariant of the equivalence class

of K, that is, if K and K ′ are equivalent knots, then their knot groups π(K) and

π(K ′) are isomorphic. ⊓⊔

In what follows, we shall look for a reasonable way of presenting the knot

group in terms of generators and relations, depending on the diagram of the knot

in question. To do this, take a knot K inside the upper halfspace of R3 (x3 > 0),

so that its vertical projection into the plane x3 = 0 is regular. Now break apart the

projection into portions corresponding to “overcrossings’ or to “undercrossings” in

such a way that they alternate, as shown in Figure 6.24 for the case of the trefoil

and the figure eight knots.

K is the trefoil knot K is the figure eight knot

Figure 6.24 Overcrossings and undercrossings of a knot K

We now replace each undercrossing by its projection into the plane x3 = 0 and

we join it with the adjacent overcrossings by vertical line segments in such a way

that we obtain a new knot, denoted again by K, which is obviously equivalent to

the original knot, as shown in Figure 6.25.

We can now proceed to compute the knot group of K by decomposing R3−K

in several pieces with recognizable fundamental groups and applying the Seifert–

van Kampen theorem in each step.

First, we compute π1(R3
+ −K), where R3

+ denotes the closed upper halfspace,

x3 ≥ 0. Take a base point x0 with a large enough height (x3) so that it is far above

the knot. Furthermore, give the knot an orientation. For each overcrossing take a

loop based at x0 which goes around the the arc in clockwise sense, as shown in

Figure 6.26.
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x3 = 0

Figure 6.25 Modified knot K

λ1 λ2 λ3

Figure 6.26 Generators of the knot group

Let us call these loops λ1, λ2, . . . , λk, and let

α1, α2, . . . , αk ∈ π1(R3
+ −K)

be the elements determined by them. We obtain the following result.

6.5.5 Lemma. The group π1(R3
+−K) is freely generated by the elements α1, α2, . . . , αk.

Proof: Denote by K̂ the subspace of K built up by the overcrossings and the

vertical segments of K, whose lower ends lie in the plane x3 = 0. Therefore the

inclusion R3
+ − K ↪→ R3

+ − K̂ is a homotopy equivalence and the fundamental

group of both spaces is the same.

The union Ki of each overcrossing with the two vertical line segments at its

endpoints have a closed neighborhood Bi in R3
+ which is homeomorphic to a 3-
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ball, and has the form of, say, a horseshoe Hi × I, as shown in Figure 6.27(a).

Each complement Bi −Ki is homeomorphic to a cylinder with the axis removed

(B2−0)×I, as shown in Figure 6.27(b). Hence it is homotopy equivalent to B2−0,

therefore also to S1. Thus its fundamental group is isomorphic to Z generated

by the class α′
i of a loop that goes around K once; more precisely around the

overcrossing of Ki.

If X is the resulting space obtained by removing in R3
+ the interiors of each

Bi and the interior of the disc in which Bi intersects the plane x3 = 0, then X is

homeomorphic to R3
+ and in particular, it is simply connected. Thus we have that

R3 − K̂ = X ∪ (B1 −K1) ∪ (B2 −K2) ∪ · · · ∪ (Bk −Kk). On the other hand, the

intersection of X with each portion Bi−Ki is homeomorphic to a disc. Therefore,

it is simply connected as well. If we assume, inductively, that the fundamental

group of R3− K̂ = X ∪ (B1−K1)∪ (B2−K2)∪· · ·∪ (Bi−Ki) is free generated by

α1, α2, . . . , αi, then the Seifert–van Kampen theorem implies that the fundamental

group of R3 − K̂ = X ∪ (B1 −K1) ∪ (B2 −K2) ∪ · · · ∪ (Bi+1 −Ki+1) is obtained

adding a new generator around Ki, which of course can be taken as αi+1. This

proves our lemma. ⊓⊔

(a) (b)

overcrossing

Bi

Figure 6.27 The horseshoes

Indeed, due to the fact that we wish to apply the Seifert–van Kampen theorem,

we need two open sets. One of them, which we still shall denote R3
+−K̂, is obtained

by taking the union with (R2 − K̂) × (−ε, 0]. Namely, we let it grow a little bit

downwards, without altering its homotopy type.

We still have to add the open set R3
−K̂, which represents the points of neg-

ative height in R3, but removing from them, not only undercrossings of K̂, but

the products of the corresponding portions of arc with the interval (−ε, 0). Ho-

motopically, this space is equivalent to the original one, and the intersection of
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both enlarged spaces is also homotopically equivalent to the original intersection

of height x3 = 0. Thus we may consider the original spaces for the reasoning.

Let us take a look at the undercrossing of the knot between the ith and the

(i + 1)th overcrossings and assume that the jth overcrossing passes over it, as

shown in Figure 6.28. Take the loops λi and λi+1 and shift them in order to bring

them closer to the crossing and then take loops λj and λ′j which represent αj ,

but are such that the pass on different sudes of the undercrossing, as shown in

Figure 6.28. Let us now enlarge the projection of the undercrossing in R3
−, to

obtain a ball of dimension 3, which we call Di, and consider the result of taking

the union of R3
+ − K̂ with the set-difference Di − K̂. In order to base all loops

at x0, we adjoin to Di a line segment from x0 to A and then, vertically, another

one to B un the upper cap of Di. Thus Di − K̂ is simply connected, as it is clear,

and (Di − K̂) ∩ (R3
+ − K̂) consists of a disc with a (smooth) arc removed from

its interior. Hence it has the homotopy type of a circle and thus its fundamental

group is infinite cyclic (see Exercise 6.5.11), generated, say, by a loop µi based at

x0 which goes once clockwise around the undercrossing in the plane x3 = 0. Then

µi represents an element of the fundamental group, which we denote by βi.

µi

B

x0

A

R3
−

R3
+

Di

λi+1

λi
λj

λ′
j

Figure 6.28 Applying the Seifert–van Kampen theorem

According to the Seifert–van Kampen theorem, if we wish to compute the

fundamental group of (R3
+−K̂)∪(Di−K̂), we must include the relation ι∗(βi) = 1

in π1(R3
+ − K̃), where ι is the inclusion

(R3
+ − K̂) ∪ (Di − K̂) ↪→ R3

+ − K̃ .

But ι∗(βi) is represented by the loop µi considered as a loop inn R3
+ − K̃. Sliding

µi vertically upwards, we obtain a loop which is homotopic to λiλjλi+1λ′j , as one
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can also see in Figure 6.28. Hence the effect of adding Di − K̂ is equivalent to

imposing the relation αiαjα
−1
i+1α

−1
j = 1 in the group. Notice that inverting the

orientation of the jth overcrossing, the relation changes by αi+1αjα
−1
i α−1

j = 1.

The other possibility would be that the “undercrossing” would have been in-

cluded only to put apart two consecutive overcrossings. In this case, the loop µi is

clearly homotopic to λiλi+1. Consequently, the relation needed in this case would

have been αiα
−1
i+1 = 1. We denote any of both relations by ri.

Since the total number of undercrossings is k, the first k − 1 undercrossings

determine relations r1, r2, . . . , rk−1 and they yield a description of the fundamental

group π1(Y ), where

Y = (R3
+ − K̂) ∪ (D1 − K̂) ∪ · · · ∪ (Dk−1 − K̂)

is ⟨α1, . . . , αk | r1, . . . , rk−1⟩.

We shall see now that this is already the final description, we are looking for.

This is so since the relation coming from the last undercrossing is a consequence

of the previous ones. Let Z be the closure of R3 − Y . To finish the construction

of R3 − K̂, we have to take the union of Z − K̂ and Y . But Z − K̂ is simply

connected and Y ∩ (Z − K̂) has an infinite cyclic fundamental group generated

by a loop around the last undercrossing. Now we may choose this loop as a large

circle in the plane x3 = 0 which runs around all of the projection of our knot. If

we slide this circle vertically upwards until it is completely over the knot, and then

we contract it, we notice that it represents the trivial element of π1(Y ). By the

Seifert–van Kampen theorem, we obtain the main result of this Section.

6.5.6 Theorem. The knot group of a knot K is generated by the elements α1, α2, . . . , αk

subject to the relations r1, r2, . . . , rk−1. ⊓⊔

6.5.7 Examples.

(a) To compute the knot group of the trivial knot, we put apart the circle into

two semicircles, under the convention that one is the overcrossing. The recipe

given above gives us a generator and no relation. Hence the knot group of

the trivial knot is infinite cyclic, namely it is isomorphic to Z.‡

(b) To compute the knot group of the left-handed trefoil knot, one takes over-

crossings and undercrossings according to Figure 6.24. Hence we have three

generators α1, α2, α3 subject to the relations x1x2x
−1
1 x−1

3 and x2x3x
−1
2 x−1

1 .

‡As we saw in Chapter 4 (Example 4.4.14), the complement of a trivial knot is homotopically the same
as the complement of a solid torus. Thus the knot group of the trivial knot is the fundamental group of a

solid torus. Since this has the homotopy type of a circle, the knot group is isomorphic to Z.
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If we eliminate α3 and write a = α1 and b = α2, then we have that the knot

group of the trefoil knot is

G = ⟨a, b | abab−1a−1b−1⟩ .

If we take the permutation group in three letters, Σ3, there is a homomor-

phism G −→ Σ3, such that a 7→ (12), b 7→ (23), because (12)(23)(12) =

(13) = (23)(12)(23). Since (12) and (23) generate Σ3, the homomorphism is

an epimorphism. This proves that G is not abelian and therefore, it is not

Z. This way we see again that the trefoil knot is not equivalent to the trivial

knot.

(c) If we consider now the square knot, shown in Figure 6.23, we can take over-

and undercrossings as shown in Figure 6.29 and then we can label them

from 1 to 6. The letters a, b, c represent the generators of the knot group

corresponding to three of the overcrossings, as shown in the figure, and us-

ing the relations given by the undercrossings 1, 2, 4, 5, we express the other

generators in terms of these three.

6 3

4

b−1ab

5

c−1ac

1 2
a

b−1a−1bab

c b

Figure 6.29 Computation of the knot group of the square knot

The relations corresponding to the undercrossings 3 and 6 are

(b−1ab)(b−1a−1bab)b−1(b−1a−1bab)−1 ,

which transforms into abab−1a−1b−1, and

(c−1ac)(b−1a−1bab)(c−1ac)−1c−1 ,

which transforms into acac−1a−1c−1, by replacing bab by aba. Thus the knot

group of the square knot is

⟨a, b, c | abab−1a−1b−1, acac−1a−1c−1⟩ .
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Nonequivalent knots may have the same knot group. For instance, the left-hand

side of the square knot is like a right-handed trefoil knot, while the right-hand side

is its mirror image. If we change the left-hand side by another right-handed trefoil

knot, then we obtain granny’s knot, which, as we know, is a different knot (see

6.4.16). However, it is an exercise for the reader to verify that the knot group of

the granny’s knot is isomorphic to the knot group of the square knot. (Compare

this with the result of Exercise 6.4.16.)

The problem of deciding if two groups which are given in terms of generators

and relations, are isomorphic or not is, in general, impossible to solve. In the

best case, it is a difficult task. Therefore, the problem of classifying knots, since

it is somehow equivalent to the problem of classifying groups, has no solution.

Already in the case of the classification of surfaces we had to face the problem

by abelianizing the fundamental groups. Unfortunately, in the case of knot groups

the abelianization trivializes the problem, as shown in the following.

6.5.8 Proposition. The abelianization of any knot group is an infinite cyclic

group. ⊓⊔

Therefore, in the case of knots, this procedure brings nothing.

6.5.9 Exercise. Compute the knot groups of the stevedor’s and the true lovers’

knots.

6.5.10 Exercise. Let K be a tame knot and let T be a tubular neighborhood

of it, which is obtained by taking all points in R3, whose distance to the knot is

less than or equal to some ε > 0, where ε is small enough, that the tube has no

self-itersections. Show that R3 − T ◦ is a strong deformation retract of R3 − K.

Conclude that the inclusion induces an isomorphism π1(R3 − T ◦) ∼= π1(R3 −K).

6.5.11 Exercise. Let A ⊂
◦
B2

be a closed line segment. Show that B2−A ≈ B−0.

Generalize the result to the case when A is a “tame” arc, that is, when A is

obtained from a line segment through an ambient homeomorphism (of R3 or of a

neighborhood of the segment in R3). Conclude that for any arc A ⊂
◦
B2

, the group

π1(B2 −A) is infinite cyclic.
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action

antipodal, 19

antipodal, on a sphere, 159

group

even, 158

free, 158

properly discontinuous, 158

of a group, 158

of a topological group, 19

orbit map, 159

transitive, 21

admissible coloring of a knot, 201

amphicheiral knot, 205

antipodal

action on the sphere, 19

antipodal action on a sphere, 159

arc in a knot projection, 194

atlas of a manifold, 27

attaching

a cell, 11

attaching space, 6

double, 5

ball, 4

boundary, 4

band

Moebius, 8

band,trivial, 8

Borel subgroup, 64

Borsuk–Ulam theorem, 90

bottle, Klein, 9, 37

boundary

of a ball, 4

of a manifold, 23

point, 23

boundary invariance theorem, 4

bracket, Kauffman, 205

Brouwer fixed point theorem

case n = 2, 87

general case, 88

canonical generator of the fundamen-

tal group of the circle, 128

cell

attaching, 11

cell decomposition

of RPn, 11
of Sn, 11

change of coordinates, 27

characteristic conjugacy class of a cov-

ering map, 169

characteristic subgroup of a covering

map, 167

chart of a manifold, 27

cheiral or chiral knot, 210

chromatic number of a knot, 201, 204

circle, fundamental group, 127

classification theorem

of 1-manifolds, 51

compact case, 49

noncompact case, 50

of 2-manifolds, 47

of 4-manifolds, 55

of n-fold covering maps, 191

of covering maps, 178

of surfaces, 47

closed

cofibration, 106

long ray, 26

path, 113
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surface, 34

cocartesian square, 5

cocycle conditions, 174

cofibration, 73, 106

closed, 106

cofibrations

product, 107

cohomology group, first, 79

color game, 200

comb, infinite, 70

complex

general linear group de n×n ma-

trices, 57

special linear group de n×n ma-

trices, 63

complex projective space, 20

component

connected, 15

path, 14

composed knot, 210

cone over a space, 7

configuration space, 187

conjecture,

Poincaré in dimension 4, 149

Poincaré, in dimension 3, 149

connectable paths, 115

connected

component, 15

connected space, 14

path, 14

1-connected space, 122

connected sum

of knots, 210

of manifolds, 33

constant loop, 114

constant map, 69

constant path, 114

contractible

loop, 115

space, 69

contractible space

strongly, 69

contraction

of a space, 69

convex set, 2

coordinates, local, 27

cover

open

partition of unity subordinate,

185

covering map, 151

base space, 152

characteristic conjugacy class, 169

characterstic subgroup, 167

fiber, 152

induced, 156

leaves, 152

multiplicity, 153

product, 155

regular, 183

restriction, 156

total space, 152

trivial, 155

trivialization, 155

universal, 170

existence theorem, 173

covering maps

classification theorem, 178, 191

equivalent, 154, 188

fibered product, 156

product, 155

covering space, 152

crossing in knot, 196

crystalographic group, 160

cutting and pasting, 11

cylinder

standard, 8

cylinder over a space, 7

deck transformation, 179

deck transformations group, 179

decomposition theorem, Iwasawa, 64
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decomposition, Heegaard, 54

deformation retract, 94

deformation retract, strong, 94

deformation retraction, 94

weak, 95

deformation retraction, strong, 94

degree of a mapping of the circle into

itself, 81

dimension invariance theorem, 4

disconnected space, 14

disconnection of a space, 14

discrete group, 18

domain invariance theorem, 4, 111

domain invariance theorem for mani-

folds, 111

double attaching space, 5

double of a manifold, 32

embedding

of manifolds, 31

ENR, 104

equatorial loop of the Moebius band,

128

equivalence

of covering maps, 154

equivalent

knots, 196

regular projection of a knot or link,

198

equivalent covering maps, 188

Euclidean neighborhood retract, 104

Euclidean space

form, 160

even action of a group, 158

even map, 83

evenly covered neighborhood, 152

exponential map, 151

extension theorem, Tietze–Urysohn, 103

fiber of a covering map, 152

fiberwise homeomorphism, 154

figure eight knot, 194, 201

Jones polynomial, 210

fine Kauffman bracket, 207

finitely

presented group, 149

finitely presented group, 147

first

cohomology group, 79

homology group, 146

fixed point, 87

fixed point theorem, Brouwer

case n = 2, 87

general case, 88

form

Euclidean space, 160

frame, 58

free action of a group, 158

free product of two groups, 133

function

lifting, 164

support, 184

functor, 75

fundamental group, 118

of Bn, 120
of Rn, 120

of a contractible space, 120

of a convex set, 120

of a sphere , 130

of the circle, 127

of the circle,

canonical generator, 128

of the nonorientable surface of genus

g, 146

of the orientable surface of genus

g, 145

of the projective space, 172

fundamental theorem of algebra, 88

game, color, 200

Gauss map, 188

general linear group

of complex n× n matrices, 103
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of real n× n matrices, 103

general linear group of n×n matrices

complex, 57

real, 57

generators of a group, 131

generators of a group,

normal, 131

granny’s knot, 211, 219

group, 219

Grassmann manifold

complex, 62

real, 62

group

, finitely presented, 147

action, 19, 158

crystalographic, 160

diagonal matrices with positive el-

ements, 64

discrete, 18

general linear

of complex n× n matrices, 57

of real n× n matrices, 57

knot, 213

of deck transformations, 179

of granny’s knot, 219

of the square knot, 219

of the trefoil knot, 218

of the trivial knot, 217

orthogonal, 58

permutation, 187

product, 132

real upper triangular matrices, 64

real upper triangular unipotent ma-

trices, 64

special linear

of complex n× n matrices, 63

of real n× n matrices, 63

special orthogonal, 62

special unitary, 62

symmetric, 187

topological, 18, 57

unitary, 58

group action

even, 158

free, 158

orbit, 158

properly discontinuous, 158

quotient space, 20

group,

finitely presented, 149

fundamental, 118

topological, 127

halfspace

upper, 29

ham sandwich theorem, 91

handle, 37

handle-body, 53

hawaiian earring, 173

Heegaard decomposition, 54

HEP, 104, 105

homeomorfisms

isotopic, 196

homeomorphism

fiberwise, 154

of pairs, 73

orientation preserving, 196

homeomorphisms

isotopic, 79

homogeneous space, 21, 47

homology group, first, 146

homotopic maps, 67

homotopy

class, 69

extension property, 104, 105

linear, 69

of pairs, 72

pointed, 74

relative, 72

homotopy class

of a map, 69

homotopy classes,
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product, 118

homotopy equivalence, 93

homotopy equivalent pairs, 93

homotopy equivalent spaces, 93

homotopy of maps, 67

homotopy type, spaces of the same,

93

induced covering map, 156

infinite comb, 70

interior

of a manifold, 23

point, 23

intersection form, 54

interval

unit, 14

invariance

of boundary theorem, 4

of dimension theorem, 4

of domain theorem, 4, 111

of domain theorem for manifolds,

111

invariant

knot, 204

of knots, 203

inverse path, 115

isotopic homeomorphisms, 79, 196

isotopy, 79, 196

Iwasawa decomposition theorem, 64

Jones polynomial, 210

of figure eight knot, 210

of the trefoil knots, 210

Jordan curve theorem, 89

Kauffman bracket, 205

fine, 207

killing elements in π1(Y, y0), 143

Klein bottle, 9

Klein bottle, 37

knot, 194

admissible coloring, 201

amphicheiral, 205

cheiral or chiral, 210

chromatic number, 201, 204

composed, 210

equivalent projections, 198

figure eight, 194, 201

Jones polynomial, 210

granny’s, 211, 219

group, 219

group, 213

invariant, 203, 204

lover’s, 194

Ochiai, 202

polygonal, 196

prime, 210

projection

arc, 194

strand, 194

wreath, 208

regular projection, 194, 196

square, 211

group, 219

stevedor’s, 194

tame, 196

trefoil, 194, 201

group, 218

Jones polynomial, 210

left-handed, 195

right-handed, 195

triclorable, 200

trivial, 194

wild, 196

knots

connected sum, 210

equivalent, 196

isomorphic, 194

Perko pair, 199

leaves of a covering map, 152

Lebesgue number of a cover, 130

lens space, 53, 160
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lifting

function, 164

map, 161, 166

uniqueness, 166

path, 162

problem, 162

line

long, 26

line segment, 69

linear

homotopy, 69

link, 197

equivalent projections, 198

projection

wreath, 208

regular projection, 197

locally

connected space, 15

path connected space, 15

simply connected space, 173

long

ray, closed, 26

ray, open, 26

long line, 26

loop, 113

loop,

contractible, 115

nullhomotopic, 115

loop, constant, 114

lover’s knot, 194

manifold, 23

atlas, 27

boundary, 23

boundary point, 23

change of coordinates, 27

chart, 27

complex Grassmann, 62

double, 32

interior, 23

interior point, 23

local coordinates, 27

of class Cr, of class C∞, analytic,

holomorphic, 28

real Grassmann, 62

smooth, 28

Stiefel

complex, 59

real, 59

structure, 28

topological, 28

transition map, 27

1-manifold, 48

3-manifold

Heegaard decomposition, 54

manifolds

connected sum, 33

embedding, 31

1-manifolds

classification theorem, 51

compact case, 49

noncompact case, 50

2-manifolds

clasification theorem, 47

4-manifolds

classification theorem, 55

map

constant, 69

covering, 151

universal, 170

even, 83

exponential, 151

Gauss, 188

homotopy class, 69

lifting, 161

nullhomotopic, 69

odd, 83

of pairs, 72

pointed, 74

winding, 109

mapping

cone, 7
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cylinder, 6

torus, 8

maps

covering

equivalence, 154

homotopic, 67

matrices

diagonal with positive elements,

64

real upper triangular, 64

real upper triangular unipotent,

64

Moebius band, 8

Moebius strip, 35

Moebius band, equatorial loop, 128

moves, Reidemeister, 197

multiplicity of a covering map, 153

neighborhood

evenly covered, 152

nonorientable surface, 36, 145

of genus 1, 46

of genus g, 46

nonorientable surface of genus g,

fundamental group, 146

normal

generators of a group, 131

subgroup generated by a set of el-

ements of a group, 131

normalizer of a subgroup, 181

nullhomotopic

loop, 115

nullhomotopic map, 69

nullhomotopy, 69

number

chromatic

of a knot, 204

chromatic of a knot, 201

number, winding, 85

Ochiai knot, 202

odd map, 83

open

long ray, 26

orbit

of a group action, 158

space, 20

orbit map of an action, 159

orbit space

of a group action, 159

orientable surface, 36, 145

of genus g, 39

orientation preserving homeomorphism,

196

oriented surface of genus g,

fundamental group, 145

orthogonal group, 58, 103

special, 62

pair

map, 72

of spaces, 72

pair knots, Perko, 199

pairs

homotopy, 72

homotopy equivalent, 93

of spaces

homeomorphism, 73

product, 72

of the same homotopy type, 93

paracompact spaces, 184

partition of unity, 184

subordinate to a cover, 185

path, 14, 113

closed, 113

component, 14

lifting, 162

product, 115

path connected space, 14

path homotopy, 115

path, constant, 114

path, inverse, 115

path-lifting
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theorem, 163

paths, connectable, 115

paths, homotopic, 115

Perko pair knots, 199

permutation group, 187

piercing of a manifold, 33

plane

projective, 42

Poincaré conjecture

in dimension 3, 149

in dimension 4, 149

point

boundary, 23

interior, 23

pointed

homotopy, 74

map, 74

space, 74

polygonal knot, 196

polynomial

Jones, 210

prime knot, 210

problem

lifting, 162

product

covering map, 155

fibered

of two covering maps, 156

group, 132

of cofibrations, 107

of homotopy classes of paths, 118

of pairs of spaces, 72

of paths, 115

of two covering maps, 155

product,

free of two groups, 133

projection

regular

of a knot, 194, 196

of a link, 197

projection, stereographic, 1

projective plane, 42

projective space

cell decomposition, 11

complex, 20

fundamental group, 172

real, 20

projective space of dimension 2, 42

properly discontinuous action of a group,

158

pushout, 6

of two maps, 5

quotient space

of a group action, 159

under the action of a group, 20

real

general linear group of n×n ma-

trices, 57

special linear group of n× n ma-

trices, 63

regular covering map, 183

Reidemeister

moves, 197

theorem, 199

restriction of a covering map, 156

retract, deformation, 94

retraction, 86

weak deformation, 95

retraction theorem

case n = 2, 86

general case, 87

retraction, deformation, 94

same homotopy type, pairs, 93

Seifert–van Kampen theorem, 138

semilocally simply connected espacio,

172

separation of space, 14

set

convex, 2

simply connected space, 122
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smooth manifold, 28

space

attaching, 6

base, of a covering map, 152

configuration, 187

connected, 14

contractible, 69

contraction, 69

covering, 152

universal, 170

disconnected, 14

homogeneous, 21, 47

lens, 53, 160

locally

simply connected, 173

locally connected, 15

locally path connected, 15

orbit, 20

paracompact, 184

path connected, 14

pointed, 74

projective, 42

real projective

of dimension n, 157

semilocally simply connected, 172

strongly contractible, 69

sufficiently connected, 172

total, of a covering map, 152

space,

1-connected, 122

simply connected, 122

spaces

homotopy equivalent, 93

of the same homotopy type, 93

pair, 72

special

orthogonal group, 62

unitary group, 62

special linear group of n×n matrices

complex, 63

real, 63

sphere, 4

antipodal action, 19, 159

cell decomposition, 11

sphere,

fundamental group, 130

square knot, 211

group, 219

standard

cylinder, 8

torus, 8

star-like, 70

stereographic projection, 1

stevedor’s knot, 194

Stiefel manifold

complex, 59

real, 59

strand in a knot projection, 194

strip

Moebius, 35

trivial, 35

strong deformation retract, 94

strong deformation retraction, 94

strongly contractible space, 69

structure on a manifold, 28

subgroup generated by a set of ele-

ments of a group, 131

submanifold, 30

sufficiently connected space, 172

sum

connected

of knots, 210

of manifolds, 33

support of a function, 184

surface, 34

closed, 34

nonorientable, 36

of genus 1, 46

of genus g, 46

orientable, 36

of genus g, 39

surface,
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nonorientable of genus g,

fundamental group, 146

orientable of genus g,

fundamental group, 145

surface, nonorientable, 145

surface, orientable, 145

surfaces

clasification theorem, 47

suspension of a space, 8

symmetric group, 187

tame knot, 196

theorem

Borsuk–Ulam, 90

Brouwer’s fixed point

case n = 2, 87

general case, 88

existence of the universal cover-

ing map, 173

extension, Tietze–Urysohn, 103

fundamental of algebra, 88

ham sandwich, 91

invariance

of boundary, 4

of dimension, 4

of domain, 4, 111

of domain for manifolds, 111

Jordan curve, 89

retraction

case n = 2, 86

general case, 87

Seifert–van Kampen, 138

unique map lifting, 166

unique path-lifting, 163

Tietze–Urysohn extension theorem,

103

topological group, 18, 57, 127

topological manifold, 23, 28

torus

n-dimensional, 160

mapping, 8

of a space, 8

standard, 8

n-torus, 160

transformation

deck, 179

transition map, 27

transitive action, 21

translation, 19

trefoil knot, 194, 201

group, 218

left-handed, 195

right-handed, 195

trefoil knots

Jones polynomial, 210

tricolorable knot, 200

trivial

band, 8

covering map, 155

strip, 35

trivial knot, 194

group, 217

trivialization

of a covering map, 155

unique map lifting theorem, 166

unit interval, 14

unitary group, 58, 103

special, 62

universal

covering map, 170

covering space, 170

universal covering map

of S1 ∨ S1, 176

upper halfspace, 29

weak deformation retraction, 95

wild knot, 196

winding map, 109

winding number, 85

wreath of a knot projection, 208

wreath of a link projection, 208
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