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PREFACE

The purpose of this book is the study of fiber bundles. The concept of a fiber
bundle is one of those ubiquitous concepts in mathematics. Its first appear-
ance was probably in the thirties of the last century within the study of the
topology and geometry of manifolds. However it was not until the publica-
tion of Norman Steenrod’s book [15] in 1951 that a systematic treatment of
the concept was given. In the meantime some other books —not many— on
the subject have appeared. Worthy to be mentioned is Sir Michael Atiyah’s
book [?] on K-Theory, where special fiber bundles are studied, namely the
vector bundles, which constitute the basis for defining K-theory.

We start this book in a very general setup, where we define as fibration
just a continuous map p : F — B. Thereon we begin to put some require-
ments to p and according to those, we put an adjective like Serre fibration
for those maps p which have the homotopy lifting property for cubes, or
Hurewicz fibration if the maps p have the homotopy lifting property for all
spaces. We also have the locally trivial fibrations, which are always Serre
fibrations. They are even Hurewicz fibrations whenever the base space B is
paracompact. A special case are the covering maps, which are locally trivial
fibrations whose fibers are discrete spaces.

This book was inspired in the notes of a course given by Dieter Puppe in
Heidelberg some time in the seventies to whom we are deeply grateful. The
influence of Albrecht Dold is also present.

Mexico City, Mexico The authors!
Winter 2011-12

M. Aguilar and C. Prieto were supported by PAPIIT-UNAM grants IN 101909
and IN 108712.
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CHAPTER 1

HoMoTOPY THEORY OF FIBRATIONS

1.1 INTRODUCTION

If one wishes to study topological spaces, one way of doing it is the follow-
ing. One may take a cell decomposition (or using cells one constructs a new
space) and one tries to reduce its topological properties to algebraic or com-
binatorial relationships between the boundaries of the cells, for instance, one
can construct simplicial complexes or apply a homology theory.

A second possibility can be illustrated by the following algebraic situation.
One may take an exact sequence

O—F-“%FE—B-—0

(of groups, say) and ask what possible values of F one can take for given F'
and B (for example, F = F x B is always possible).

It is a useful idea to compare this question with the following topological
situations. The general setup will be as follows. Let p : E — B be any
continuous map. The inverse images p~1(b) of points b in B constitute a
“decomposition” of F into “fibers” p~(b). We get closer to the algebraic
situation described above if all fibers were homeomorphic to each other as
it will be the case in the following examples. The maps p : F — B, that
we shall be dealing with will be generically called fibrations, without any
conditions. Later on, according to their particular (lifting) properties, they
will be qualified with a special name, such as trivial fibration, Serre fibration,
Hurewicz fibration, locally trivial fibration, and so on.

1.1.1 ExaMPLES. The following should be fibrations.

(a) The topological product defined as follows. Let B and F' be topological
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spaces and take the projection
p=proj,: E=BxF —B.

This should be a fibration for any definition, namely, the trivial fibration
or the product fibration.

The Moebius strip defined as follows. Let E be obtained from the
square I x I by identifying for every t € I the pair (0,¢) with (1,1 —1¢).
B is obtained from I by identifying the end points of the interval. B
is thus homeomorphic to S'. The mapping (s,t) — s determines a
continuous map p : £ — B. Then p~!(s) = I for every s € B (see
Figure 1.1).

>

Figure 1.1

The space E is not homeomorphic to S! x I since the boundary of St x I
consists of two circles, i.e., it is not connected, but the boundary of E
is a circle, i.e., it is connected. By means of

BA(M) = {x € M | Hy(M, M — z) = 0}

one can define the boundary of M = S* x I, resp. M = E in a topo-
logically invariant way.

The Klein bottle defined as follows. Let E be obtained from I x I by
identifying for every t € I the pair (0,¢) with (1,1 —¢) and for every
s € I the pair (s,0) with (s,1). Let B = S! be obtained again as in
(b) and p : E — B be induced again by (s,t) + s, then p~!(s) ~ S!
for every s € B (see Figure 1.2).

The space F is not homeomorphic to the torus St x S'. As a proof of

this fact we compute the homology of E using the cell decomposition
shown in Figure 1.3.



1.1 INTRODUCTION 3

Figure 1.2
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Figure 1.3

It consists of one O-cell €, two 1-cells e! and €' and one 2-cell e2. In
the cellular chain complex one has the following;:

Oe? = 2¢t
Oet = 0¢e* = 0
0e’ =0,

from which we obtain
Hy(E)=0, H(E)=2Z®Z,.
Similarly, one obtains for the torus S! x St
Hy(S'xSYHY =17z, HES'xSHY=zoz,

(see [1, 7.3.12]). Since the first and second homology groups of both
spaces are different, they cannot be homeomorphic.

(d) The covering maps, of which a particularly important example will be
the following. Take

p:R—S'cC,

2mix

T — e
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(cf. Section 1.2). The fibers p~'(s), s € S!, are homeomorphic to Z
(as a set with the discrete topology). One has R % S' x Z since R

is connected while S! x Z has infinitely many components (see Figure
1.4).

RULLY

Figure 1.4
(e) The tangent bundle of a smooth manifold, of which a concrete example
is the tangent bundle T'(S™) of the sphere S* C R™™ (cf. 1.6.6 (e)). Let
T(S") = {(z,v) € S" xR |z L v}

be furnished with the relative topology, and take

piT(E") — S,

(x,v) — x.
Consider the restriction of p to
T'(S") = {(x,v) € T(S") | v # 0} .

The following is an interesting question: Does there exist a continuous
map s : S” — T'(S") such that pos = idgn? One such s is called
a section of p. Geometrically, s can be described as a nonvanishing
continuous vector field on S™.

1.1.2 EXERCISE. Prove that the fibrations of (b) and (c) have a section and
that, on the contrary, that of (d) does not.

All examples introduced in 1.1.1 are going to be fibrations in a sense that
we still have to state precisely. On the contrary, the following will not be
one, even though all of its fibers are homeomorphic.
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1.1.3 ExaMPLE. Consider the space E = I x TU{0} x [0,2] C R?, the space
B=I1CR,and p: E — B such that p: (s,t) — s, as depicted in Figure
1.5.

(0,2)

(0,1) (1,1)
(0,0) (1,0)
w
O——1
Figure 1.5

The map p has the following property: Not for every path w : I — B and
for every point zg € E, such that w(0) = p(zg), there exists another path
w: I — FE such that W(0) = zg and pow = w; i.e., not for every path in B,
there exists a “lifting” to £ with a given origin. For instance, if zy = (0, 2),
there does not exist w unless w is constant in a neighborhood of 0. (It is an
exercise to prove this fact.) See Section 1.4 for a general treatment of this
question.

1.2 GENERAL DEFINITIONS

In this section we present the general set up on which the rest of this book
is supported.

1.2.1 DEFINITION. (For the time being) we shall call fibration any continu-
ous map p: EF — B. E will be called the total space and B the base space
of the fibration. Moreover, p~!(b) will be called the fiber over b, (b € B).

1.2.2 DEFINITION. Let p and p’ be fibrations. A pair of maps (f, f) is called
a fiber map from p to p’ if the diagram

E_.F

: T

B*,)B/
f
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is commutative. We denote this by (f, f) : p — p'. In case that B = B’
and f = idg we call f a fiber map over B.

The commutativity of the diagram means that f maps the fiber over b into
the fiber over f(b). If now f has the property of mapping fibers into fibers,
then there is a function f : B — B’ that makes the diagram commutative.
If p is surjective then the function f is well defined by f. If, moreover, p is
an identification, then f is continuous.

From definition 1.2.2 one may conclude the following.

(1) (idg,idp) : p —> p is a fiber map.
(2) If (f, f) :p — p' and (g,9) : p’ — p” are fiber maps, then
(9.9) 0 (f. /)= (g0 f.gof)ip—p"

is also one.

This means that there is a category, whose objects are fibrations, whose mor-
phisms are fiber maps, and the identity morphisms and the compositions are
given by (1) and (2).

1.2.3 DEFINITION. (g,g) : p' — p is an inverse of (f, f) : p — p' if

<g7§) © (fv?) = ldp = (ldE7 ldB)
(fa f) ° (g7§> - idp' = (idE’aidB’) .
(f, f) is a fiber equivalence if it has an inverse. Two fibrations p, p’ are said

to be equivalent if there is a fiber equivalence between them. They are called
equivalent over B if there is an equivalence of the form (f,idg) : p — p'.

If (f, f) is a fiber map and f and f are homeomorphisms, then (f, f) is
an equivalence with inverse (f~1, 771).

1.2.4 DEFINITION. A fibration p is said to be trivial if it is equivalent to a
product fibration (see 1.1.1(a)), that is, if we have a commutative diagram

E-—L-BxF
Pl iprOJ'B/
B B

f
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In this case p is equivalent over B to the product fibration projz : B x
F — B, namely, by means of the fiber equivalence

((?_1 X idF> of, id3> :p — projg .

On the other hand, one cannot say in general that two equivalent fibra-
tions with the same base space B are equivalent over B. For instance, the
fibrations illustrated in Figure 1.6 are equivalent, but they are not equivalent
over B ={0,1}.

W=
I
I

o 1 0 1
Figure 1.6
1.2.5 DEFINITION. Let p: B — FE be a fibration and A C B. Then

PA :p|p71(A) . EA :p_l(A) — A

is called the restriction of the fibration p to A.

1.2.6 EXERCISE. Prove that if p: E' — B is trivial, then also p4 : 4 —
A is trivial.

1.2.7 DEFINITION. A fibration p is locally trivial if every point b € B has a
neighborhood U such that py es trivial.

1.2.8 Theorem. Let p : E — B be a locally trivial fibration. If B 1is
connected, then all fibers of p are homeomorphic.

Proof: In a trivial fibration, clarly all fibers are homeomorphic. Let by € B
be any point. Then the set

Bo={be B |p'(b)~p " (bo)}

is open in F, namely let b € By and U be a neighborhood of b in B such
that p is trivial over U. Then all fibers over U are homeomorphic and so
U C By. Similarly one proves that B — By is open in B. Since By # () and
B is connected, then B = B,. a
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1.2.9 ExaMPLES. The following are locally trivial fibrations.

(a) The Moebius strip fibration p : E — S' is not trivial, but it is lo-
cally trivial. If it were trivial, then there would be a space F' and a
homeomorphism f such that the diagram

! St'x F

\p\ Al

Sl

E

would be commutative. This implies that f induces a homeomorphism
of the fibers, and so F' ~ I; but we already saw that £ % S x I.

The fibration is locally trivial since S! can be obtained from I by iden-
tifying the end points. We shall denote the points of S!, resp. E, by
their inverse images in I, resp. I x I. The sets U = S! — {0} and
V =S — {1} are open in S* and the maps

o:UxI— p YU),
(u,t) — (u,t),

YV xI—p V),
(U,t)l—>{

(v,1) if v < 3,
(v,1—1) ifv>1,

are well defined and describe the local triaviality of p (see Section 1.2.7

and Figure 1.7).

>

1
2

AL
o\n
At

.

N[

Figure 1.7

(b) In a similarly simple way one can see that the Klein bottle fibration and
the exponential fibration R — St are locally trivial but not trivial.

(c¢) On the contrary, example 1.1.3 is not locally trivial (ezercise).
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1.3 FURTHER EXAMPLES

There are important examples of fibrations, some of which we present in this
section.

1.3.1 ExaMPLES. Further examples are the following.

(a) The fibrations over projective spaces defined as follows. Let F = R, C
or H'! and let d =1, 2 or 4. Take the following fibrations:

Frtl — {O} )Sd(n+1)—1

where p is the identification with respect to the equivalence relation

(0, X1y -y 2n) ~ (xh, 2}, .., 2)) (in "™ — {0}) if and only if there

exists A € F such that (zg,z1,...,2,) = Azg, 2),...,2)). p' is the

restriction to
SUD = o € B - {0} | ol = af +-o 40l = 1)

FP" is the real, complex or quaternionic projective space of dimension
n. One can prove that FP" is a dn-dimensional manifold.

The fibrations p and p’ are locally trivial. Namely, let V; = {(z¢, x1,...,2,) €

F*tt — {0} | z; # 0} and let U; = pV;. One has that V; = p~'(U;), that
is, the sets U; constitute an open cover of FPP". We shall prove that p
and p’ are trivial over U;. To see this, we have to define homeomor-
phisms h; and k; that make the following diagrams commute.

hi ki

Vi Ui x (F—{0}), V;nSdr+-1 U; x S¢1

pUi\ /4 \\ 4
U. Projy, Py, U; Ui

(2

Define

hi(xo, T1,..., %) = (p(ilf)a ‘xz|_1Hxsz) )
where x = (zg,z1,...,%,), and define
by

gi(p(x), ) = ||9U||71|$z‘|/\95i_1($0,9017 e Ty)

IThe fields of real, complex or quaternionic numbers considered as topological spaces
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It is easy to verify that g; is well defined for each ¢ and that h; and g;
are continuous and inverse to each other. Thus h; is a homeomorphism.
ki = hily:ngam+n-1 and g;|y, «sa-1 are inverse of each other (and have the
desired images), and the diagrams obviously commute with h; and ;.
g

The Hopf fibration of the 3-sphere is the special case F = C, n = 1,
d = 2, of the previous example, that we now study in more detail.
Consider the diagram

(Zo, 21) S (C2 - {0} < S3

\
] CP!
|~

Z € CU{o}= $*

21

Here we have a homeomorphism between CP' and the Riemann sphere
given by the map p : (zg,21) — 2, that is an identification. This is
due to the fact that p|ss is a continuous surjective map from a compact
space to a Hausdorff space. Recall that

S? = {(Zo,zl) | |20)® + |21* = 1} .

We write z, = r,s, with r, > 0 and |s,| = 1, (v = 0,1). Then
ri = (1 —r2)2 and thus every point in S® is characterized by the
numbers s, s; and r = rg. Let

g:S'xS'x1 —S?

(S0,81,7) — (7‘30, (1— rg)%31> )

q is an identification. For r # 0, 1, each (rso, (1 — 7‘2)%31) has only one
inverse image. For r = 0, ¢ identifies

(80,51,0)  with  (sp,s1,0),
and for r = 1 it identifies
(s0,81,1)  with (s, s],1).

Given any two topological spaces Xy, X, the quotient space of X, x
Xy x I with respect to such an identification (i.e., (zg, z1,0) ~ (xf, 1, 0),
and (zg,x1,1) ~ (zg,2,1) for all xg,x € Xo, 1, 2] € X7) is called
the join of X; and X5 and is usually denoted by Xg * Xj.
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What we proved above is then that one has a homeomorphism
S's«St~S3.

From this version of the 3-sphere S® we can obtain the following: The
points for which r is fixed and r # 0,1 determine a torus; namely a
space homeomorphic to S' x S'. On the contrary for r = 0 or 1, they
determine a 1-sphere. Further, the points such that r > %, resp. r < %
constitute a (space homeomorphic to a) solid torus. Thus we have that
the 3-sphere S? can be obtained from two solid tori by identifying their
boundaries in such a way that the meridians of one of them corespond
to the parallels of the other (see Figure 1.8). More precisely, we have

S~ S'xB2UB? xSt/ ~, (5,t) ~ (s,t) € St x S*.

= &=

Figure 1.8

Now we can describe p : S* — S? by mapping
o ah) (2
(T80,<1 %) 31> co (7’(1 ) ) (31) € CU {oo}.

The inverse images of a point in S? correspond to a fixed value of r.
They constitute a circle that lies on the torus given by the equation
r = constant, if r # 0,1. If r = 0 or 1, then they determine full circles.
Each of these circles intersects each parallel and each meridian of the
torus exactly once. Every two circles that are inverse images of a point
are knotted. For this, one might analyze the case p~1(0) and p~!(z)
(z # 0,00), or for two of those circles that lie on the same torus r =
constant.

One might try to study the general map

Stx St — §?

NI

(S0, 81,7] —> (r(l —7r?)”

)(%)

where m and n are natural numbers. In general one does not obtain
a locally trivial fibration, since the local triviality fails on the points
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r = 0,1. The inverse images of a point in S? are again circles that lie
on tori r = constant, but they are multiply knotted. The reader can
think about the case n = 3, m = 2, for which the circles (if r # 0, 1)
are always knotted and build a trefoil knot (see Figure 1.9).

OO

Figure 1.9

The relative position of two of these inverse image tori can be visualized
as follows.

One stretches a (self-intersecting) surface along the first trefoil knot
and chooses one side of it to be the front (i.e., one takes an orientation
of the surface). After traveling along the second trefoil knot in the
adequate sense, then one crosses the surface 2 - 3 = 6 times from the
front to the back.

1.4 HoMOTOPY LIFTING

Let I be the unit interval [0,1] and p : E — B be a fibration. We are
interested in the following situation.

X x {0} "~ E

(1.4.1) £ 2 lp
XxI——B

where the square is commutative. When does h exist that makes both tri-
angles commutative?

1.4.2 DEFINITION. We say that p has the homotopy lifting property or the
HLP for the space X if given a pair of maps (h, hg) as in (1.4.1), then there
exists h such that (1.4.1) commutes.

We then say that hisa lifting of the homotopy h that starts with EO. Or
we say that h lifts to hy.
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1.4.3 Theorem. A trivial fibration has the HLP for every space.

Proof: A trivial fibration is equivalent to the product fibration. Therefore,
we can restrict ourselves to the problem

Xx{O}HBxF

\[ lprOJB
x I

X B.

Define h by h(z,t) = (h(x,t),proszo(:u 0)). O

1.4.4 EXAMPLES.

(a)

(b)

The fibration of example 1.1.3 does not have the HLP for any nonempty
space X, since for instance the homotopy h(z,t) = t cannot be lifted
starting with ho(x,0) = (0, 2).

There are fibrations that have the HLP for a one-point space X = {x}
but not for X = {*} x I ~ I. An example of this is the double covering
of the plane branched at the origin given, say, by
2
p:C—C, z+— m
00,

We have to prove that to each path w : I — C there exists a path
@ : I — C such that po @ = w and such that @(0) € p~1(w(0)) is
preassigned. Now, since I — w™1(0) is an open set, it is an at most
countable union of intervals I,, open in I. Since p|c_go} is a covering
map (see Section 1.8 below), wl|, can be lifted. Let W, be a lifting. If
0 € I, (and w(0) # 0) let w, be such @, (0) = w(0). If we define

- wp(t) iftel,,
0 if t € w™1(0),

then @ is such that w(0) is as we wanted, and p o W = w. Moreover, W
is continuous, since for ¢t € I,,, this is clear, and if ¢, € w™!(0), then the
continuity of @ at ¢ follows from the fact that |w(t)| = |w(t)|, that is,
() — w(to)] = |w(t) — w(to)| and from the continuity of w.
Now, if X =T and h: X x I — C is given by h(s,t) = (s — 5,t — 3)
there does not exist A for any hg, since p restricted to p~ (8h([ x 1))
(that is, the inverse image of the boundary of h(I x I) (see Figure 1.10)
t

is a twofold-covering map, and h would induce a section of it, fact tha
is not true (cf. Section 1.8).



14 1 HoMOTOPY THEORY OF FIBRATIONS

Figure 1.10

1.4.5 EXERCISE. Prove that if the group Z, acts on C antipodally, then one
has aan isomorphism C/Zy ~ C such that there is a commutative diagram

SN
C/Z, C.

~
~

1.4.6 DEFINITION. Let X be a topological space and A C X. We say that
p : . — B has the relative homotopy lifting property or the relative HLP
for the pair (X, A) if every commutative square (given by h and hg)

ho
Xx{O}UAx]*/;E

admits a map h that makes both triangles commutative.

Even a trivial fibration might not always have the relative HLP as one
can easily see in the case B = {x}, since in this case, the existence of I such
that the upper triangle commutes implies an extension problem, and this
problem is usually nontrivial (note, however, that the commutativity of the
lower triangle is in this case always trivial).

1.4.7 Theorem. The following statements are equivalent:

(a) p has the HLP for the closed unit ball B", n =0,1,2,... (B" ={x €
R" [ lzfl < 1} ).
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(b) p has the relative HLP for the pair (B",S"1), n=0,1,2,....
(¢) p has the relative HLP for a CW-pair (X, A).

(d) p has the HLP for every CW-complexr X .

Proof:  (a) = (b) Let
k:(B"xI,B"x{0}US" ! x1I)— (B"xI,B" x{0})

be given by
(3, t) if |z <

(%(1 + )&, 2(1 - le)) if | =

DO [

(Q_t)a

Het) = 2—1).

N[ =

||

k is a homeomorphism of pairs that converts the relative homotopy lifting
problem for the pair (B",S"!) into a homotopy lifting problem for B™. See
Figure 1.11.

Figure 1.11

(c) = (d) Just take A = 0.

(d) = (a) Just observe that B" is a CW-complex.

(b) = (c) Let X™ be the n-skeleton of X and let X,, = X" U A. We shall
inductively construct maps

Tog1t (X x {0}UX, xI) — E

such that En+1|X><{0}UXn_1><I = %n and such that the composite p o En = h,
wherever it is defined.

ho: (X x{0}UAXI)— E

is already given. Assume that T, has already been constructed. Recall that
X x I is a CW-complex with cells of the form

" x(0,1), €"x {0}, " x{1}
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where e* represents any cell of X (see [1] or [8]).

Let €7 be an n-cell of X — A and ¢; : B" — X be its characteristic map.
Consider

B”x{O}US"lxIHXx{O}UX 1><I E

| T N

B" x I = orid X x1I ; B
By the hypothesis (b), there exists g;. Define %nﬂ by
~ Bz, if (2,8) € X x {0}UX,_; x I,
hn-i—l(x?t) = ( 1> . ( )_ { } '
gi(p; (x),t) ifree;.

Tny1 is well defined, extends %, and lifts h|x . {oyux, -

Moreover, hn+1 is continuous. This follows from the fact that ¢; x id is
an identification and hn+1(<p] x id) = g;. Therefore, hn+1 is continuous on
each closed cell of X x {0} U X,, x I (because ¢; x id is the characteristic
map of the cell e} x (0,1)).

To finish, define i : X x I —» E by h(z,t) = h,(z,t) if (z,t) € X, x 1.
O

1.4.8 DEFINITION. A fibration p: F — B is said to be a Serre fibration if
one (and hence all) of the statements (a) through (d) in the previous theorem
holds. Moreover, we say that p is a Hurewicz fibration if p has the HLP for
every space.

1.4.9 Theorem. Let p : E — B be a fibration and U = {U} be an open
cover of the base space B such that for each U € U, the restriction py 1S a
Serre fibration. Then p is also one. (This means that the property of being
a Serre fibration is local with respect to the base space).

Observe that the inverse is clear, as follows from the following exercise.

1.4.10 EXERCISE. Prove that if p has the HLP for a space X, then any
restriction p4, A C B, has it too.

1.4.11 Corollary. Fvery locally trivial fibration is a Serre fibration. ad
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Proof of the theorem: We shall use condition (b) of 1.4.7 for each py and
prove (a) for p. For technical reasons, we substitute the ball B" with the
homeomorphic cube ™.

Subdivide I™ x I by successively halving the sides until each subcube is
mapped by h into some U € U. Thus we obtain a decomposition of ", whose
k-dimensional subcubes (faces if k < n) will be denoted by V¥, as well as a
decomposition of I

O<ti <ta<tz<---<1.

We shall extend EO step by step along the “layers” I™ X [t;,t;41] to finally
obtain a lifting of h. To that end, let V* = J,V;*.

We shall successively solve the problem

Rk—1

I"x {0}U V1t x[0,t)] —=F
T
I x {O}ka X [O,tl]T)B,

k=0,1,...,n, where h° = hy.

Assume that h*~! has already been constructed. Then we can solve the

problem
hE=1|...

VEx{0yuoVF x [0,t)] —=p U= F

/7
/:/ Du p
_ k
—~ hi \L \L

since py is a Serre fibration. (Our subdivision of I™ into subcubes was fine
enough to guarantee the existence of U such that

h(VEx[0,t]) CU,

OVF c VF1 denotes the boundary of the subcube V*.) The maps ﬁf can
now be put together to produce a continuous map hE VR x 0,t] — E
that extends A*~! and lifts h|---. We define & by means of f};|]n><[07t1} = hm
on the first layer. The next layers are dealt with in a similar manner. O

An analogous statement to the previous theorem holds also for Hurewicz
fibrations. To state it we need some preparation. We start by recalling the
next definition.

1.4.12 DEFINITION. Let X be a topological space. A partition of unity is a
family of continuous functions {t; : X — I},_; such that for each z € X,
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tj(z) # 0 only for finitely many j € J, and >, ;t;(x) = 1. A partition
of unity is called locally finite if every x € X has a neighborhood U with
tiluv # 0 only for finitely many j € J.

The family {V; = ¢;7(0,1]},c, is called the associated open cover of X
for the given partition of unity. An open cover Y = {U; }j ¢y of X is called
numerable if there exists a locally finite partition of unity {t; : X — I};e,
such that

t;71(0,1] C U;.

In this case we say that the partion of unity is subordinate to the cover.

1.4.13 DEFINITION. A topological space X is said to be paracompact if every
open cover of X is numerable.

The previous definition is usually presented as a theorem (cf. [13, 7.5.23]).
The following theorem is due to Albrecht Dold [3].

1.4.14 Theorem. Let p : E — B be a fibration and U = {U;},.; be an
open cover of B such that py, is a Hurewicz fibration. Then

(a) if U is numerable, then p is a Hurewicz fibration;

(b) if U is open, then p has the HLP for every paracompact space. a

We omit the proof, since it is quite intrincate and would pull us apart
from the topics we are dealing with. See [3, Thm. 48] for a proof.

Since every CW-complex is paracompact (see [12] or [8]), we have the
following.

1.4.15 Corollary. Let p : E— B be a fibration and U = {U;},_; be an
open cover of B such that py, is a Hurewicz fibration. Then

(a) if B is a CW-complex then p is a Hurewicz fibration;

(b) p has the HLP for every CW-complex. O

Consider the path space X! = {w : [ — X} furnished with the compact-
open topology. Given a fibration p : E — B, take the fibered product

E x5 B' ={(e,w) € E x B' | p(e) = w(0)}.
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1.4.16 DEFINITION. A continuous map
I':ExgB — FE'

is called path-lifting map (PLM) if the following hold:
(a) T'(e,w)(0) = e, where (e,w) € E x5 B.
(b) pI(e,w)(t) = w(t), where (e,w) € E xp Bl and t € I.

1.4.17 Theorem. A fibration p : E — B is a Hurewicz fibration if and
only if it has a PLM T : E xg B' — E'.

Proof: Assume first that p : £ — B is a Hurewicz fibration and consider
the lifting problem depicted in the following diagram:

proj;

EXBBI

E
0 //
B,

ExpB' xI—

where i is the inclusion into the bottom of the cylinder (ig(e,w) = (e,w,0))
and e(e,w,t) = w(t). Since the square is obviously commutative, and the
fibration has the HLP for every space, there exists I:E xg Bl x T — 1,
such that both triangloes commute. Defining I' : £ x5 B — E! by

T(e,w)(t) = [(e,w,t),

we have the desired PLM.

Conversely, assume that thereisa PLM ' : ExgB! — El forp: E —
B and assume a general homotopy lifting problem

X FE
1
20 \Lp
i .5

XXIT>

Define h : X — B! by h(x)(t) = h(x,t), and consider the composite

X ——=F xgB! A El
x— (f(x), h(z)) —T(f(x), h(z)).

Then h: X x I —s E given by h(z,t) = I'(z)(t) is the desired lifting. O
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1.4.18 EXERCISE. Proving the existence of PLMs show that the following
are Hurewicz fibrations:

(a) The map B! — B, given by w > w(1).

(b) The map P(B) = {w € B! | w(0) = by} — B, given by w > w(1).
This is the so-called path fibration of B (see 3.4.7).

(c) Given f: X — B, themap F; = {(z,w) € XxB! | f(z) =w(1)} —
B, given by (z,w) — w(0). The space E is the so-called mapping path
space, the fibration is the mapping path fibration, and its fiber over (a
base point) by € B, Py = {(z,w) € X x B! | w(0) = by, f(z) =w(1)},
is the so-called homotopy fiber of f.

The following result states that every map factors as a homotopy equiv-
alence followed by a Hurewicz fibration (i.e., every map can by replaced by
a Hurewicz fibration, up to a homotopy equivalence). It is an easy ezercise
to prove it.

1.4.19 Proposition. Given any continuous map f : X — B, the map
0 : X — E; given by x — (z,e,), where e, : I — B is the constant path
with value f(z), is a homotopy equivalence. Moreover, there is a commutative
triangle

where f is the Hurewicz fibration of 1.4.18 (c). ad

The following result will be important later. Given a fibrationp : £ — B
and a subspace A C B, recall its restriction py : E4 — A (see Definition
1.2.5). We have the following result.

1.4.20 Theorem. Assume thatp: E — B is a Hurewicz fibration and that
both spaces E and B are normal. If i : A — B is a closed cofibration, then
also i : Eo — E is a closed cofibration.

Before passing to the proof, we recall Theorem [1, 4.1.16], which reads as
follows.
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1.4.21 Lemma. Let B be a normal space. Then an inclusion A — B is a
closed cofibration if and only if there exist mapsu : B — I and h : BXI —
B such that

)

) h(b,0) =0b for allb € B.

(iii) h(a,t) =a for alla € A and allt € 1.
) h

(b,t) € A for allb e B if t > u(b). O

Proof of 1.4.20: We shall apply Lemma 1.4.21. Assume that u and h are as
in that lemma. Since p : E — B is a Hurewicz fibration, the lifting problem

E id E
|
20 - p
Ex - ,
ho(pxid)

has a solution H'. Define U : E — [ by U(e) = up(e),and H : ExI — E
by
H'(e,t if t <
e - (et ife<Ue)
H'(e,U(e)) ift>Ule).

Then obviously E4 C U~ %(0), H(e,0) = e for all e € E, and H(e,t) = FE for

all t € I if e € E4. Thus the first three conditions in 1.4.21 hold. To verify
(iv), assume t > U(e). Then

(1.4.21) pH(e,t) = pH'(e,U(e)) = h(p(e), up(e)).

But we have that if s > up(e), then h(p(e), s) € A. Since A C B is closed, by
the continuity of h, h(p(e),up(e)) € A. Hence, from (1.4.21), H(e,t) € E4.

We have shown that U and H satisfy conditions (i)—(iv), thus £y — E
is a cofibration. 0

The following definition generalizes the construction of the restricted fi-
bration ps : B4 — A.

1.4.22 DEFINITION. Let p : E — B be a fibration and a« : A — B a
continuous map. We define a new fibration a*(p) : F — B and a fiber map
(B,a) : a*(p) — p as follows. Take

E={(a,2) € Ax E|ala) = p(2)}



22 1 HoMOTOPY THEORY OF FIBRATIONS

with the relative topology as subspace of A x F.

a*(p) is called the fibration induced by p through «. Thus one has a com-

mutative diagram
B

EF—F
a*(p) lp

In case that @« : A < B is an inclusion, the induced fibration a*(p) is
equivalent to the restriction py : B4 — A (cf. 1.2.5).

1.4.23 EXERCISE. Prove that through a constant map, a trivial fibration is
induced.

1.4.24 EXERCISE. Let p : E — B be a fibration and a : A — B be
continuous. Verify the following properties:

(a) If p is injective (resp. surjective), then so is a*(p).
(b) If p is the product fibration, then a*(p) is a trivial fibration (see 1.2.4).
(c) If p is locally trivial, then so is a*(p).

(d) The map « admits a lifting & : A — E (namely, a map such that
poa = «) if and only if o*(p) admits a section s : A — E (namely, a
map such that o*(p) o s =id,).

The following is an important result.

1.4.25 Proposition. Let o : A — B be continuous. If a fibration p :
E — B has the HLP for a space X, then so does a*(p).

Proof: We have to show that the homotopy lifting problem

X—>E
o 2w
X T>A

X
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has a solution. Consider the following homotopy lifting problem

1

hy
X E
~ /1
io[ /k/ P
XXIW B,

where hy(z) = (hi(z),h2(z)) € E C A x E. Since p has the HLP for X,
this problem has a solution and thus k : X x I — E exists making both
triangles commutative. Define h by

h(z,t) = (h(z,t), k(z,t)) € Ax E.
Obviously, this map is such that h:XxI— F and obviously is a solution

of the initial problem. O

1.4.26 Corollary. Given a fibration p : E — B and a map o : A — FE,
the following hold.

(a) If p is a Serre fibration, then so is a*(p).

(b) If p is a Hurewicz fibration, then so is a*(p). O

1.4.27 DEFINITION. Two fibrations py : £y — B and p; : Fy — B are
called fiber homotopy equivalent (or to have the same fiber homotopy type)
if there exist fiber-preserving maps, or maps over B, ¢ : Ey — FE; and
v By — FEjy, that is, maps such that the triangles

Eq E, and E;

¥ wEO
B

B

commute, and these maps are such that oy ~p idg, and po) ~p idg,, that
is, these composites are fiber homotopic to the identities in the sense that
they are homotopic through homotopies H and K such that the triangles

Eyx I il E, and E;xI K E,

pOOpI‘kl‘\ A p101& A
B B

are commutative.
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1.4.28 Theorem. Let p: E — B be a Hurewicz fibration and let Gy, G :
X x I — FE be homotopies. Given other homotopies H : po Gqg >~ p o G4
and K : Gy oig ~ Gy oy, where ig : X — X X [ is given by ig(z) = (x,0),
such that

H(z,0,t) = pK(z,t),

there is a lifting H:XxIxI—FE of H which is a homotopy from Gy to
G and is an extension of K.

Proof: There is a homeomorphism of pairs
A (IxI,Ix{0})— (IxI,Ix0IU{0}x1I)

as illustrated in Figure 1.12.

Figure 1.12

It is an exercise for the reader to figure out A explicitly.

Define
f: X x({Ix0IU{0} xI)— FE

by

f(z,s,0) = Go(z, s),
f(z,0,t) = K(x,t),
f(x,s,1) = Gi(x,s) .

Then the diagram

ho

m

X x I x{0} —=X x (I x 9L U{0} x I)—=sF
h /,////
e // p

B

_ - —

XXIXITNM>X><I><I
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commutes and both the exterior square as well as the right square pose
lifting problems. Since p is a Hurewicz fibration, there exists h (that solves
the exterior problem). Then H = h o (idy x A)~! solves the problem on the
right. This is the desired homotopy. O

The following result combines the concept of homotopic maps with that
of equivalent Hurewicz fibrations.

1.4.29 Theorem. Let p: E — B be a Hurewicz fibration and let o,y :
A — B be homotopic. Then the fibrations of(p) : Ey — A and o’ (p) -
E; — A induced by p through oy and oy, respectively, are fiber homotopy
equivalent.

Proof: Let pp = af(p) and p; = af(p) be the induced fibrations, and let
Bo : EO — E and (3 : El — E be the corresponding projection maps such
that po By = agopg and po 81 = oy opy. Given a homotopy F': AxI — B
from ag to aq, there are maps Gy : EO xI —s Eand G, : By x I —» E that
solve the lifting problems

= Bo = p1
EO /7E and El /7E
Gy -~ G _—~
20 /// p i1 /// p
Eqgx1 _ AxI—=B By x1 _ AxI— B,
poxidy F p1Xidy F

where 7 and i, are the inclusions into the bottom and into the top of the
corresponding cylinders, respectively. Let By : EFy — E; be given by

Bola,e) = (a,Go(a, e, 1)),
and 3, : E; — Ey be given by
Bi(a,e) = (a,Gi(a,e,0)).
Then
po(Goo (B xid;)) = Fo(pyxid)o (B xid;) = Fo (p xid;) =po G,

and N

GOO<51 Xid])O’io:Gloio.
Hence, from Theorem 1.4.28, it follows that G ~p Ggo (51 X idy). Similarly,
Go ~p G710 (6o x id;). Thus the mappings

E, > (a,e) — (a, Go(gl(a, e), 1)) = Bogl(a,e) c E,
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Ey 3 (a,e) —> (a,Gy(a,e,1)) = (a,¢) € Ey,

are homotopic (over A), since G1(a,e, 1) = e; similarly, the mappings
Ey 3 (a,¢) — (a,G1(Bo(a, €),0)) = Bifola,e) € By

Ey > (a,e) — (a,Go(a,e,0)) = (a,e) € EO,

are homotopic (over A), that is
Poofr~aidg and  Brofy~a idg, - O

1.4.30 Corollary. If p : E — B is a Hurewicz fibration and B is con-
tractible, then p is fiber homotopy equivalent to the trivial fibration B X
p (b)) — B for any b € B.

Proof: If B is contractible, then idg ~ ¢, where ¢, : B — B is the con-
stant map with value b. Obviously idj(p) is equivalent to p and by 1.4.23
the induced fibration ¢;(p) is trivial. Hence, by 1.4.29, p is fiber homotopy
equivalent to a trivial fibration. O

1.5 TRANSLATION OF THE FIBER

Given a fibration p: E — B, amap fo: X — Fy = p~'(by) from a space
X to the fiber over a point by € B, and a path w : I — B in the base space
such that w(0) = by and w(1) = by, we wish to translate f, homotopically in
such a way that at the time ¢ we have a map into the fiber F; over w(t). We
have the following.

1.5.1 DEFINITION. Under translation of the fiber we understand the follow-
ing. Consider the problem

X x {0} "~ F

- P
7
X

ho(2,0) = fo(z) and  h(z,t) = w(t).

We assume further that p has the HLP for X and X x I (this is not always
the case, as seen in 1.4.4 (b)), then we can solve the problem and there exists
such a map h. Since h(z,1) € F; = p~*(b1) we may define f, : X — F by
fi(z) = ﬁ(x, 1) and say that f; is obtained from fo by translation along w.

X

where
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1.5.2 Theorem. Let fy, fi : X — Fo be homotopic maps and let w,w’ :
I — B be homotopic paths relative to the end points, such that w(0) =
W'(0) = by, w(l) ='(1) = by. Assume that f1, resp. f1, is obtained from fy
by translation along w, resp. from fl by translation along ', then f1 and f|
are homotopic.

Proof: Let h, resp. 1 be a lifting of h, resp. A/, such that ﬁ(x, 0) = folx),
resp. h'(x,0) = fy(z), where h and A’ are given by h(z,t) = w(t) and

W(x,1) = w'(l), respectively. Then we define f; and fi by fi(z) = h(z,1)
and f{(x) = h'(x,1).

Let now g : X x I — Fy be a homotopy such that g(z,0) = fo(x)
and g(z,1) = fi(x), and let A : I x I — B be a homotopy such that
A(s,0) = w(s) and A(s, 1) = W'(s), AN(0,t) = by and A(1,t) = b for all s, ¢.

Consider the problem

X x (IxdIUu{0} xI)—2=E
J //:/ p
XxIx1 B,

where

Since the pair (X x I x I, X x (I x 91 U{0} x I)) is homeomorphic to the
pair (X x I x I, X x {0} x I) (see Figure 1.13, and compare with the proof
of 1.4.7), and p has the HLP for X x I, the solution of the problem exists.

Q

Figure 1.13

Since pH (z,1,t) = H(x,1,t) = A(1,1) = by, F(x,t) = H(x,1,t) defines a
homotopy F': X x I — F} from f; to f]. O
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1.5.3 Theorem. Let wq, resp. wo, be a path from by to by, resp. from by to
ba, and assume that fi, resp. fo, is obtained from fy, resp. f1, by translation
along wy, resp. along we. Then fo is obtained from fo by translation along
the product path wiws.

Proof: Let 7L1 be the lifting that determines f; and 7L2 the one that determines
fa. Then the homotopy

- {El(x, 2t) if 0 <t

1
h(z,t) = 2’
ho(z, 2t —1) if $ <t <1.

<
<

is such that ph(z,t) = (wiws)(t), h(x,0) = hy(x,0) = fo(z) and h(z.1) =
ha(,1) = fo(). O

1.5.4 DEFINITION. Let [X,Y] denote the set of homotopy classes of maps
X — Y. For each path w : by ~ by, there is a function @, : [X, Fy] —
[X, F1] that sends the homotopy class of any map fo : X — Fp to that of
the map f; : X — Fj obtained from f, by translation along w.

Theorem 1.5.2 guarantees that the function ®,, is well defined, and The-
orem 1.5.3 shows that
b, 00, =P,

Let ey, : I — B be the constant path with value e, (t) = b,, v = 0, 1.
Then

¢, =idx g,
as one can easily verify. Moreover, if @ is the inverse path of w, then by
Theorem 1.5.3 and the previous remark,

(1)5 o (I)w = id[X,FO] and CI)w o) (I)g = id[)@pﬂ .

This shows, in particular, that ®, is always bijective. Since by 1.5.2 @,
depends only on the homotopy class of w, we can summarize all previous
remarks in the following theorem. Before stating it we have a definition.

1.5.5 DEFINITION. For a topological space B we define its fundamental
groupoid 11, (B) as the category whose objects are the points in B, whose
morphisms by — by are the homotopy classes of paths w : by =~ by, the iden-
tity morphism of each b is id, = [ep], where ¢, is the constant path with value
b, and the composition is given by the product of paths [w;] o [wy] = [wow].

We then have the following.
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1.5.6 Theorem. Given a topological space X and a fibration p : E — B
that has the HLP for X and X x I, there is a contravariant functor ® :
I1,(B) — Set given in the objects by ®(b) = [X, F|, F = p~'(b), and in the
morphisms by ®([w]) = @, : [X, ] — [X,F], F, = p Y(w(v)), v =0,1.
a

The fundamental groupoid I1;(B) is a small category, that is, its objects
constitute a set (the underlying set of the space B). Given a map f: B —
B, there is a covariant functor f : I, (B) — II1(B’) that coincides with f
in the objects and is such that for a path w : by ~ by, one has f([w]) = [fow].
Obviously, the functor fdepends only on the homotopy class of f. We have
the following.

1.5.7 Proposition. The assignment B +— 11;(B) is a functor from the ho-
motopy category Top" of topological spaces and homotopy classes of maps, to
the category Cat of small categories and functors between them. a

1.5.8 Theorem. Let X and Y be topological spaces and let p : E — B
have the HLP for X, Y, X x I andY x I. If w is a path in B from by to by
and € [Y, X], then the following diagram commutes

[X7F0]L[Y7F0]

o |

[X7 FI] 6* [}/’ Fl] 9

where F, = p~1(b,), v = 0,1. In other words, if a € [X, Fy], then (®,(a)) o
p=d,(aof), since by definition, *(a) = aco S.

Proof: Let fy : X — F{ represent the homotopy class a and g : ¥ — X
represent 3. Let moreover h:XxI— Ebea lifting that determines the
translation of fy. So the homotopy b = ho (9 xid) : Y x I — E determines
the translation of f o g, as one can see in the diagram

Y x {0} =X x {0} "5 B
FETS

/// //h
Y xI- XxI—— B,

gxid
The map y — H (y, 1) provides a representative of ®,5*(«). On the other

hand, f; o g represents *®,(«), and since ﬁ’(y, 1) = fig(y), one gets the
assertion of the theorem. O
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From now on we adopt the following hypothesis: For each fiber Fj, =
p~1(b) of a fibration p : E — B, b € B, there exists a space X; with the
same homotopy type of Fy such that p has the HLP for X, and X, x I.

Let ag € [Xo, Fy] be represented by a homotopy equivalence. We define
Puw = (I)w(ao) o 0561 € [Fo, Fﬂ .

If By € [Xo, Fy] is represented by another homotopy equivalence, then by
Theorem 1.5.8 we have

D, (ap) oyt = Dy (Boo By oan)oag o fyo Byt
= ®,(By) o Byt oapoaytofByo Byt
= (I)w(ﬁO)oﬁgl'

So, ., is independent of the chosen homotopy equivalence . Let now a4 €
[X1, F1] be a homotopy equivalence. From 1.5.6 and 1.5.8, one has that

Cuonwy = Py (a0) 0 apt = D, (P, () 0 !
= ®,,(yoa;tod,, (ag)) oy’
= (P, (1) 0oa;t o ®,, (ag)) o ay?
= Puy © Puy

and
Pey = (I)eo(()éo) @) Oé[;l = QO Oéal = [ld] € [Fb7 F(]] .

Thus ¢ is a functor from the fundamental groupoid of B, II;(B), to the
homotopy category Top”. In particular we have the following.

1.5.9 Theorem. Letp: EE — B be either

(a) a Hurewicz fibration, or

(b) a Serre fibration such that each of its fibers has the homotopy type of a
CW-complex.

Then there is a functor
¢ : 1I,(B) — Top"
B > b+ p(b)
(w:by b)) — ¢, € [p (b1),p " (b2)]. 0

There are some consequences of the previous theorem. Since every mor-
phism in the fundamental groupoid is an isomorphism we have the following.
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1.5.10 Corollary. ¢, is a homotopy equivalence for every w. g
Another is the following.

1.5.11 Corollary. If B is path connected (0-connected), then all the fibers
of p have the same homotopy type. O

1.6 HoMOTOPY SETS AND
HomMmoTory GROUPS

In this section we analyze sets of homotopy classes of pointed maps between
two pointed spaces. We study when these sets have a group structure, and
as special cases, we shall obtain the homotopy groups of a space, and partic-
ularly, its fundamental group.

1.6.1 DEFINITION. Under a pointed topological space we shall understand a
pair (X, *) consisting of a topological space X and a base point x € X. A
pointed map between pointed spaces is a continuous map f : X — Y such
that f(x) = *. A pointed homotopy is a homotopy h : X x [ — Y such that
h(x,t) = * for every t € I.

Pointed spaces and pointed maps build a category, Top, that will be the
one we shall work with in this section. Therefore, we shall frequently omit
the adjective “pointed” in the sequel.

1.6.2 DEFINITION. Let X and Y be pointed spaces. We shall denote by
7(X,Y) the set of pointed homotopy classes of pointed maps a : X — Y.
By k: X — Y, given by k(x) = %, z € X, we denote the constant map
whose homotopy class [k] € 7(X,Y") represents a special element in 7(X,Y)
that will be denoted by 0 = [k]. Let f: X' — X, g: Y — Y” be (pointed)
maps. We define a function

(f,9): 7(X,Y) — #n(X",)Y)
[a] +——[goaof]

that does not depend on the choice of the representative a € [a]. The follow-
ing rules are easily verified.

m(f',g)on(f,g) =7(fof' g og),
W(idx, idy) = idW(ij) s

m(f,9)(0) = 0.
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We thus have the following.

1.6.3 Theorem. 7 is a two-variable functor (contravariant in the first vari-
able and covariant in the second) from the category Top. of pointed spaces
and pointed maps to the category Set, of pointed sets and pointed functions.
g

We shall use the following notatation
g*:ﬂ'(idag)a f*:ﬂ'(f,ld)

1.6.4 DEFINITION. Let X and Y be pointed spaces. We define their smash
product X \'Y as the quotient space

XAY =XxY/XVY,

where their wedge sum, or simply wedge, X VY is defined by X VY =
X x {x}U{*} xY C X xY. The base point of X AY is the image of
X VY (or of (%,%)) under the quotient map ¢ : X x Y — X AY. The point
q(z,y) € X ANY will be denoted by x A y. One has that = A x = % Ay = *.

1.6.5 Theorem. There are natural pointed homeomorphisms
(1) XAY =Y AKX,

2) (XAY)NZ=XANY ANZ)if X and Z are locally compact, or if X
and Y are compact, or if all involved spaces are compactly generated

and one takes the compactly generated product instead (see [1, 4.5.22],
[13, 6.7] or [16]).

Proof: The homeomorphism in (1) is induced by the homeomorphism 7' :
X XY — Y x X given by T(z,y) = (y, z).

For (2) we have the following diagram

XxYxZ
(XANY)xZ X x(YAZ)
(XAYI)NZ —————— fi -~ XANYNANZ),

where m, 7' as well as the two vertical maps are identifications. f defines a
bijection such that f((z Ay) Az) =x A(yAz). f will be a homeomorphism
when the maps 7 x idz and idy x 7" are identifications. This is the case
under the given hypotheses. O
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1.6.6 EXAMPLES.
(a) x ANY =,
(b) SSAY =Y.

(¢) INY = CX with 0 € I as the base point is the (reduced) cone of Y.
(See Figure 1.14 (c), where the thick line represents the base point.)

(d) S'AY = XY is the (reduced) suspension of Y. (See Figure 1.14 (d),
where the thick line represents the base point.)

Y

Figure 1.14

(e) Let S* = {x € R"™™ | ||z|| = 1} be the unit n-sphere with x =
(1,0,0,...,0) as the base point.

There is a pointed homeomorphism
w:8S" =S'AS" ST
given as follows. If we describe the points of S! by
(cos2t,sin2t), tel0,mx],
then ¢ is given by
©((cos2t,sin 2t) A (xg,...,x,)) =

= (008275 + zosint, @y sin®¢, . .., @, sin’ ¢, 4 /152 sin 225) € Sntt,

1.6.7 DEFINITION. Let f: X — X', g : Y — Y’ be pointed maps. We
define fAg: X ANY — X' AY' by

(fAg) (@Ay) = fx) A fy)
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f A g is continuous, since in the diagram

XxYy -9 x xy

| l

/ /
(XAY) “rd X'ANY',
q is an identification.

1.6.8 Theorem.

(1) A is a two-variable covariant functor.

(2) A is compatible with the homotopy relation, i.e., if fo ~ fi and go ~ ¢1,
then fo A\ go >~ f1 A g1

Proof: (1) follows immediately.

(2) is obtained as follows: Let h: I x X — X’ be a homotopy between
foand fi,andlet ¢ : X XY — X AY, ¢ : X' xY' — X' AY’' be the
respective identifications. Then in the diagram

hxg

IXxXxY —X xY'

idxqi iq’

Ix(XAY)—=X'AY'

the map id x ¢ is again an identification and therefore the arrow at the bottom
describes a homotopy fo A g >~ fi A g. To prove f A gy =~ f A g1 one proceeds
similarly; the general case follows combining the two previous cases. ad

1.6.9 DEFINITION. Let S' = I/{0,1}, where we denote its points simply
by their inverse images in I. Let 0 € S! be the base point. Let moreover

f,g9: XX — Y be pointed maps. We define f +¢g: XX — Y by

f2t Ax) if0<t<i,

g((2t —1)Azx) if 3 <t<1.

(f+m@Ax%={

f + g is well defined and is continuous. If f; and g; are homotopies, then
also fi + g is one, so that [f] + [g] = [f + g] defines an operation “+” in
T(2X,Y).

1.6.10 Theorem. (7(XX,Y);+) is a group with the selected element 0 as
neutral element.
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Proof: Observe that, as we did above, one can write a homotopy as a family
hy: X — Y, hi(z) = h(zx,t),

of pointed maps. On the other hand, a path f: I — X such that f(0) =
f(1) induces a continuous map f : S' — X (we denote it by the same
symbol).

Associativity: The map

$s(2—1t) if1<s<4,
pr(s)=qs—3t i3 <s<i,
s(1+1t) if3<s<1,

describes a pointed homotopy ¢; : S* — S!. By 1.6.8
(f+g)+h)o(phx):SPAX —Y

is a homotopy. From the fact that ¢y = idg: and that ((f+g)+h)o(p1Ax) =
f + (g + h) the associativity is obtained.
Neutral element: The map

s(14t if0<s<1i
wt(s): ( ) o 2
t+(1—t)s if5<s<1

gives a homotopy 1, : S' — S!'. If k is the constant map, we have that
g = fo( Nidy) : S'A X — Y is a homotopy between gy = f and
g =[+k

Existence of the inverse: By

JtAz) = F(1—1) A )

a continuous map f : ¥X — Y is defined. The homotopy x; : S' — S!

given by
25t if 0 <s <3,
xi(s) = el
2t(1 —s) if 5 <s<1,
is such that f o (xo Aidx) =k and fo (x; Aidx) = f + f. O

1.6.11 DEFINITION. For the special case X = S"!, we define
T (Y) =7(ES" 1Y), n>1

and call it the nth homotopy group of Y. In particular, for n = 1 we call it
the fundamental group of Y. This last group is not necessarily abelian.
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1.6.12 EXERCISE. Prove that the fundamental group 7 (X) is the group of
isomorphisms of the base point to itself in the fundamental grupoid II; (X)
defined above in 1.5.5.

1.6.13 Theorem. Let f:Y — Y’ g: X' — X be pointed maps. Then

fo:m(EX)Y) — m(2X,Y)

and
(Xg)" :m(E2X)Y) — m(ZX"Y)

are homomorphisms, where YXg = idst A g.

Proof: Let a,b: XX — Y represent two elements in 7(XX,Y). One has

foa (2t Ax) if0<t<
gob((2t—1)Ax) if$<t<

1
(fO(aer))(t/\l’):{ L
= ((foa)+(fob) (tAx);
hence f.([a] + [b]) = fi[a] + fi[b], and so f, is a homomorphism.
On the other hand, the equalities

((a+b)o(idAg))(tAx)=(a+Db)(tAg(z))

~ Ja2t A g(x)) if0<t¢<i,
b2t - 1) Agla) ifl<t<l,

~ Jao(idng) (2t Ax) ifo<t<s
~ \bo(idAag) (2t —1)Aw) ifl<t<1

= (aoXg+boXg)(thz),

imply that (Xg)*([a] + [b]) = (£g)*[a] + (Xg)*[b]; therefore, (Xg)* is a homo-
morphism. a

1.6.14 REMARK. Not every map XX’ — ¥ X induces a homomorphism
7(2X,Y) — 7(ZX",Y). For example, take X = S!', X' = $? YV = §%
and let h : XX’ = S* — S? = XX be the Hopf fibration 1.3.1 (b). Then
7(S% S?) = mo(S?) X Z, m(S?,S?) = m3(S?) = Z (cf. Subsection 1.8.2), and
h* is given by h*(n) = n?, therefore, h* is not a homomorphism.

To prove the last assertion, the argument is as follows: h has Hopf invari-
ant 1 (see [1, 10.6]) and if f : S* — S? has degree n ([f] = n), then foh
has Hopf invariant n? - 1. The assignment (g : S* — S?) — (Hopf invariant
of g) induces an isomorphism m3(S?) = Z (cf. [?, ?]).
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1.6.15 NOTE. By 1.6.5, S' A (S! A X) = £(XX) is homeomorphic to (S' A

S') A X through the map s A (t Az) — (s At) Az. Thus EXX = ¥2X can
be considered as

IxIxX/(0I)?x XUI*x %

and we can denote the image of (s,t,z) under the identification simply as
SANtA.

We may define another operation +' between two maps f,g: ¥2X — Y
as follows

(f+9) (sAtAq;):{f(SA%/\w) ifg

g(sn(2t—=1)Az) if

and analogously to 1.6.9 one can show the compatibility of + with the ho-
motopy relation (i.e., +’ induces a well-defined operation in 7(3?X,Y") with
k as two-sided neutral element, namely, k+'f = f+'k).

1.6.16 Theorem. + and +' induce the same group operation in w(3*X,Y)
and this group is abelian.

Proof: Take f, f',g,¢ : ¥2X — Y. One has
(f+9)+ (f+9)(snthz) =

_ J(F+a(sn2tna) if0<t¢<1i,
(f+d)sAn@t—1)Ax) ifd<t<l,
f(2s N2t A\ ) f0<s<3,0<t<y,
 Je(@s—=1)A2tAx) fl<s<1,0<t <y,
f@2sn(2t—1) Ax) ifo<s<ii<i<i,
1 1
J((2s—DANQ2t-1)Ax) if <5<, 5<E< 1,
_ (f+ fH(2s At Ax) if0<s<i
(9+ ) (2s—1)AtAz) if:<s<1,

= (fH )+ g+ gsntnz).
from there one obtains by taking special values for the maps
frog=(+R)+E+g=(+k+ (k+g) = f+g;
frg=k+" N+ k) =kt + (f+k) =g+ f=g+f
~qg+ f.

The first of these equation shows that [f] + [¢] = [f] +' [¢], and the second,
that [f]+ [g] = [g] + [f]. O
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1.6.17 DEFINITION. The suspension function
Yor(X)Y) — (XX, XY)
is given by X[f] = [Ef] if [f] € n(X,Y) is the homotopy class of a map
f: X —Yand ¥f =ids1 A f.
1.6.18 Theorem. The suspension function
Ya(XX,Y) — 7(22X,%Y)

15 a group homomorphism. We shall call it henceforth the suspension homo-
morphism.

Proof: Just observe that one has

X(f+g) (sAhtAhz)=sA(f+g) (tAx)

fsAf@RtAx) if0<t¢<i,
CsAag(2t—1)Aw) ifL<i<l,
) Xf(sA2t D) if0<t¢<g,
| Sg(sA2t—1)Ax) ifE<t<,

= (Zf+'Xg) (sAntAz).
Hence, ([f] + [g]) = Z[f] +' ]g] and by 1.6.16 one gets the assertion. O
1.6.19 REMARK. (Freudenthal suspension theorem) Under adequate
hypotheses on X and Y, the function ¥ : 7(X,Y) — #(X2X,XY) is a

bijection; for example, if m;(Y) = 0 for i < n, and X is a CW-complex such
that dim X < 2n — 1.

In particular, if X =S8, Y =8§", m < 2n — 1, then
Y T (S™) — Tpgr (ST

is an isomorphism (cf. [1, 6.2.4]).

1.7 THE EXAcT HOMOTOPY SEQUENCE
OF A FIBRATION

One of the most useful algebraic tools is that of an exact sequence. In this
section we show how the homotopy sets and groups introduced in the previous
section fit together to yield a long exact sequence.
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We shall work here under the following assumptions: All spaces, maps and
homotopies, as well as all constructions made, will be pointed. It will usually
be easy to distinguish in the new constructed spaces, which is the base point.
The base point will be generically denoted by *, as we do for the one-point
space. A map f: X — Y will be called nullhomotopic if it is homotopic
to the constant map; this fact will be denoted by f ~ 0. The fibration
p : E — B will always be a Serre fibration, and i : F' = p~ (%) — E will
denote the inclusion of the fiber (F' and E have the same base point). X
will be a CW-complex and x € X will be a 0-cell of some adequate CW-
decomposition.

1.7.1 Lemma. The sequence
(X, F) 5 7(X, E) 25 7(X, B)

is exact as a sequence of pointed sets. That is, the image of i,, im(iy) =
i.(m(X, F)), is equal to the kernel of p., ker(p.) = p;*(0).

This exactness concept is consistent with the usual exactness concept for
sequences of groups, provided that one takes the neutral elements 0 (that are
the homotopy classes of the constant maps) of the groups as base points.

Proof: im(i,) C ker(p,), since pi(F) = {x}.

ker(p.) C im(i,): If [f] € ker(ps), then po f ~ 0. Let hy : X — B be a
homotopy such that hg = po f, hy = k, k the constant map. We apply the
HLP for the pair (X, %) (cf. 1.4.7) in the diagram

h
Xx{O}U{*}xI%E

e P
—~ h l

B

to obtain a lifting % of &, if we define ho by ho(z,0) = f(z) and ho(x,t) = *.

Since pﬁ(x,l) = h(z,1) = %, h(z,1) € F and it determines a map g :
X — F by setting g(x) = h(xz,1). Then h : f ~ io g, so that one has
ix[g] = [t o g] = [f]. Thus [f] € im(i,). O

In what follows, we shall define the connecting homomorphism A : 7(¥X, B) —
(X, F).
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Let ¢ : I x X — XX = I x X/0I x X UI x {x} be the natural
identification. For each f : XX — B, f o ¢ is a homotopy. The problem

{0} x X UT x {} const E

~ /7
h -
-
// p
_
_

IxXZ Y X - B

q
has a solution under our general assumptions.

The equality ph(1,z) = fq(1,z) = f(*) = x means that there exists a
(unique) map ¢ : X — F such that g(z) = h(1, z).
If g is obtained from f as shown above, we shall briefly say that g corre-

sponds to f (through 7L)

1.7.2 Lemma. If fy, f1 : XX — B are homotopic, and gy and g, corre-
spond to fo and fi, respectively, then gy and g, are homotopic.

Proof: Let hy i IxX —s E be the homotopy through which g, is constructed
starting from f, (v =0, 1), and let f; be a homotopy between fy and f;.

Consider the problem

{0} x (I x X)UIx (0 x XUI x {x })4;E

. p

-~ &
I'xIxX = B
where ﬁo and H are defined by
H(s,t,x) = fi(sA\x),

) =
Hy(0,t,2) =
Ho(s, t, ) =
Hy(s,0,z) = ho(s,x)
Ho(s,1,2) = hy(s, ).

*

The HLP for the pair (I x X, 0I x XUI x{x*}) provides us with the existence of
H. Since pH(1,t,z) = H(1,t,z) = *, H determines a homotopy g X —
F through g¢)(z) = H(1,t,z), where gy = 9o and g; = g1; g; is thus the
desired homotopy. O

1.7.3 DEFINITION. Define A by

where [f] € 7(XX, B) and g : X — F corresponds to f.
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1.7.4 Lemma. The sequence
7(SX,E) 25 7(SX, B) = 7n(X, F) -5 7(X, E)

18 exact.

Proof: im(A) C ker(i): If g : X — F corresponds to f : XX — B, then
let h: I x X — E be the homotopy through which g is defined (cf. 1.7.3).

his a homotopy that starts with & (the constant map) and ends with i o g.
Thus . A[f] =i[g] = [i o g] = [k] = 0.

im(A) O ker(i,): Take g : X —» F andlet h : I x X — E be a
(null)homotopy such that h(0,z) = % and h(l,z) = ig(z) = g(z) € F.
Let moreover h = po h. Since h(dI x X U I x {x}) = {*}, the map h is
compatible with the identification ¢ and so it determines a continuous map

f XX — B such that foq = h. In a diagram

IxX 9 X

Clearly, g corresponds to f through &, that is, A[f] = [¢]. Thus [¢] € im(A).
im(p,) C ker(A): Take f : ©X —» E and consider the commutative diagram

{0} x X UT x {x} - const E
I
B

I xX DX

q

bl

where h(t,z) = f(t Ax). Thus g LT h(1,2) = f(1 A z) = * corresponds

to f = po f. In other words, Ap*[f] = A[f] = [¢] = [k] = 0.

Lm(p*) D ker(A): If g : X — F corresponds to f : XX — Y through
h :IxX — E, and is such that [g] = *, then let g : X — F bea
nullhomotopy such that gy = ¢ and g; = k, and define ' : I x X — E by

() = h(2t,z) if0<t<3,
ggt,l(x) if 1 <t < 1

The map B s compatible with the identification ¢ : I x X — ¥X and
therefore it defines a map f : ¥X —— F such that go f = h'. Now,

pof=f+k= f Thuspl[f] = [f]. ie., [f] € im(p.). u
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1.7.5 Lemma. A : 7(X?X,B) — 7(XX, F) is a homomorphism.

Proof: Take f, : ¥2X — B, v = 1,2, and let g, correspond to f, through
h,. Add il and fy with respect to the second coordinate (see 1.6.15, 1.6.16).
Defining h: I x XX — FE by

Bt s A ) = ha(t,2s A z) if
’ C ) ho(t, (2s — 1) Ax) if

one obtains the following commutative diagram.

{0} x ZX UT x {x} o E
£ / ip
- —— > B.

I x¥X 2 X

Thus the map g given by

g1(2s N\ ) if()gsg%,

g(shz)=h(l,sANz)= {g2<(28_ Dag) ifl<s<l,
= (1 +g)(shz),
corresponds to fi + f» through h, i.e., A([fi] + [f2]) = Alfs + fo] = [g] =
[91 + go] =[] + [g2] = A[A] + A[f2]- O
In what follows we set m,(X,Y) =7n(2"X,Y),n=0,1,2,....

1.7.6 Theorem. Given a Serre fibration p : E — B and a pointed CW -
complex X, the long sequence

B (XL F) 25 mo(XB) 2 (X, B) 2 1 (XLF) 2
e B (XL F) - (X, E) 2 mo(X, B)

is exact, and all arrows (maybe excepting the last three) represent group ho-
momorphisms.

The proof combines 1.7.1, 1.7.4 and 1.7.5. ad

1.7.7 EXERCISE. Let f:Y — X be a map between CW-complexes. Prove
that the diagram

Tu(X, F) o 1, (X, E) 2> 1,(X, B) —2> 7, 1 (X, F)
l(znf)* l(znf)* l(znf)* l(zn—lf)*
1Y, F) —= 1, (Y, E) 2> 7, (Y, B) —2= 1,1 (Y, F)

commutes.
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In general, (X, F') does not have a group structure; A is not a homo-
morphism in those cases. However, it is true that A sends the right cosets
of im(p,) exactly onto one element. We have the following.

1.7.8 Theorem. Aay = Aay if and only if ag — aq € im(py).

Proof: Assume that Aag = Aay. Let f, represent «,,, and let g, correspond

to f, through a homotopy h,, v = 0,1. By assumption, gy ~ g1, say via the
homotopy ¢;. If we define a map [ : ¥ X — FE by

ho(4s, x) if0<s<i,
(s Nw) = q gas—1() if 1 <s<4,
E1(2—25,x) if 1 <s<1,

then we have that pol = (fo + k) + f, (f, is the inverse of f,), since by
definition of h,, one has that ph,(s,z) = f,(s A x). Passing to homotopy
classes we have

plll = [poll = [fol + [F] + [/1] = [fo] = [/il = a0 =z € im(p.).

Conversely, let us suppose that ay — a; € im(p,). More specifically, oy =
p«(8) + 1. Choose representatives f; of a; and [ of 5 and take fo = pol+ fi
as a representative of «y.

If g corresponds to f; through ﬁl, then define EO by

Tro(5,2) = [(2s A\ x) if 0
ST  2s — 1,2) il

to obtain that p o%o = (pol+ f1)oq= foogq, so that EO lifts fp o ¢q. Since

ho(1,x) = hi(1,2) = g1(z), then g; also corresponds to fy, that is,

Aar = Alfi] = [g0] = Alfo] = Aay .

1.7.9 Theorem. Ifi: F — E is nullhomotopic, then
A:m(X,B) — 1 (X, F)

has a right inverse homomorphism (if n > 2).
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Proof: Assume first that n = 2 and let g be a pointed nullhomotopy of 7,
thatis, g: I x FF — E and ¢g(1,y) =y = i(y), g(0,y) = *, g(t,*) = *. For
each f: XX — F that represents [f] € m (X, F'), via the diagram

IxF g

E
idxfT \LP
B

2
IxSX —> 52X - -~

one defines a map Gf. If fy ~ f; through a homotopy f;, then G fy ~ Gf;
via G fy, since the homotopy (G f;) o ¢ is compatible with the identification
q, i.e., if (G f;) o q is a homotopy, then (G f;) is a homotopy. Thus G induces
a function

I':m(X,F) — m(X,B).

I' is a homomorphism, since one easily shows that G(f; + f2) = Gf1 +' Gfs
(cf. 1.6.15).

To see that A" = id,, (x,r), we have to construct a map that corresponds
to G f using the diagram

{0} x SX UT x {*} const E

—
—
—

I x XX

Gf

But setting & = g o (id x f) (cf. 1.7.9) one gets h(1,2) = g(1, f(2)) = f(2).
Thus f corresponds to G f through h, and so AI'[f] = A[Gf] = [f].

For any n > 2, just replace X in the previous case with X" 1X. a

1.8 APPLICATIONS

In this section, we explain some particular instances of (locally trivial) fibra-
tions that have special interest in algebraic topology.

1.8.1 Covering Maps

One of the most useful tools of algebraic topology for computing the funda-
mental group of a space is the concept of a covering map, that we analyze
succintly in what follows. See [13] or [1] for a thorough treatment.
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1.8.1 DEFINITION. A covering map is a locally trivial fibration such that
each fiber is discrete.

1.8.2 Theorem. In a covering map, the path lifting is unique. That is, if
p: E — B s a covering map, w : I — B s a path and x¢ € E is a point
such that p(xy) = w(0), then there exists a unique path w : I — E such that
pow=w and w(0) = zy.

Proof: Let Wy and w; be liftings of w. We apply the HLP to the pair (I,01)
to obtain in the diagram

(0} x TU (I x 9I) o

E
/7
~
g

B

-
-

I xI

h

a map h, where h(t,s) = w(t), ho(0,s) = zo, ho(t,0) = @o(t), ho(t,1) =
wi(t). For fixed t, the mapping s — ﬁ(t, s) defines a continuous map into
the fiber over w(t), and is thus constant, since the fiber is discrete. Hence
Go(t) = h(t,0) = h(t,1) = Ty (¢). O

Of course, the previous theorem and its proof are still valid if p is a Serre
fibration and each fiber admits only constant paths.

1.8.3 Corollary.

(a) For a covering map, the homotopy lifting is unique. (This follows since
a homotopy is nothing else but a family of paths.)

(b) For a covering map, the translation of the fiber along a path in B is
unique. (This follows from the fact that in order to translate a fiber
one has to lift a particular homotopy.) O

In what follows we shall consider again pointed spaces, pointed maps,
pointed homotopies, etc.

1.8.4 Lemma. If X is connected and Y is discrete, then m(X,Y) = 0. In
particular, for'Y discrete and any X, m,(X,Y) =0 for n > 1, since XX is
0-connected (path connected). O
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Let p : E — B be a covering map. From the long homotopy exact
sequence

T (XL F) — (X, E) — (X, B) — 1 (X, F) — - -

and the fact that by 1.8.4, m,(X, F) = 0 if n > 2, one gets the following.

1.8.5 Theorem. For a covering map p: E — B,
ps s (X, E) — 7, (X, B)

18 an isomorphism if n > 2 and a monomorphism if n = 1. O

If we apply the previous theorem to the covering map p : R — S*
(cf. 1.1.1(d)), since m(X,R) = 0 because R is contractible, then we obtain
the following.

1.8.6 Theorem. 7,(S') =0 forn > 2. 0
For a locally trivial fibration p : £ — B one has the following.
1.8.7 Proposition. If B is connected, then p is surjective (see 1.2.8). O

Suppose that in the covering map p : F — B, the total space E is 0-
connected (i.e., mo(E£) = 0), and that B is connected. Then B es 0-connected.
The exact sequence

T (E) 25 m(B) -2 mo(F) - mo(E) =0,

together with 1.7.8, gives the following.

1.8.8 Theorem. Letp: E — B be a covering map. Then m(B)/im(p*) =

mo(F) (as sets, since im(p*) does not have to be a normal subgroup of m (B
(cf. for instance [7, 111.17.1]).

~—

|

Since F' is discrete, mo(F) = F. Therefore, F' has at most as many
elements as 71 (B); in particular, we have the following.

1.8.9 Corollary. Let p : E —> B be a covering map. If B is 1-connected
(simply connected), that is, if m(B) = 0, then p is a homeomorphism.
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Proof: p is bijective, since mo(F) = 0, and p~! is continuous, since the pro-
jection p of a locally trivial fibration is an open map. a

In particular, B = S™ does not admit nontrivial covering maps with path-
connected total space if n > 2.

If E is simply connected, we have an isomorphism of sets

I

m(B) 2 m(F) = F.

Considering the special case of the covering map
p:R— S

(cf. 1.1.1(d)), we obtain the following.

1.8.10 Theorem. There is a group isomorphism m (S') = Z.

Proof: Let wy z, : I — R be the path t = m+nt from m to m+n, m,n € Z.
Any other path ' from m to m+n is homotopic to wy, ,, since hy : I — R,
given by

t— (1= 8)wmn(t) + sw'(t)
is a homotopy from w,,, to w’ relative to the end points.

In particular,

wWo,m + Wm,n = Wo,m+n -

Each path w : I — S! with w(0) = w(1) can be lifted to @ : I — R, so
that @(0) = 0 and w(1) = k (for some k € Z). One has

W=pow=poWyr =DPO Wnn+tk -
Take A\, = powyy. Since

[Ae] + [M] = [powor] + [powrrti]
= [P o wo,k+l]
= [)‘kJrl] )

we have that [\;] generates 71 (S'). Therefore, 7,(S') is cyclic and infinite as
a set. Hence it is free. 0
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1.8.2 Spherical Fibrations

There are cases in which special fibers, base spaces, or even total spaces of a
given fibration make the long homotopy exact sequence collapse. One obtains
short exact sequences or even isomorphisms that provide us with valuable
information. In what follows, we shall analyze cases in which one or more of
those spaces are spheres.

We assume well known that
m(S") =0 if i<n, and m,(S")=Z if n>1

(see [1, 5.1.22] or [7, IV.2]; see also 1.6.19).

Take n > 1 and consider the fibrations 1.3.1
D Sd(n+1)—1 — 5 FP"

with fiber embedding
i: Sd—l SN Sd(n-‘rl)—l )

The map ¢ is nullhomotopic. Thus, from the homotopy exact sequence of p,
we obtain the short exact sequences

0 — 7;(SU D=1y P2y (FP?) 25 1,y (ST1) — 0.

If 5 > 2, then by Theorem 1.7.9 we know that this sequence splits. Let
us consider individual cases.

1.8.11 ExaAMPLES. The following special cases are interesting:

lL.n=d=j=1.

Then RP! ~ S'. Thus p, is multiplication by 2. The sequence does not
split in this case. The exact sequence is then isomorphic to

0—7 257 — Zoy — 0.
2. d=j3=1,n>1. Then Wl(Sl(”H)*l) = m(S") = 0, thus
™ (RP") = mo(S") = Zs,

= first as sets, but also as groups, since there is only one group with
two elements.
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3.d=1,7>2n>2.

Since m;(SY) = 0, we obtain
71(87) & 7, (RP").

4. d=4,7>2.

From Theorem 1.7.9 one has
m; (HP") = 7;(S*"*) & ;-1 (S°) .
For n = 1, in particular, one has
mj(S*) 2 my(ST) @ m;—i(S?) .
1.8.12 NOTE. The homeomorphism FP! ~ §? can be given similarly to the
case F = C (cf. 1.3.1 (b)). Namely, via
F2 — {0} D S TI=1 5 (wg, wy) — wowy ' € FU {00} = S7.

(Exercise).

5.d=2,n>1.

One has
z if j =2,

T (S*) ifn=1,

W](C]Pn) = {

since m;_1(S*) = 0 if j # 2 (cf. 1.8.6). In particular, one has (for n = 1)
that
mi(S?) =2 (S?) if j>2.

1.8.13 REMARK. With the help of the Cayley numbers (octonians), one can
construct an analogous fibration to the previous ones

ST SP¥ — §?
(cf. [15, 20.6]) and conclude from it that
(S8 2 m(SP) @ w1 (ST) if j>1,

(it is nontrivial if j > 8).
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1.8.3 Fibrations with a Section

Sections play an important role in many aspects of the theory and applica-
tions of the fibrations. We analyze here some implications of the existence
of a section for a given fibration.

1.8.14 DEFINITION. Let F < E -2+ B be a fibration. A map s : B — E
is called a section of p if po s =idpg.

Given a section s : B — FE of a fibration p: ¥ — B, s, is in the exact

sequence
Px

1, (F) —>m,(E) __ m;(B)

a right inverse of p,. Thus p, is surjective, s, is injective and the sequence
splits. Hence, for 7 > 2 one has

™ (B) = m(F) © m;(B) .

This last equation is valid, in particular, for the product fibration p : £ =
F' x B — B and in this case one may easily check it directly. In this sense,
a fibration with section behaves as a product with respect to the homotopy
groups (cf. Sections 1.1 and 1.2).

If n is odd, the wnitary tangent bundle p : ST(S™) — S™ of the unit
tangent vectors to the sphere S™ has a section, namely, the map s : S" —
ST(S™) = {(z,y) € S* x S"|z L y} given by

s(x) = s(xo, ..., xn) = (z, (=21, X0, —T3, T, oo, =T, Ty1)) -

Thus we have the following result.

1.8.15 Proposition. There is an isomorphism

m;(ST(S™)) = my(S" ) @ m;(S™) if j>2.



CHAPTER 2

FIBER BUNDLES

2.1 INTRODUCTION

2.2 ToproLocicAL GROUPS

2.2.1 DEFINITION. A topological group G is a topological space G together
with a group structure such that the function

v:GxG— G,
(gah)'_>gil'h7

is continuous. We frequently write gh instead of g - h for the product of
g,h € G. Sometimes, when the group is additive, we write g + h. In the
former case we write 1 or once in a while e for the neutral element of G; in
the latter case we write 0 for it.

2.2.2 EXERCISE. Prove that the maps 1 and ¢ given by

w:GxG— G,
(gah)'—>gh7

t:G— G,

g— g ",

are continuous if and only if the map v : G x G — G given above is
continuous.

2.2.3 EXAMPLES.
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1. Let (R™,+), resp. (C",+), be the real, resp. complex, n-dimensional
vector space with the usual topology and the usual sum of vectors.
They both are topological groups for every n.

2. Let GL,(R) be the set of real invertible n x n matrices with the group
structure given by matrix multiplication and the topology given as
follows. Fix an ordering of the entries of each matrix, so that it can be
considered as an n?-tuple of real numbers, i.e., as an element of R,
This way, GL,(R) can be seen as an (open) subspace of R with the
relative topology. In this case, v is continuous, since the entries of the
product matrix AB~! are rational functions of the entries of A and B.
Thus GL,(R) is a topological group. In particular, the group GL;(R)
is the multiplicative group of the nonzero real numbers, also written as
R*. The group GL,(R) is called the general linear group of real n x n
matrices.

3. Let GL,(C) be the set of complex invertible n x n matrices with the
group structure and topology analogous to the previous example. Simi-
larly, GL,(C) is a topological group. In particular, the group GL;(C) is
the multiplicative group of the nonzero complex numbers, also written
as C*. The group GL,(C) is called the general linear group of complex
n X n matrices.

2.2.4 Theorem. FEvery subgroup H of a topological group G with the relative
topology is a topological group.

Proof: Let p' be the induced multiplication in H. Let i : H < G be the
inclusion. iy’ = plpxy is continuous, and since H has the relative topology,
i/ is continuous. Similarly, one proves that the map sending an element in
H to its inverse is continuous. ad

2.2.5 EXAMPLES.

1. The following are important subgroups of GL,,(R):
SL,(R) = {4 € GL,(R) | det(A) = 1}
is the special linear group of real n x n matrices.
O, ={A € GL,(R) | AA* =1},

where A* is the transposed matrix of A and 1 is the unit matrix, is the
orthogonal group of n X n matrices.

SO, = O, N SL,(R)
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is the special orthogonal group of n X n matrices.

All these subgroups are closed in GL, (R). SL, (R) for being the inverse
image of the closed set {1} C R under the continuous map A — det(A).
That O,, is closed can be proved as follows. Let A = (a;;) € O,,. Then
the matrix AA* has entries Zzzl ag;arj. Therefore, O, is the inverse
image of the closed set {1} C GL,(R) under the continuous mapping

n

A= (aij) — Z ALiQk;

k=1

where 1 denotes the unit matrix, with ones in the diagonal and zeroes
elsewhere. The subgroup SO,, is closed, since it is the intersection of
two closed subgroups. Since O,, C R™ is clearly bounded, the groups
O,, and SO,, are even compact.

2. The following are special cases:
O, ={1,-1} =7, =S5",
SLi(R) = {1},
SO, = St
O, ~ SO,, x Zy (as topological spaces),
SO; ~ RP? (as topological spaces).
For the last of the previous statements, we sketch a proof. Each element
in SO; is a rotation around some axis. Let B2 C R? be the unit ball
and let f : B> — SO3 be the map that sends an element x € B? to

the rotation around the axis determined by x by an angle 7|z|. f is
clearly surjective; that is, it is an identification (see Figure 2.1).

e
e

Figure 2.1

From f(z) = f(y) it follows that either x = y or + = —y and |z| =
ly| = 1. That is, f identifies antipodal points of S?* C B3, and thus f
induces a homeomorphism

RP? = B3/~ —=—S05,
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where z ~ y if either x = y or v = —y and |z| = 1. It is thus enough
to prove that f is continuous, which is left as an exercise to the reader.

3. The following are subgroups of GL,(C):
SL,(C) = {A | det(A) =1},
GL,(R) = {A| A= A},
0,(C) ={A]| AA* =1},
U, = {A| AA* = 1},
0, ={A|A=A=(A")",

where A* is again the transposed matrix of A € GL,(C) and A is the
complex conjugate matrix.

The group SL,(C) is the special linear group of complex n x n matrices,
and the group U, is the unitary group of n x n matrices.

SU,, = U,, N SL,(C)
is the special unitary group of n X n matrices.
4. There is an embedding
r: GL,(C) — GLg,(R),

as follows. Each C-linear transformation of C" is also an R-linear trans-
formation. If we consider C" as a real vector space, then we obtain a
vector space isomorphic to R?". This isomorphism can be given by

Z = (x1+1y177xn+1yn) — <$17"'7xn7y17"'7yn> = (xay)a

from which we obtain that if 2’ = 2C', C' € GL,(C), then C = A +1iB,
with A and B real matrices. Hence,

(@) = (z,y) <_AB i) ;

r(C) = (_AB i) |

r is a topological embedding (inclusion), since it is continuous, injective,

thus we can define

and has an inverse given by

A B )
(—B A)l—) A+1iB

which is obviously continuous as well.
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2.2.6 DEFINITION. Let H be a subgroup of a topological group G. Let G/H
be the set of left cosets *H, x € G. We topologize G/H by requiring that
the quotient map

p:G— G/H

be an identification. We call this topological space the homogeneous space of
the group G modulo H.

2.2.7 Theorem. p is an open map, that is, if A C G is an open set, then
its image pA is open. (Recall that there are identifications that are not open
maps.)

Proof: That pA is open means, by definition of an identification that p~'pA
is open. But
plpA=AH = U Ax.
zeH
Now, if A is open, then also Az is open, since the map G — G given by
y +— yx is a homeomorphism (the proof of this fact is an easy ezercise for
the reader). Thus p~'pA is a union of open sets, thus open. O

2.2.8 Theorem. If H is a normal subgroup of G, then G/H ‘s a topological
group.

Proof: By means of the commutativity of the diagrams

GxG—" ¢  G—- @

G/HxG/H--~G/H, G/H--~G/H,

one may define maps 7i, 7. 7 is the canonical multiplication in G/H, and 7
determines canonically the inverses in G/H. Since p is open, so is also p X p,
and this last being surjective makes it an identification too. Therefore, both
1w and 7 are continuous. O

2.2.9 EXERCISE. Prove the previous theorem using the maps v and 7 instead
of the maps pu, ¢, i, and 7.

2.2.10 Theorem. The homogeneous space G/H is Hausdorff if and only if
H is closed in G.



56 2 FIBER BUNDLES

Proof: 1f G/H is Hausdorff, then the point p(1) € G/H is closed (1 € G is
the neutral element) and so p~'p(1) = H is closed.

Conversely, let H be closed. Consider the relation
R={(v,y)|z7'ye H} CGxG.

R is closed in G' x (G, since it is the inverse image of H under the continuous
map v : G x G — G given by (z,y) — 2 'y. Let x1H and x5 H be different
cosets in G/H. Then (x1,25) ¢ R, and since R is closed, there exist open
neighborhoods U, of z,, (v = 1,2) such that (U; x Uy) "R = (). Since p is an
open map, pU, is a neighborhood of p(z,) = x,H. These neighborhoods pU;
and pU, are disjoint, since if, on the contrary, there were elements vy, € U,
such that p(y;) = p(y2), then one would have that (y1,y2) € R. But this
contradicts the choice of U; and Us,. O

This theorem shows the importance of taking only closed subgroups of a
given topological group.

2.2.11 Corollary. {1} is closed in G if and only if G is Hausdorff. O

2.2.12 DEFINITION. Let GG be a topological group and X a topological space.
We say that G' acts on X on the left if there is a continuous map

AMGE@xX — X

such that, if we denote A(g, z) by gz, then the following hold:

From g '(gz) = (¢7'g)z = 1z = x and g(¢ 'x) = z it follows that the map

g: X — X,

T — g,

is a homeomorphism of X for each ¢ € G. Condition (a) implies that the
mapping ¢ — ¢ is a homomorphism from G into the group Homeo(X) of
homeomorphisms of X onto itself. If G acts on X we say that X is a left
G-space.
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2.2.13 NOTE. There is a corresponding notion of a group G acting on a space
X on the right, if instead of the map A one has a map p: X x G — X,
(x,g) — xg, that satisfies conditions corresponding to (a) and (b). In this
case we speak of X as a right G-space.

2.2.14 EXERCISE. Give a precise formulation for (a) and (b) in the case of a
right action of G on X. Then prove that there is a one-to-one correspondence
between left actions and right actions of G on X given by the formula

rg = g_lac .
2.2.15 DEFINITION. G acts effectivelyon X if gr = x for all elements = € X,
then g = 1. In this case, we may consider G as a subgroup of Homeo(X),
through the embedding g — 3.

2.2.16 DEFINITION. G acts transitively on X if for any x,y € X there exists
an element g € G such that y = gx. In this case, there is a continuous
surjection from G onto X through the mapping g +— gxo for some (any)
fixed g € X (see 2.2.20 below.)

2.2.17 DEFINITION. G acts freely on X if gr = x for some element x € X,
then g = 1.

2.2.18 EXAMPLES.

1. GL,(R) acts on R™ through (A,z) — Az, for any invertible n x n
matrix A and any vector z in R"™ (written vertically). Conditions (a)
and (b) in Definition 2.2.12 are obviously satisfied. This is an effective
and transitive action.

2. Let H be a subgroup of a topological group G. G acts on the homoge-
neous space G/H as follows. By the commutativity of

GxG—r @

- l”

GXG/H—X>G/H

a map A is uniquely defined. The action A is continuous, since by 2.2.7,
the product of maps id x p is an identification. The map A is then given
by

(91, ﬁQH) — (919||2)H

(91,p(92)) = p(9192)-
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With this, it is routine to verify (a) and (b) in 2.2.12. The action A is
always transitive, but not necessarily effective. (For instance, if G is
abelian and H # {1}, it is not effective. It is never free.).

2.2.19 EXERCISE. Prove the following:

(a) If G acts freely on X, then it also acts effectively.

b) The orthogonal group On acts effectively on Rn, but it does not act
freely.

2.2.20 REMARK. Many transitive actions can be reduced to the one of Ex-
ample 2.2.18, 2.

Let zp € X be a fixed element. As we already noted, by g — gzy one
defines amap f : G — X. This map f is surjective when G acts transitively
on X. Take H ={g € G| gro = zo} = f~!(x0). Then H is a subgroup of G.
It is called the usotropy subgroup of xy and is usually denoted by G,,. This
subgroup is closed whenever the point z is closed in X. Let us consider the
problem

The map f exists. Namely, one has

p(g1) =plg2) & 91'g2 € H & gy 'gamo = g
< g0 = 120 < f(91) = f(g2).

Thus the map f is even bijective. f is continuous, since p is an identification.
Under adequate assumptions, one can prove that f is a homeomorphism. For
example, if the space X is Hausdorff and the quotient space G/H is compact.
The map f is compatible with the actions of G on G/H and on X, in other
words, it is equivariant. That is, the diagram

GxG/H——G/H

al

GxX X

1S commutative.
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2.2.21 DEFINITION. Let G be a topological group. If X is a G-space and
x € X, then the subspace

Gr={gx|geG}CX

is called the orbit of x under the action of G. The orbits decompose the space
X in disjoint subspaces. Namely, assume that gxr = hy for some g,h € G,
x,y € X, then forany k € G, kx = kg 'gr = kg~ 'hy € Gy; hence, Gx C Gy.
Similarly, one proves under the same assumption that Gy C Gx. Thus the
orbits of any two points are either equal or disjoint.

We denote by X/G the set of orbits of X under the action of G. Let
q : X — X/G denote the mapping = — Gz. We endow X/G with the
quotient topology induced by g. We call this the orbit space of X (with
respect to G).

2.2.22 EXERCISE. Assume that X is a Hausdorff G-space and that G is
compact. Prove the following:

(a) X/G is Hausdorff.
(b) ¢: X — X/G is a closed map.

(¢) ¢ : X — X/G is a proper map, namely, for each compact set K C
X /@G, the inverse image ¢ 'K C X is compact.

(d) X is compact if and only if X/G is compact.

(e) X islocally compact if and only if X/G is locally compact.

2.2.23 EXAMPLE. Let F be any of the fields R, C, or H. Then F — {0} C F
is a topological group with the relative topology and the multiplication given
by the field multiplication. There is an action of this group on F**! —
{0}, given by A(zg,z1,...,2,) = (Axo, Az1,...,Az,) for A € F — {0} and
(w0, 21, ...,2,) € F*"" — {0}. The orbit space F*** — {0}/F — {0} is the
projective space FP" defined in 1.3.1 (a).

2.2.24 EXERCISE. Let d be the (real) dimension of F (see 1.3.1 (a)) and
let S¥n+H-1 < Fr+! — {0} be the unit sphere (see 1.6.6 (e)). Prove that
St C F — {0} is a closed subgroup. Moreover, prove that the restriction
of the action given in 2.2.23 gives an action of S*! on S¥™*+D-1 " Conclude
that there is a canonical homeomorphism

Sd(n+1)—l/Sd—1 ~ FP"
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2.2.25 EXAMPLE. The group O,, acts on the sphere S"~! through (4, ) —
Az (cf. Example 2.2.18, 1). Take x5 € S™! to be the vector such that zj, =

(0,...,0,1). The equation Azy = xg is equivalent to the matrix equation
B 0
A_(O 1), BeO,_.

By means of the embedding given by

B 0
Br—><0 1>

we may consider the group O,,_; as a subgroup of O,, and by 2.2.20 we have
a homeomorphism

T : On/on—l ~ Snil )

(since O, is compact and S"! is Hausdorff).

2.2.26 EXERCISE. Similarly to the previous example, give a transitive ac-
tion of the group U, on the sphere S?"~! c C". Conclude that there is a
homeomorphism

U,/Up_g = S,

2.2.27 NOTE. See Subsection 2.5.1 for further examples similar to 2.2.25
and 2.2.26.

2.3 FIBER BUNDLES

In what follows, B and F' will be topological spaces, and G a topological
group acting effectively on F' (see 2.2.15). F, G and the action will be the
same along this section. We shall prepare the definition of a fiber bundle.!

2.3.1 DEFINITION. A set bundle B with fiber F' is a family
F={F. |z e B}

of sets, that are equivalent (as sets) to F', that is, F, ~ F for all . A local
chart for F is a family

o={p,  F— F, |z eU,}

!The definition of a fiber bundle that we shall give below was proposed by A. Dold.
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of maps, where U, is an open set in B, and each map ¢, is bijective. If we
want to emphasize that a set bundle F is a bundle over B, we sometimes
denote it by the pair (F, B).

An atlas for F with respect to the group G is a set A of local charts for
F such that the following conditions are satisfied:

(B1) U,ea Uy = B.

(B2) Given p,¢p € Aand z € U, N Uy, g(z) = ¢, ¢, : F — F is an
element of G C Homeo(F') (cf. 2.2.15).

(B3) The map

gZU@ﬁUd,HG
x— g(x)

1s continuous.

An atlas is said to be trivial if it consists of only one chart.

2.3.2 EXAMPLE. Let p: E — B be a locally trivial fibration, all of whose
fibers are homeomorphic to .. We obtain a set bundle F = {F,} by defining
F. = p~Y(x). The fact that p is locally trivial means that there is an open
cover {U; | j € J} of B and homeomorphisms ®; such that the diagram

Uj x F

m/

commutes. We give local charts as follows. For each j € J, take

<p]:{g0j,m:F—>p_1x:]:x|xEUj}

by defining ¢;,(y) = ®;(x,y). The set A = {p; | j € J} is an atlas. (B1)
clearly holds. In order for (B2) and (B3) to hold, we need a topological group
G with the following properties:

(a) G C Homeo(F') (as a subgroup).
(b) The homeomorphisms
9i(%) = YiaPic  F — F

are all elements of GG.
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(¢) The group G acts on F', i.e., the obvious map G x F' — F' is contin-
uous.

(d) The map g;; : U;NU; — G given by x — g¢,;(x) is continuous.

Endowing Homeo(F'), for instance, with the compact-open topology, and
taking G = Homeo(F'), all conditions (a)-(d) are satisfied. The only remain-
ing question is the following: Is G a topological group with this topology
and does it act continuously on F'?7 The answer is yes if, for example, F' is
compact and Hausdorff (cf. Steenrod [15, 5.4]).

Another possibility is to furnish Homeo(F’) with the k-topology associated
to the compact-open one. Thus, if F' is also compactly generated, then taking
G = Homeo(F'), G is a topological group that acts on F and (a)—(d) are
satisfied (for (c) see [16, 5.2 and 5.9]).

2.3.3 DEFINITION. Let F and F' be set bundles over B and B’, respectively,
both with the same fiber F. A set bundle map (f, f) : F — F' consists of
a continuous map f : B — B’, and a family f = {f, | € B} of bijections
fo 1 Fo — Ff-

Let A and A" be atlases for F and F' with respect to the group G (G

acts on I always in a fixed manner). (f, f) is said to be compatible with A
and A’ if the following conditions hold:

(Cl) Ifpe A, e A, and z € U, ﬂf_qu’p, then the bijection
U fupy t F — F

where y = f(), is an element g(z) € G; in particular, it is a homeo-
morphism.

(C2) The map ¢ : U, N T_IU{p — G given by z — ¢g(x) is continuous.
The next theorem shows that set bundles build a category.

2.3.4 Theorem.

(a) (e,idg), where e, = idg,, is a set bundle map (F,B) — (F, B) com-
patible with the atlases A and A. We denote (e,idg) by id(rp) or
simply by idr.
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(b) If(f, f) : (F,B) — (F', B') is compatible with A and A, and (f’,zl) :
(F',B") — (F",B") is compatible with A" and A", then (h h) :
(.7:” B") is compatible with A and A", where h = f f and

tole i Fo — Fi Y. We denote (b, R) by (f', T )o(f, ])-

Proof: (a) is clear.

For (b), take p € A, x € A", and z € U, Nh U We choose 1) € A’
such that y = f(x) € Uy. Then, for z = f/(y),

g”(x) = X;lohmogox :leoféofmogom
= (Xz o fyoty) o (¥, 0 fao )
=4 ylx) €G,
since by assumption both ¢'(y) and g(z) lie in G. It still remains to prove

that the mapping =z — ¢”(z) is a continuous map ¢” : U, N E_IU;C’ — G.
This is true because

(U,NFUNE U | ¢ e A}

. —1 . .
is an open cover of U, Mh U/, and g” is continuous on each open set of the
cover, since there

9" (x) = plg'(v), g(x))
= po (g xg)o(fxid)oAlz),

where A : X — X x X is the diagonal map and y : G X G — G is the
multiplication in G. O

2.3.5 Theorem. Let F be a set bundle over B with two given atlases A and
A'. Then the set bundle map idy = (e,idp) is compatible with with A and
A" if and only if AU A" is an atlas.

Proof: This follows immediately from Definition 2.3.3. O

2.3.6 DEFINITION. Two atlases A and A’ of a set bundle are equivalent if
AU A’ is again an atlas. This is an equivalence relation.

2.3.7 Theorem. Let A be an atlas for a set bundle F. The following state-
ments hold:

(a) The union A of all atlases equivalent to A is again an atlas.
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(b) The atlas A is the largest that is equivalent to A.

(¢) The atlas A is mazimal in the ordered set (with respect to inclusion) of
all atlases for F.

Proof: (a) (B1) is clear. Take @, 1) € A. There exists atlases A; and A, that
are equivalent to A such that ¢ € A; and ¢ € A,. A; and A, are equivalent,
and therefore, (B2) and (B3) hold for ¢ and .

(b) A is equivalent to A, since AU A = A is again an atlas (because

o~

AC A, 2.3.5).

(c) If A C B one would have that A C B and so B would be equivalent
to A, and therefore, B C A (by definition of 4). Thus, A = B5. a

2.3.8 DEFINITION. A set bundle F over B with fiber F', together with an
action of G on F' and a maximal atlas A with respect to the group G, is

called fiber bundle. The group G is called the structure group of the fiber
bundle.

Such a fiber bundle will be denoted by
E=(F,G,B;F,A).

A fiber bundle will be called trivial if its atlas is equivalent to the trivial one
(see 2.3.1).

2.3.9 REMARK. We could have defined a fiber bundle as a set bundle to-
gether with an equivalence class of atlases, since by 2.3.7, maximal atlases
and equivalence classes of atlases are in one-to-one correspondence; that is
each equivalence class contains exactly one maximal atlas (namely, the union
of all atlases in the class).

As it is frequent, we shall write instead of the equivalence class of an atlas
for £ simply A, even though this atlas is not maximal. The concept of fiber
bundle is introduced, since an atlas for a set bundle is nothing else but an
auxiliary concept, which does not have to belong to the structure. This will
be clearer when we determine a locally trivial fibration for this fiber bundle.
A special atlas will describe then the local trivialization, while the fibration
will only depend on the equivalence class of the atlases (cf. also 2.3.2).

2.3.10 Theorem. Let (f, f): (F,B) — (F', B') be a set bundle map. Let
Ay and Az be equivalent atlases for F, and A} and A} equivalent atlases for
F'. Then (f, f) is compatible with A, and A’ if and only if it is compatible
with Ay and Aj.
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Proof: Consider the following diagram of set bundle maps.

(F, Ay - A

(e,idB)l T(e’,idB/)

F,Ag) — (F, A)).

(F o) —= (', A5)

By assumption, (e,idg) and (€¢’,idp/) are compatible with the atlases (see
2.3.5). If the bundle map (f, f) on the bottom is compatible with the atlases,
then by 2.3.4 so is also the bundle map on the top. O

2.3.11 DEFINITION. A (fiber) bundle map & — &', where
{=(F,G,B;F,A) and ¢ =(FG B;F A),

is a set bundle map (f, f) : F — F' that is compatible with the associated
maximal atlases A and A'.

A bundle map will be denoted again by (f, f). By Theorem 2.3.10, a
set bundle map that is compatible with some atlas is compatible with the
corresponding maximal atlas. This is consequent with our convention (see
2.3.9) to allow in the notation for ¢ also atlases that are not maximal.

2.3.12 NoTE. By 2.3.4 one has that fiber bundles, together with bundle
maps constitute a category. As usual, a bundle equivalence is a bundle map
with an inverse.

This is a good oportunity to get to know the different equivalence con-
cepts. “Set bundles with an atlas” and “bundle maps compatible with an
atlas” constitute a category. In this category, (e,id) is an equivalence. It
provides us with atlas equivalence; this will be important in 2.3.14 below,
(see also 2.3.21).

A bundle map (f,idp) is called an equivalence over B (cf. 2.3.13 below). If
we consider (f,idp) as a map of bundles with atlas, we obtain an equivalence
relation, which is stronger than the one given by (e, idg). It is now permitted,
for example, to replace the bundle fibers with equivalent (homeomorphic)
fibers without leaving the equivalence class. This equivalence concept is
important for the bundle classification (see Section 2.8; see also 2.4.5). An
equivalence (f, f) of general type is independent of the specific type of the
space B, i.e., we may replace B with homeomorphic spaces.

2.3.13 Theorem. If (f,f): & — & is a bundle map and f : B — B’ is a
(

homeomorphism, then (f, f) is an bundle equivalence.
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Proof: We have to define a bundle map (f’ ,7/) that is an inverse of (f, f).
We do it as follows. Take f = 7_1 and f' = {f; | y € B'} such that f; = f,"!
if f(z) =y. Then (f’, ) is compatible with the atlas (cf. 2.3.3). Namely, to
prove (C1), take ¢ € A, ¢ € A', and y € Uy, ﬂ7_1U¢. Then

g ) =@, fiby = (W, " fapa) ™t = gla)™",

since Tl(y) =z eU, ﬁ?lUw =U, QT_IU@D-

To prove (C2), we have that the mapping y — ¢'(y) = g(?l(y))_1 is
continuous, since 7, g, and the map ¢ (which sends a group element to its
inverse) are continuous. a

2.3.14 CONSTRUCTION. Let F be a set bundle over B with fiber F. We
shall assign to F a locally trivial fibration over B. To do this, let us assume
that F, NF, = 0 if 2,y € B are different points. If this assumption does not
hold in F a priori, we replace the sets F, with {z} x F,.

Let A = {g; | j € J} be an atlas for F with respect to the group G,
where ¢; = {p;. : F — F, | v € U;}, where we write U, instead of ¢,.

We define p : E — B as follows. Take
E = U Fr, and p(F,) = {x}.

reB

We now endow E with a topology. Using the map ®; given by (z,y) — ¢;.(y)
we have the next commutative diagram.

Uj x F i p U = Uer, o

(2.3.15) \
Proj; pUj

Uj.
By requiring that ® is an identification in the diagram

UjUjXFX{j}

roj
| e

E B

P )

where ®(z,y,j) = ®,(z,y), we endow E with a topology and with it p turns
out to be continuous.

We call p: E — B the fibration determined by the set bundle F.
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2.3.16 Lemma. Take X; = U;x Fx{i} and E; = p~'U;. Then the restricted
map ®; = ®|x, is a homeomorphism X; — E;.

Proof: The map

(xayvj)l ({E,gp;zlgp],x(y),l)

is continuous, since gol_; o0 ;. € G and G acts continuously on F'. The map
Gj; is inverse to G;;, and therefore, G;; is a homeomorphism. Let A be open
in X;. We have to prove that ®; A is open in E;, that is, by the very definition
of an identification, that ®~'®,A is open in Uje ;X;. This is equivalent to
saying that

= Gij(AN®;(E; N E)))
is open in X;. But this is open in @;I(EmEj), since Gj; is a homeomorphism

and ®; ' (E;NE;) = (U;NU;) x F x{j} is open in X;, we have that X;n®~'®; A
is open in Xj. a

From Diagram (2.3.15) and the previous lemma, we obtain the following
two consequences.

2.3.17 Proposition. p s locally trivial. a
2.3.18 Proposition. The identification ® is an open map. g

In what follows, we see that not only a fiber bundle gives rise to a locally
trivial fibration, but also that a bundle map induces a fiber map.

2.3.19 CONSTRUCTION. Let F and F’ be set bundles with atlases A and
A Let (f,f) : F — F' be a bundle map that is compatible with the
atlases. We now want to construct a fiber map (j/"\, f) between the locally
trivial fibrations determined by the given set bundles (2.3.14), namely,

E-l.m

(O

Bﬁ' B/,
f

-~

Taking f(z) = f.(z) if z € F,, the diagram is commutative.
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2.3.20 Theorem. The map fAz's continuous, and thus (]?, f) is a fiber map.

Proof: The topologies in E and E’ are given through identifications ® and
¥. One has

ngeAUchFX{SO} U%A,U{ﬁxe{w}

R

It is then enough to prove that fo ® is continuous. For that, since the sets
(U, ﬂf_lUw) x F' x {¢} build an open cover of |JU, x F' x {¢}, we only
check that f is continuous for all p € A and all p € A'.

O, 7 U < Ex e}
One has

FO(2,0,0) = fpo(v) = fopa(v)
= ¢y<¢;1fz¢x)(v)
= ¥,9(x)(v)
= U(y, g(x)v,v),

where y = f(z). The last term clearly depends continuously on (z,v), thus
we obtain the desired continuity. O

Let F be a set bundle over B with two atlases A and A’. The set map
p: E — B (as in 2.3.14) depends only on F. However, there are two
topologies T and 7' in E.

2.3.21 Theorem. If A and A" are equivalent atlases, then the topologies T
and T, generated by A and A" on E are the same.

Proof: By 2.3.5, the bundle map (e,idg) : F — F is compatible with the
atlases. By 2.3.19, we have that the identity map

idg=¢:(E,T)— (E, T

is continuous. Similarly, one may prove that the inverse map is also contin-
uous. g

By Theorem 2.3.21 we may assign to each fiber bundle £ (see Definition
2.3.8) a fibration p; : E — B and to each bundle map (f, f) a fiber map
(f, f). We call them the fibration determined by the fiber bundle ¢ and
the fiber map determined by the bundle map (f, f). This assignment is
compatible with the composition of maps, as can easily be verified; thus we
have the following.
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2.3.22 Theorem. The assignments

§— (pe: E— B)
define a functor from the category of fiber bundles and bundle maps to the

category of locally trivial fibrations and fiber maps. To a trivial bundle, a
trivial fibration is assigned. a

2.3.1 Tangent Bundles

As an application of the previous concepts, we shall construct the bundle of
tangent vectors of a differentiable manifold.

2.3.23 DEFINITION. A one-one relation f is a triple of sets f = (XY, F)
such that F' € X x Y and such that for each x € X there exists at most one
y €Y with (x,y) € F.

The set
Def(f) ={r € X | Jy € Y with (z,y) € F}
is called the definition domain of the relation. We write this relation as

f: X — Y. Ifx €Def(f) and (z,y) € F, then we write y = f(x).

Let M and N be differentiable manifolds. A one-one relation f : M —
N is differentiable if

(1) Def(f) C M is an open set.

(2) flpet(s) is a differentiable map.

The composition of two differentiable one-one relations is again a differen-
tiable one-one relation.

Let M be an n-dimensional smooth (i.e., of class C*°) manifold. Take
z € M and let 9, be the set of differentiable one-one relations

f:M—R with =z € Def(f).

Y, is a vector space; namely, if f,g € ¥,, then f 4+ g € ¥, is given by
Def(f +g) = Def(f) NDef(g), and for all 2’ € Def(f)NDef(g), (f+g)(z') =
f(2") + g(2’) € R. Moreover, if & € R and f € 9,, then af € 9, is given
by Def(af) = Def(f), and for all 2’ € Def(f), (af)(z') = a(f(2')) € R. In
fact, 1, has also a multiplication that makes it an algebra over R. Namely,
if f,g € ¥, then f-g € 9, is given by Def(f - g) = Def(f) N Def(g), and for
all 2’ € Def(f) N Def(g), (f - g)(@’) = f(a')g(z) € R.
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2.3.24 DEFINITION. A tangent vector of M at x is a map
X9, —R

with the following properties:

(1) If f,g € 9, and f(z) = g(x) for all y in some neighborhood of x, then
Xf=Xg.
This means that X f depends only on the germ of f around =x.

(2) X(af +Bg) = a(X[f) + B(Xg) for o, 8 € R. This means that X is
linear.

(3) X(f-g9)=(Xf)g(z)+ f(x)(Xg). This means that X is a derivation.

See [11, 2.2].

Let T,(M) be the set of all tangent vectors of M at z. By means of the
usual function addition and multiplication by a scalar, T,.(M) gets a vector
space structure. This is the tangent space of M at x.

2.3.25 CONSTRUCTION. Let h: M — N be differentiable one-one relation,
and take x € Def(h). Defining

[dh. X]f =X(foh), f€Unun(N),
one has a linear transformation
dhx : Tx(M> — Th(a:) (N) .

The linear transformation dh, is called the derivative of h at x. For a com-
posite M " N -%5 P one has

d(goh), = dgh(z) © dhy .

This equation is the chain rule for the derivative of a composite. For the
identity map id : M — M in a neighborhood of x in M, one has

d(id), = id7p, (ar) -

This, together with the chain rule, lets one obtain that if h is a local diffeo-
morphism around z, that is if h and h~! are differentiable one-one relations,
then

(dh™ ) = (dha) ™.

In particular, dh, is a linear isomorphism.
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2.3.26 EXERCISE. Consider the category of pointed differentiable manifolds
(M, x) with maps h : (M,z) — (N,y) given by one-one relations h such
that © € Def(h) and y = h(z). Verify that this is, indeed, a category and
prove that the assignments

(M, z) — To(M),
h —s dh,

determine a functor from the just defined category to the category of finite
dimensional vector spaces and linear transformations.

Take M = R™ and z € R™. Let D;(z) be the tangent vector at = given

2.3.27 Lemma. The vectors Di(x), ..., Dy(z) build a basis of the tangent
space T,(R™).

For the proof see [11, 2.3]. O

Via the mapping (o, ..., a,) — Y a;D;(x) one obtains an isomorphism
R" — T,.(R™) through which we identify both spaces.

2.3.28 DEFINITION. Let M be a differentiable n-manifold and h : R" —
M a differentiable one-one relation. If h=! is also a differentiable one-one
relation, then they determine a diffeomorphism Im(h) ~ Def(h), where Im(h)
is the image of the one-one relation h, that will be called local chart. For
x € Im(h) and y = h™'(x) one has an isomorphism

dh, : T,(R") = R" —s T,(M)

(which, in particular, is bijective).

Let M be a differentiable n-manifold. We have a set bundle over M with
fiber R™ (2.3.28) given by

T(M) =T = {T,(M) |z € M}.
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If h is a local chart for the manifold M, one can give a local chart ¢ =
{@:(M) | x € Im(h)} for T by

0y =dh, R" — T, (M), y= h_l(x).

If we start with an atlas of local charts for M, we obtain an atlas indexed
by {¢} for T with respect to the group GL,(R). Namely, take another local

chart h : R — M and ¢, = (dh)g, y = h™'(z). For € Im(h) N Im(h)
(cf. 2.3.25) one has

0t o @, = (dh,) o dhy = d(h™* o h)j.

Thus g(z) = d(h™! OE)@ since it is a linear transformation, is an element of
GL,(R), because h~! o h has a differentiable inverse.

We still have to prove that  — g(x) is a continuous map on Im(h)NIm(h).
This follows from the next result.

2.3.29 Lemma. If k : R® — R" and its inverse k= : R® — R" are
differentiable one-one relations, then the map

Def(k) — GL,(R)
z +— dk,

1S continuous.

Proof: Applying the basis and the identification of 2.3.27 one gets dk, ex-
pressed by the jacobian of k£ in . Thus the map is continuous. ad

2.4 COORDINATE TRANSFORMATIONS

In this section we explain how a fiber bundle is assembled.

2.4.1 DEFINITION. Let & = (F,G, B;F,A) be a fiber bundle with (a not
necessarily maximal) atlas A = {y; | j € J}. We shall again briefly write U;
instead of Uy, and g;;(z) instead of ¢} 0 p;, for 2 € U; NU;. The so-defined
maps g;; : U;NU; — G will be called coordinate transformations of . They
are interrelated by means of the following equations:

(CT1)  gij(®)gji(z) =g, z€UnU;NU, 1,5,k € J.
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2.4.2 DEFINITION. Let G be a topological group, B a topological space,
and U = {U; | j € J} an open cover of B. A cocycle (of dimension one)
for U with coefficients in G ? is a family {g;; : UyNU; — G | i,j € J} of
continuous maps that satisfy (CT1). From (CT1) one obtains the following
two consequences:

1. gii(l’)zleG,fEGUi, 1€ J.
2. gﬂ<l’> = gij(x)_l, RS Uz N Uj, Z,] e J.

To obtain them, it is enough to set i = j = k in (CT1) for 1, and then i = k
in 1 to get 2.

The maps g;; of a fiber bundle as given above, describe how the trivial
portions of the determined fibration have to be “assembled”; they are, so to
say, “assembly instructions”. We have the following.

2.4.3 Theorem. Let {g;;} be a cocycle for U with coefficients in G. Then,
for every topological space F' on which G acts effectively, there is a set bundle
over B with fiber F' and an atlas for the group G, whose coordinate transfor-
mations (as in 2.4.1) are the maps g;; of the cocycle.

Proof: For x € B we choose an index k, € J such that x € Uy,. We define a
set bundle F and a set A of local charts by

F=A{F.|xeB}, F,=F,
A={gjljiet}, ¢j={vjlzelj},
Cjw = Grpj(2)  F — F=F,, zeUj.
By definition, ¢;, is an element of the group G, and so it is a bijective map
' — F'; it is therefore a local chart.

A is an atlas; namely,

iz © Pia = Iri(2) h, (@)
= ik, (%) Gr,()
= Gij (ZE) eG.
Conditions 2.3.1, (B1)—-(B3) for an atlas are satisfied thanks to Definition

2.4.2, and so one sees immediately that these are the desired coordinate
transformations. 0

2To be more precise, one should have to say, “a cocycle with coefficients in the sheaf
of germs of continuous maps B — G”, (cf. Hirzebruch [4, 2.6]). However, no confusion
should arise by our short form of stating it.
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2.4.4 DEFINITION. Two cocycles g = {g;;} and g = {g;;} for the cover
U={U; | je J} are said to be cohomologous in U if there is a family of
continuous maps {\; : U; — G} that satisfies the equations

2.4.5 Theorem. Let¢, gbe fiber bundles over B, with fiber F' and structure
group G. Let A and A be the corresponding atlases with the same cover U and
coordinate transformations {gi;}, {gi;}- & and E are equivalent over B (see
2.3.12) if and only if the cocycles g = {gi;} and g = {g;;} are cohomologous
mU.

In particular, a fiber bundle is characterized, up to equivalence over B,
by its coordinate transformations.

Proof: Let (f,idp) : £ — ¢ be an equivalence. By means of the mapping
= \(x) = {5]’; o fz © ;. a continuous map A; : U; — G is determined
(by 2.3.3). One has

Gii(@)Ai(@) = (Piz © Pja) © (P © fo 0 i)
= 0720 fo0 ($ig©Pia) O Pja
= (Piz © f2 0 i) © (97, © Pj)
= Ai(2)gij () .
Thus the cocycles g = {g;;} and g = {g;;} are cohomologous in U.
Conversely, let g = {g;;} and g = {g;;} be cohomologous in ¢/. The map

fwzgj,roAj($)o¢;1:fw_>f;

s T

is independent of j; namely, the right hand side is equal to

Pja 0 Nj(x) 0 gji(x) 0 iy = Fja © Grilx) 0 Ni() 0 0,
= QigoN(z)op s, zelUnUj.

The pair ({f,},idg) is a bundle map, since conditions 2.3.3 (C1) and (C2)
are obtained from

Biw© fo 0 ja = Gij(2) © Bj4 © Tjw 0 Xj(@) © 975 © Pja
= Q}j(x))\J(x) - G
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Not every fiber bundle has an atlas for a given cover. For this reason, we
wish to compare different covers.

LetU = {U; | j € J} and mathcalV = {V), | k € K} be open covers of B.
Let mathcalV be a refinement of U, i.e., there exists a function o : K — J
with Vi C Uy for every k € K. Let g = {g,; | i,j € J} be a cocycle for U
with coefficients in G. By

Pri = Gaya@lviov,» k1 € K,

we define a new cocycle a#(g) = {hy | k,1 € K} for mathcalV with coeffi-
cients in (G. This is the cocycle induced by the refinement.

2.4.6 DEFINITION. Let g and g be cocycles for the covers Y = {U; | j € J}
and U = {U; | i € J} with coefficients in G. We say that ¢ and § are
cohomologous in B if there exists a common refinement mathcalV = {V} |
ke K} of U and U and “refining functions” o : K — J and a: K — J
such that o (g) and a#(g) are cohomologous in mathcalV .

“Cohomology in B” is an equivalence relation. Reflexivity and symmetry
are clear. Transitivity will be proved inside the proof of Theorem 2.4.7,
although it is an easy exercise to prove it directly.

We denote by [g] the corresponding equivalence class and call it cohomol-
ogy class of g.

Let H'(B;G) be the set of cohomology classes of cocycles for covers of B
with coefficients in G. Let kq(F, B) be the set of equivalence classes (over
B) of fiber bundles over B with fiber F' and structure group G.

2.4.7 Theorem. If to each fiber bundle, the cohomology class of the cocycle
consisting of its coordinate transformations is assigned, there is a bijection

v : ka(F,B) — HY(B;Q),

induced by mapping each fiber bundle & to the cohomology class of the cocycle
determined by its coordinate transformations.

For the proof, we need some previous considerations.

Let F be a set bundle over B with atlas A = {y; | j € J} for the cover
U ={U;|je J}. Let mathcalV ={V}, | k € A} be an open refinement of U
and a : K — J the refining function, (i.e. Vi, C Uyw)).



76 2 FIBER BUNDLES

Define

U = {Pa)e | v € Vi}
Q#A:{@Dklk’EK}.

2.4.8 Lemma. The following statements hold:

(a) a¥ A is an atlas equivalent to A.

(b) If the cocycle g consists of the coordinate transformations of A, then
a' g consists of those of a™ A.

Since the proof is simple, we leave it to the reader. O
Proof of 2.4.7:
v is well defined:

Let F agd F be set bundles over B with fiber F. Let A and A be atlases
for 7 and F with respect to the group G and with covers U = {U;|jeJ}
and U ={U; | i € J}. Then

mathcalV = {U; N U; | (j,i) € J x J}

is an open refinement of U and U. As refining functions we have the projec-
tions
_ T, a(j,0) =i

J, a(j,i):=7.
Let now g and g be the cocycles consisting of the coordinate transformations
of A and A, respectively.

One has that, since (F,.A) and (F, A) are equivalent over B, by 2.4.8
(a), (F,a*A) and (F,a#A) are also equivalent over B. By 2.4.8 (b) and
2.4.5, o ¢ is cohomologous to a”§ in mathcalV; and by Definition 2.4.6, g
is cohomologous to g en B.

v is injective:

Let F, A, U, g and F, A U, g be as in the first part of the proof.
Let g and g be cohomologous in B. By definition, there exists an common
open refinement mathcalV= {Vj | k € K} of U and U with refining maps

o: K — Jand @: K — J such that a*g and a#§ are cohomologous in
mathcalV . Consequently, (F, o A) and (F, a* A) are equivalent over B (see
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2.4.8 (b) and 2.4.5) and so, by 2.4.8 (a), (F, A) and (F, A) are equivalent
over B too.
v is surjective:

This is exactly the statement of Theorem 2.4.3. g

Since the “cohomology set” H'(B; (@) is independent of the fiber F', we
may use 2.4.7 to establish a relationship among bundles with different fibers,
but the same structure group.

2.4.9 DEFINITION. Two fiber bundles
£=(F,G B;F,A), ¢&=(FGBFA

are called associated if the cocycles consisting of their coordinate transfor-
mations are cohomologous in B; that is, if the images of their equivalence
classes under

v:ka(F,B) — HY(B;G) and 7 :kq(F,B) — H'(B;G)

coincide.

2.4.10 DEFINITION. Let 8 : G — H be a continuous homomorphism of
topological groups. If {g;;} is a G-cocycle, then {0 o g;;} is an H-cocycle,
as one deduces from (CT1). The assignment {g;;} — {6 0 ¢;;} is compatible
with the cohomology relation and determines a function

0,: H(B;G) — H'(B;H).

A geometric interpretation of 6, is the following. Let 6 : G — H be the
inclusion of a subgroup. If H acts effectively on F' and G acts by restricting
the action of H, then one may clearly consider a bundle £ = (F, G, B; F, A)
as a bundle with structure group H. However, in this case, 6, does not have
to be injective. By passing to the larger group H two nonequivalent bundles
may become equivalent, as we show below in the case of the twisted torus
(cf. 2.4.11, 3).

2.4.11 EXAMPLES.

1. Using the method shown in 2.3.2 and the local trivializations of 1.2.9(a)
one may assign to the Moebius strip a set bundle and two local charts.
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These local charts constitute an atlas, if we consider G = Z, as the
structure group seen as the group whose elements are 1 = id; and the
reflection t — 1 — ¢ in I, endowed with the discrete topology. G then
acts continuously and effectively on I.

2. We may similarly consider the Klein bottle. The structure group G =
Zs consists here of 1 = idg1 and the reflection on a diameter of S'.
Both the Moebius strip and the Klein bottles are associated.

3. The twisted torus is a set bundle over the circle S* with fiber F' = S =
Foox eSS =1/{0,1}. Let Uy =S'—{0}, U, =St —{b},0<b< 1,
two open sets in the circle with the local charts ¢ and ¢, given by

$o,z * Sl — .Fx
S+—>§

@17x181—>fx
s—s, forb<axz<1
s—>gs, forO<xz<b

where g : S — S! is a rotation by .

CoC O C >

Uo Ul UO N Ul
Figure 2.2

The only nontrivial coordinate transformation is

ide1 ifb<az<1,

—1
x) = [e) T —
901(x) = o4 © 1, {g if0<az<b.

The group G = {id, g} = Z, is again the structure group. The twisted
torus is associated to the Klein bottle and therefore, it is nontrivial,
since one of two associated bundles is trivial if and only if the other is
also trivial.

If we take ¢y , to be also the identity, then instead of the twisted torus
we obtain the trivial bundle. Defining

fo:Fo — Fa
s —> dgs,
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where d, is the rotation in S' by the angle 7z, we obtain a map from
the trivial bundle into the twisted torus that is compatible with the
altases if we use as structure group not only G = {id, g}, but the whole
rotation group SO,. By passing to the larger group SO,, the twisted
torus turns out to be equivalent to the trivial one. On the contrary,
neither the Moebius strip, nor the Klein bottle can be trivialized by
passing to a larger group, since their associated fibrations are nontrivial.

(cf. 1.2.9).

2.4.1 Vector Bundles

A specially important role in algebraic topology, algebraic geometry, and
differential geometry is played by the vector bundles, which constitute a
special class with an interest of its own. See [1] for a more detailed exposition
on them.

2.4.12 DEFINITION. A real (resp. complex) vector bundle of dimension n is
a fiber bundle {¢ = (R", GL,,(R), B; F, A), (resp. { = (C", GL,(C), B; F, A)).
By requiring that ¢, : R® — F, be an isomorphism for every ¢ € A, we
may furnish F, with a vector space structure, independently of the local
chart ¢ with x € U,,.

The usual operations of vector spaces can be extended to vector bundles.

Let V' be a vector space and V* be its dual. An isomorphism f:V — W
induces a dual isomorphism f*: W* — V* and this in turn induces

feT v —
2.4.13 DEFINITION. Given a vector bundle

¢ =(R",GL,(R), B; F, A),
its dual vector bundle is defined by

¢ = R" = (R")", GL.(R), B; F*, A") ,
where
Fr={(F) [ze B}, ¢ ={(g)" : (R")" — (F2)"}

for ¢ € A. One has for ¢, € A

(Vi) opr = (¥, " o p,)*
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and (¢! o ¢,)* is an automorphism of (R")* = R" and hence it lies in
GL,(R). If we represent 1, ' o ¢, (with respect to the canonical basis of R™)
by the matrix A,, then (})~! o is represented by (A!)~!, thus depending
continuously on x.

2.4.14 DEFINITION. Let
& = (R",GL,(R), B; F1, A1) and & = (R™, GL,,,(R), B; F3, As)
be vector bundles. Their Whitney sum is the vector bundle
& &&= R"™, GLyn(R), B; F, A),
with
Fo=Fra®For and @0 = 012D e R =R"OR™ — F,.
¢1,; and @y ; run independently along the atlases A; and As,
9ij(w) = SOi_,gi@j,x = g14j(z) © gouj(x) : R™™ — R

is an element of GLj, 1 (R).

2.4.15 DEFINITION. Given two vector bundles
& = (R*,GL,(R), B; F1, A1) and & = (R™, GL,,(R), B; F2, As) ,
we define their tensor product as the vector bundle
& @& = (R™, GLum(R), B; F, A)
with
Fo=Fia @F and @, = 01, @ P2, : R =R"@R"™ — F.

Different isomorphisms R™ = R"™ @ R™ give origin to different equivalent
vector bundles.

For other possible constructions see [1].
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2.5 PRINCIPAL BUNDLES

The previous considerations on coordinate transformations show that for
the classification of fiber bundles over B with structure group G it is not
necessary to know the fiber F' (on which G acts effectively, (cf. 2.4.7, 2.4.8
(a), 2.4.9). Thus one may choose a convenient fiber, and the same structure
group, namely G, is a good candidate. In this case (as we shall see) it is
possible to endow the fibrations and their corresponding fiber bundles with
an additional structure, (namely, an action of G on the total space).

If G is a topological group and F' = (G, we assume in this section that G
acts by left translation on F.

2.5.1 DEFINITION. Let G be a topological group. A principal G-bundle (or
simply, a principal bundle) is a fiber bundle of the form

that is, a fiber bundle whose fiber coincides with its structure group with the
effective action given by left translation.

For a principal bundle, using ¢, : G — G, we may transform the right
translations of G into a right action of G on G, as follows.

Take u € G and z € G,, and define the action by

2u= (s 2.

It is easy to check that this action is independent of the choice of ¢ with
r € U, and that the properties 2.2.12 (a) and (b) hold. These actions
determine a right action

pe  ExG—FE,

(E' = U,cp Gs, if the G, are disjoint to each other).

2.5.2 DEFINITION. Let G be a topological group. A principal G-fibration
(or simply, a principal fibration) is a pair (p, p) consisting of a fibration p :
E — B and a right action p: E x G — FE such that the diagram

ExG-L-F

projli \LP

E B
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is commutative; that is, for every x € E and g € G, one has that p(zg) =
p(x).

A fiber map (f, f) : p — p’' between principal G-fibrations is called a
principal map if

flzu)=f(z)u, z€eE, ued,

in other words, if the map f : E — E’ is equivariant.

Again, principal G-fibrations and principal maps build a category.

The trivial fibration proj, : B x G — B, together with the action p :
(BxG)xG — B xG given by p((x,v),u) = (x,vu) is a principal fibration
called the trivial principal G-fibration. If A C B, then p : Ex G — FE
induces a map pa : (p7tA) x G — p~ 1A that equips ps : p A — A with
the structure of a principal fibration. We shall denote it again by pa.

A principal fibration (p, p) is called locally trivial, if for every z € B, there
is a neighborhood U of z and a principal equivalence (that is, a principal map,
that is an equivalence) between (py, py) and the trivial principal G-fibration
over U.

2.5.3 Theorem. The assignments

§— (pf, Pe)

determine a functor from the category of principal G-bundles to the category
of locally trivial principal G-fibrations. In particular, they assign to the trivial
principal bundle, the trivial principal fibration (cf. 2.5.22).

Proof: First we show that p¢ is continuous. For that we recall the definition
of the topology of F, 2.3.14. Let A be an atlas for £. In the diagram

UweA{¢}xU¢xGxGL>U@€A{¢}><U¢><G

@Xidgl \th

Ex G b,

p

let p’ be given by p'(¢, z,v,u) = (¢, x,vu). The diagram is commutative,
is an open map (see 2.3.18), and therefore, also ® x idg is open. Thus it is
an identification. Since ®p’ is continuous, one proves the assertion.
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The fibration p = p¢ is locally trivial, since for every ¢ € A, ® induces a
principal map

U, x G 4 p U,
U,.

If € is trivial, that is, if its atlas consists of just one chart ¢, then the previous
considerations imply that p is trivial, through the trivialization

P=0:U,xG=BxG—p'U,=E.

By 2.3.22, we still have to prove that the determined fiber maps are principal
maps, that is, that they are equivariant. Namely, fA(zu) = f(z)u, z€ Eeue
G. Take pz = p(2u) =z € U, and fr =y € Uy. Then f, =, 0 g(z) o o7,
and all three maps on the right-hand side are equivariant, i.e., compatible
with the right action of G, (cf. 2.5.1). From 2.3.19 one has

~

flzu) = fo(zu)
= ¢y 0 g(x) 0 @, ' (2u)
= (¢y o g(x) 0w, (2))u

O

2.5.4 Theorem. Let ¢ and & be principal G-bundles, and let (h,h) : ps —>
per be a principal map between their determined fibrations. Then there is a
unique principal G-bundle map (f, f) : € — &' such that f = h and f = h.

Proof: Uniqueness is clear by the definition of f (2.3.19). For the existence
we have that f has to coincide with h on the fibers. Thus, take

fe(2) =h(z) for ze€g,.

If y = f(z), then one has f,(z) € g, since (h,h) is a fiber map. We have to
prove that f, is bijective and that f = {f,} is compatible with the atlases.
Take p € A, ¢ € A, and v € G. Then

(1, ! fopa)(v) = (¥, " hipy) (ev)
= (¥, " hpg(e))v;

the last equality holds, since by assumption, ¢, L h, and ¢, are compatible
with the right action of G, (see 2.5.1, 2.5.2). Now g(z) = ¢, hp,(1) € G



84 2 FIBER BUNDLES

defines a bijective map from G into itself (left translation by g(z)); since 1,
and @, are bijective, so is also f,. We still have to prove (cf. 2.3.3 (C2)) that
the mapping x — g(z) is continuous on U, N f Uy. This follows, since we
may write g as the following composite of continuous maps:

—1 —1 P| _ ——1
UNf Uy—= U, N[ Uy) x G—=p; (U, N[ Uy)
T (x,1)1 (1)

e (Uy) @B— U¢XG—>prOj2 G

— f@w(l) = (y, ¢;1f90:c(1)) = ¢y_1f90z(1) :

Finally, ]?: h is clear. O

2.5.5 Theorem. A principal bundle & is trivial if and only if the fibration
pe has a section.

Proof: If € es trivial, so is also the determined fibration pe (see 2.5.3). There-
fore, p¢ has a section.

Assume conversely that pe has a section s : B — E. We define a map
f:BxG— E by f(b,v) = s(b)v. Hence (f,idg) is a principal map from
the trivial principal fibration proj, : B x G — B to p¢. proj; belongs to
the trivial principal bundle over B, so (f,idg) belongs to the bundle map
(2.5.4), that, by 2.3.13 is an equivalence; but this means that ¢ is trivial. O

2.5.6 REMARK. If £ is not a principal bundle, then p, may have a section,
even though ¢ is nontrivial. For example, for a vector bundle there is always
a 0-section.

Other interesting (related) example is the following.

2.5.7 EXAMPLE. The Moebius strip has a section induced by the map I —
I x I, given by s — (s,3) (see 1.1.1 (b)). Associated bundles are simulta-
neosuly trivial. The associated principal bundle of the Moebius strip is the
double covering map of the circle, which obviously does not have a section
(see Figure 2.3).

Intuitively, we can say that the total space of a trivial fibration is com-
posed of “layers”, that are the images of sections. If a principal fibration has
a section, we may “transport” it by means of the group action, so that each
point of the total space lies in the image of a section (one says that the total
space is “foliated”). Cf. the proof of 2.5.5.



2.5 PRINCIPAL BUNDLES 85

= =
S —

Figure 2.3

2.5.8 Theorem. For each locally trivial principal fibration p : B — B,
with group action p: E X G — FE, there is a unique principal bundle & such

that p = pe, p = pe.

Proof: Let {U; | j € J} be an open cover of B and let py, be trivial. Assume
the principal maps

(I)j : Uj X GﬁpilUj

describe the local triviality. We have to define ¢ = (G, G, B;G,.A). Obvi-
ously, we have to set G, = p~'(x). A = {p;}, v; = {pjz | © € U;}, and
iz G — G, will be given by ¢, .(u) = ®;(z,u), u € G. ;. is bijective,
since ®; is a homeomorphism. Since ®; is compatible with the right action
of G, p;, is also bijective, and one has

Soi_,zlgpj,x@)) = @Zzi@j,m(e)v7 VS UZ N Uj )

and we define g;;(x) = ¢; ,¢j.(€). So, g : Ui NU; — G is continuous,
because
(z, gij(w)) = @7 '@, 1).

A is thus an atlas for G (where G acts on itself by left translation). Hence,
¢ is a principal bundle.

If we now construct the fibration corresponding to &, we may ask if the
space IV = |J,.p G» recovers its original topology. This is, in fact, the case,
since the map

o: | JU;x G x {j} —E,

which according to 2.3.14 has to be constructed, must be an identification,
which is even an open map if one takes in F the original topology. On the
other hand, p¢ = p, since g; , is compatible with the right action (see 2.5.1).
All this shows the existence of a bundle ¢ with the desired properties. Let
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¢ be another bundle with these properties. From p; = pg one obtains that
both set bundles G and G’ are equal. The equality of the corresponding fiber
will be obtained after proving that the identity of the set bundles is a bundle
map (2.3.5, 2.3.8). But the identity of p; is a principal map. Therefore, 2.5.4
gives us the desired result. O

Let E be a topological group, G a subgroup of E, and B = E/G the set
of left cosets {zG | z € E}. We endow B with the identification topology
given by the natural projection p : E — B (that is, B is a homogeneous
space). The action p: E x G — E is given by p(z,u) = zu and turns (p, p)
into a principal fibration. We shall analyze under what conditions this is
locally trivial.

2.5.9 Theorem. If there exists an open neighborhood U of p(e) (where e =
1 € E is the neutral element), and a map s : U — p~tU such that pos = idy
(i.e., a section over U, or a local section), then (p,p) is a locally trivial
principal fibration.

Proof: Let x € B be any point, say x = p(z). Then U’ = zU is an open
neighborhood of « (E acts on B by left translation; 2.2.18).

The map s’ : U — p~ U’ given by y — zs(z7'y) is continuous, and
since
ps'(y) = p(zs(27"y)) = zps(z7y) = 227y =y,

it is a section over U’.

Let U be open in B and s a section over U. Then

UxG—p U

(x,v) —> s(z)v
is a principal map. It has as inverse the map

p iU — UxG

z— (p(2),sp(z) ™"

z),
which is also a principal map. Thus, p is trivial over U. This, together with
the first part of the proof, yields the desired statement. O

2.5.10 REMARK. The assumption of the previous theorem (the existence
of a local section) holds, for example, if E is locally compact and finite
dimensional (e.g. a finite CW-complex) and G is a closed subgroup (cf. [15,
Appendix 1))
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The following special case is easy to grasp. Take E to be a Lie group and
G a closed subgroup, (cf. Chevalley [2, p. 110, Prop. 1]).

2.5.11 DEFINITION. Let £ = (G, G, B; G, A) be a principal bundle and H a
closed subgroup of G. We define a bundle

¢/H = (G/H,G, B; F, A)

as follows. H acts on every G, on the right. Consider the equivalence relation
in G, given by z; ~ 2o if there exists h € H such that z; = zh. Let G,/H
be the set of equivalence classes. Setting F, = G,/H we may define

A={Glec Ay, ¢={3. |vel,}
such that
o.: G/H — F,
is the bijection canonically induced by ¢,. Thus @Z; lop,:G/H — G/H
is induced by ¥ o ¢, = g(z) € G.

If the natural action (2.2.18) G x G/H — G/H is effective, then {/H
with this action and structure group G' = G is a fiber bundle.

If this action is not effective, then from uvwvH = vH (v € G, u € G), one
obtains v'uv € H, so that v € vHv™!; thus, u € Noee: vHv™!. The group
Hy = (,eqvHv™" is the maximal normal subgroup of G contained in H.
The natural action

G/Hyx G/H — G/H
is now effective and defining G = G /Hy, §/H turns out to be a fiber bundle
(considering ¢! o 3, as an element of the quotient group G/Hy).

2.5.12 DEFINITION. Let p : E — B be the fibration corresponding to &
and p : E — B the one corresponding to §/H. H acts, as a subgroup of
G, on E. The set E is obtained from E by identifying with respect to the
action of H (i.e., dividing out the H-action). Let 7 : E — E be the natural
projection.

2.5.13 Lemma. 7 is an identification.

Prooi: The topologies of both E and E are given through the open maps ¢
and @ (2.3.14). Consider the diagram

UU, x G—"~JU, x G/H

E E.
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This diagram is commutative if one takes 7’ on each summand as the product
of the identity with the natural projection ¢ : G — G/H. ¢ is an open map,
therefore, also 7/. Thus, mo® = ® o 7' is an identification and hence also ®.
Finally, 7 is also one. a

2.5.14 DEFINITION. Let £ = (F,G, B; F,A) be a fiber bundle. The princi-
pal bundle ¢ = (G, G, B; G, A) associated to ¢ is described as follows.

We say that a map f : F — F, is admissible if o1 o f € G for p € A
and z € U,.

This definition is independent of the choice of ¢ such that x € U,.
Namely, take
G.={f|f:F — F,is admissible},

GG —G, givenby v (F-5F 25 F,);
that is, @,(v) = ¢, ov. Since ;' o (¢, 0v) = v € G, ¢, ov is admissible
and thus it lies in G,. @, is bijective. From
by Pulv) = U7t 0 gy 00 = g(2)v,
it follows that
A={¢o]pecA}

is an atlas and £ is associated to & (2.4.9). 0

2.5.15 EXERCISE. Prove that E can be constructed using the coordinate
transformations of £ and G as fiber (where G acts on itself by right transla-
tion).

2.5.1 Stiefel Manifolds

We use the previous ideas to make some computations of the homotopy
groups of the Stiefel manifolds, by defining adequate fibrations.

A k-frame (z1,...,2x) in R™ consists of k£ orthonormal vectors x; € R",
1<i<k.

2.5.16 DEFINITION. The set VS, r = {(21,...,zx) | (21,...,21) is & k-
frame in R"} C R™ with the relative topology induced by that of R is
called the Stiefel manifold (of k-frames in R™).
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The orthogonal group O,, acts on VS, (cf. Section 2.2) via

On X VSn,Ic — VSnyk
(A, (x1,...,2x)) —> (Azy,..., Azy),
since an orthogonal matrix A sends an (orthonormal) k-frame to an (or-
thonormal) k-frame. This action is transitive, but it is not effective. Let

(é1,...,€,) be the canonical basis in R™ and take zy = (eq,...,ex) € VS, k.
The equation Azy = 2y is equivalent to the fact that the matrix A has the

(b 5)

where 1 represents the identity matrix in O, and B € O,,_y.

Via
1 0
Br— (O B>

we include O,,_j as a subgroup (!) of O,. By 2.2.20, the mapping A — Az,
induces a homeomorphism

form

On/Onfk i) VSn,ka
(U1, ..., 0n) —> (V1,. .., Ug)

since O,, is compact and VS,, ;, is Hausdorff. We identify both spaces through
this homeomorphism.

Take k < [. Through the mapping

we may consider O,_; as a subgroup of O,_,. Mapping (z1,...,7;) to
(x1,...,xx) we obtain a map
VS VSnk
251
0,/0n O0,/Opn_ -

By 2.5.9, one has, in particular, that
On = VSn,n — VSn,k = On/On_k

is a principal fibration with structure group O,,_x. The only thing that one
has to be convinced of, is that the map (2.5.17) corresponds to taking left
cosets in O,, of the subgroup O,,_.
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By 2.5.11 and 2.5.12,
On/On_l — On/on—k

is a locally trivial fibration obtained from a fiber bundle with fiber O,,_/O,,_,
and structure group O,,_r/Hy, where

Hy = ﬂ BO,_,;B7'.

BeO,,_k

For k =1, Hy = O,,;. For k <, Hy = {1}; namely, take A € Hy, then
we can consider A as a map from R" % into itself via e; — Ae;, 1 < i <
n — k. Since k < [, every A; € O,_1 leaves the vector e; fixed, and since
BA, B 'Be, = Be,, every vector remains fixed under A = BA;B~!, that is,
A=1.

2.5.18 Theorem. 7;(VS, ) =0 fori <n—k.

Proof: By induction on k. For k =1, VS, ; = S""!. The map VS, x41 —
VS, k. is a locally trivial fibration with fiber VS, 1, = S" %71, From its
exact homotopy sequence we choose the exact portion

Wi(Snikiw — m(VSmkH) — Wl(VSnjk) .

The group on the left-hand side is zero if i < n —k — 1, the one on the right-
hand side, by induction hypothesis is zero if i < n—k. Thus, 7;(VS,, k+1) =0
fori <n—(k+1). O

2.6 TWISTED PRODUCTS AND
ASSOCIATED BUNDLES

In this section we show how the principal G-fibration determined by a prin-
cipal G-bundle relates to the fibration determined by an associated G-bundle
with an arbitrary fiber F.

2.6.1 DEFINITION. Let G be a topological group, F a right G-space, and F
a left G-space. There is a left action of G on E x F' given by

ExXFxG— ExXF,
(2,y.9) — (297", gy).
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This action is called the diagonal action of G on EEx F. We define the twisted
product of £ and F to be the orbit space

ExqgF=ExF/G

given by identifying (x,y) with (xg™!, gy) (see 2.2.21).> We denote the orbits,
namely the elements of E Xg F', by [z,y]. Observe that [zg,y] = [z, gy].

2.6.2 EXERCISE. Prove that the twisted product is functorial. More pre-
cisely, show that there is a category G-Top, whose objects are G-spaces and
whose morphisms are equivariant maps, namely maps f : X — Y such
that f(gz) = gf(x) (or f(xg) = f(x)g in the case of a right action), where
x € X and g € GG. Then prove that the twisted product is a two-variable
functor from G-Top to Top such that if f: X — Y and f/: X' — Y are
equivariant, then they induce a map f xg f': X xg X' — Y x5 Y’ given

by [z, '] = [f(x), f'(«")].

2.6.3 Lemma. Toke E = B x G with the right action p : E x G — E
given by ((b,g),h) — (b,gh), and let F' be a (left) G-space. Then there is a
canonical homeomorphism o : ExgF — B x F such that proj,a[(b, g),y] =
b; in other words, one has a commutative diagram

(BxG)xgF = B X F
\ %Ojl
B,

where the top arrow is a homeomorphism.

Proof: The properties of the (left) action of G on F' (see 2.2.12 (a)) imply
that the map o : B x G x FF — B x F given by &/(b,g,y) — (b, gy)
is compatible with the identification B x G x F' — (B x G) xg F, and
thus it induces a map « : (B X G) Xxg F — B x F. On the other hand,
the map 8 : Bx F — (B x G) X¢ F given by §(b,y) = [(b,€),y], where
e € G is the neutral element, is the inverse of a. Hence o and [ are inverse
homeomorphisms with the desired property. O

Assume that p : E — B is a principal G-fibration. Then we have a right
G-action on E such that for every z € F, p(xg) = p(x) (see 2.5.2). Consider
the map ¢’ = poproj, : E x F — B. One has that ¢'(zg,9 'y) = p(zg) =
p(z) = ¢'(z,y); therefore, ¢’ is compatible with the identification

EXF —FEXF/G=FExXxgF,

and thus it induces a map ¢ : £ Xxg F' — B. We have the following.

3This construction is sometimes known as the Borel construction.
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2.6.4 Proposition. Letp: E — B be a locally trivial principal G-fibration
and F a (left) G-space. Then q : E xXg F' — B is a locally trivial fibration
with fiber F.

Proof: 1t is enough to find an open cover {U,} of B and homeomorphisms
¢ : Uy, x F— ¢ 1(U,) such that ¢q@(b,y) = b.

Since p : E — B is locally trivial, there is an open cover {U,} of B and
homeomorphisms ¢ : U, x G — p~1(U,) such that pp(b,g) = b and, for
every h € G, (b, gh) = ¢(b, g)h.

Observe that ¢ 'U, = p~'U, X F. By Lemma 2.6.3, there is a homeo-
morphism
a: (U, xG)xgF — U, x F.

Since ¢ is an equivariant homeomorphism, by 2.6.2 we can define
p=(pxgidp)oa U, x F — ¢ 'U,=p 'U, xg F.

Since both a~! and ¢ X ¢idp are homeomorphisms, @ is one too. Using 2.6.3,
one easily verifies that ¢ o ¢ = proj, : U, x F' — Uy,; in other words, the

diagram
U, x F p U, xg F
Uw
commutes. O

2.6.5 DEFINITION. Given a locally trivial, principal G-fibration p : £ —
B, we call the locally trivial fibration ¢ : £ = FE xg F — B its associated
fibration with fiber F'.

We have the following, that is the main result of this section.

2.6.6 Theorem. Take a principal G-bundle ¢ = (G, G, B;G,A), and an
associated G-bundle § = (F, G, B; F, A) with fiber F. Let p =pe, : E — B
be the locally trivial fibration determined by £ and ¢’ = pe : E' — B the
locally trivial fibration determined by &. Then ¢' : E' — B is the fibration
with fiber F' associated to the principal fibration p : E — B.

Proof: By 2.3.14 and 2.3.18, we have open identifications

: | JU, xGx{p} —E,

peA
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o U x Fx{o} — E.
peA
Since @ is an open identification that is also equivariant, it is an easy exercise
to prove that

(I)X(;idpi (U USOXGX{(Q}) XgF—>E><GF,

peA
is also an open surjective map, thus an identification.

Since by 2.6.3, (U, x G x {¢}) X¢ F is canonically homeomorphic to
U, x F x {¢}, then one has a canonical homeomorphism

W:(UUWXGX{QO}) ><GF—>UU¢><F><{<p}

peA peA

such that W[(b,g,¢),y] = (b,gy,¢), for p € A, be U,, g € Gandy € F.
Since &’ o ¥ is obviously compatible with the identification ® X idp, it
induces a homeomorphism ¢ : £ xg F' — E’ such that the triangle

EXGF ~

N4

B

commutes, where ¢ : £ X FF — B is as in Proposition 2.6.4. O

2.7 INDUCED BUNDLES

Given a fiber bundle over a space B and a map A — B, we study here how
this map induces a fiber bundle over A.

2.7.1 DEFINITION. Let ¢ = (F,G, B; F, A) be a fiber bundle and o : A —»
B a continuous map. We define a new fiber bundle

ot (&) = (F,G, A: F, A)

by the following:

—~

Fo = Jra(a)
F=1{: F— F,laca ' (U,)}
Sza = Pa(a)

A={F|pe A}
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It is easy to check that 2.3.1 (B1)—(B3) hold. The fiber bundle a*(&) is called
the fiber bundle induced by & through the map a.

In case that a: A < B is an inclusion, the induced bundle a*(&) is called
the restriction of £ to A and is usually denoted by | A.

2.7.2 EXERCISE. Prove that through a constant map, a trivial bundle is
induced.

In what follows, we analyze the relationship between theprevious defini-
tion and that of an induced fibration (see 1.4.22).

Let E —> A be the fibration induced by p = p¢ through o : A — B.
Then, as sets, £ = Useata} x Fq is equal to E,-¢). (Observe that for the
construction of the fibration corresponding to &, one has to provide that the
fibers are mutually disjoint; see 2.3.14). However, it is also true that both
E and E* (&) have the same topology. For seeing this, one has to prove that
the map D : Us; x F=a'U,x F — Eis a homeomorphism over some
open set; thus the map ng Us x FF — E is an identification (cf. 2.3.14).

The image set EIVD(oflUw X F) = pta~'U, is open in E, and one has
D(a,v) = (a,2) with 2z = F,(v) = Pa(a)(v) = P(a(a),v). Therefore, o is
continuous. The inverse map d! is also continuous, as one deduces from
v = proj,®1(2).

We have proved the following result.
2.7.3 Theorem. o*(p¢) = pa+(e)- 0

We can define a bundle map
(@, a) :a"(&) — & by o) =id: F, — Faa) -
In fact, this is a bundle map, since
Vi) © % © Pa = V() © Pata) = Gup(0())

lies in G' and depends continuously on a € A. The next result follows imme-
diately.

2.7.4 Theorem. Let (", @) : a*(pe) = Par(e) — pe be the fiber map corre-
sponding to the bundle map (a*,a) : a*(§) — & (cf. 2.8.19). Then, a* = 3
(B asin 1.4.22). 0
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2.7.5 NOTE. Let £ be a fiber bundle. If {U; | ¢ € I} is the associated
cover and {g;;} are the corresponding coordinate transformations, then the
associated cover of a*(€) is {a'U; | i € I}, and the corresponding coordinate
transformations are {g;;a}.

2.7.6 NOTE. If ¢ is a principal bundle, then also a*(§) is a principal bun-
dle. Analogously, o*(p) is a principal fibration if p is a principal fibration.
For this last, one has to define the right action of G on E by means of
((a,z),v) — (a,2v), (a,2) € E, v € G. Then (8,a) becomes a principal
map. In (Pa(¢), Par(e)) one obtains also the same structure as a principal

bundle (cf. 2.5.3).

2.7.7 Theorem. Let (f,a): £ — & be a bundle map between
£=(F.GAF,A and ¢=(F,G B;F, A).

Then there ezists a unique bundle map (h,id,) : & — a* (&) such that the

diagram of bundles
5 \faA\
(h,ida) l

(a*,a)

a*(£)

15 commutative.

Proof: The commutativity of the diagram requires to define h, = f,, from
where the uniqueness of h follows. The so-defined map h determines a bundle
map, since

ngohaoaaqu;(la)ofaoaa
lies in G and depends continuously on a € A, because (f, «), by assumption,
is a bundle map. O

There are some consequences of the previous result.
2.7.8 Corollary. & is equivalent to a* (&) overidy (2.3.13). 0

2.7.9 Corollary. If ¢ is equivalent to £ over idg, then a*(§) is equivalent
to a* (&) overidy for any continuous map o : A — B.

Proof: Let (f,idg) : £ — & be an equivalence. Then (f o a*, ) : a*(§) —
¢’ is a bundle equivalence. The assertion then follows from 2.7.8. g
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2.7.1 Functional Bundles

Let £ = (F,G, B; F, A) and € = (F,G, A; F, A) be fiber bundles. We call a
bundle map h : .7?(1 — Fp,a € A, b € B admissible if the homeomorphism
¢, o h o, liesin G. This definition is independent of the choice of the
charts ¢ and @ such that a € U, b € U,, as follows from

Y, tohoB, = (U, opy) 0w, ohoB, o (P, 0t),

since each of the compositions in parentheses lies in G, by definition of an
atlas.

2.7.10 DEFINITION. The functional bundle Apl(g, ¢) isa bundle E: (G, G, Ax
B; F, A), where

ﬁ(a,b) ={h: .7-A"a — Fp | h is admissible}

with atlas
A={(p,¢) € Ax A}
such that
(B0 : G — Flapy, (a,b) € Usx U,
is given by

v ppovod,t.

In order to check that the bundle Apl(g, €) is well defined, we have to
prove that ¢, cvo @, € Flap); that is, that it is admissible, and that
(@, ¢)(ap) Is bijective.

The former follows from
pp o(provod,op, =veG,
and the latter from the fact that one has an inverse of (@, ), given by
v @, ovoP,.

Now the question is if A is an atlas for some adequate group G. We have

~

(1;7 1?)(_,51,) (@7 @)(a,b) (U) = %_1 OPYpOVO @;1 o wa
= gup(b) v g5,5(a) "
= A (9006 (0). g5(0). )

if we define

M (GXxG)xG—G
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as the left action of the product group G x G on G given by

(U, u),v) — wvt .

As a matter of fact, this action is not always effective; namely, if uvu=! = v

for every v € G, one has, in particular, uti~! = e, that is, v = u and thus,
u € Z(G), where Z(G) denotes the center of the group G.

Take H = {(z,2) e G x G| z € Z(G)} and
G=GxG/H.

Since H C G x (G is a normal subgroup, Gisa group. The action of Gon G
induced by A (and again denoted by A) is effective and A becomes an atlas
for GG, since the mapping

Uz x U, N U&; X Uy 2 (a,b) — (g%@(a),gww(b)) ed

is obviously continuous.

Let (f, ) : £ — ¢ be a bundle map. If £ = Apl(g, €), the bundle map
determines a map s : A — Eg given by

Ad>a+—— (fa : J?a — fa(a)) S f(a,a(a))

that, by definition of a bundle map, is admissible. One has that ps(a) =

(a,a(a)).

2.7.11 Lemma. Let « : A — B be a continuous map. The assignment
(f,a) — s given above yields a one-to-one relation between bundle maps
(f,a) : & — & and continuous maps s : A — Eg such that ps(a) =

(a,a(a)).

Proof: We prove that f is compatible with the atlases A and A if and only
if 5 is continuous. That the map is bijective is obvious. The diagram

UsNa U, ! Us; x U, x G

commutes if

g(a) = (a,0(a), 930, © fu o Ba) and &(a,b,v) = (B, ¢)ap (v) = provoF, .
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The map ® defines the topology on Ez (see 2.3.14) and is a homeomor-
phism. The fact that s is continuous at a is equivalent to the fact that
‘:0;(1@ o f, 0 @, is continuous at a. This last means that f is compatible with

the atlases A and A. Since the sets Us; Na U, constitute a cover of A, the
assertion follows. O

2.7.12 Theorem. Let oy, a1 : A — B be homotopic maps. If A is a CW-
complex and & is a bundle over B, then the induced bundles of(§) and (&)
are equivalent over idy.

Proof: Let E: aj(€). We shall prove that there is a bundle map (f, ) :
& — & By 2.7.7, the bundle aj(€) is equivalent to & over id4. Let oy be a
homotopy between o and «;. Consider

A/T Ax B,

with the homotopy h:(a) = (a, as(a)). For t = 0 the diagram commutes if s
corresponds to the bundle map (af, ap) : £ —> Easin 2.7.11 (see 2.7.4). If
A is a CW-complex and p is locally trivial, then by 1.4.8 and 1.4.9, we can
lift h;, with the initial condition sy, say to a map s;. s; gives us by 2.7.11 a
bundle map (f, 1) : £— Bz 0

We have the following consequences of the previous result.

2.7.13 Corollary. If o : A — B is nullhomotopic, then o*(§) is a trivial
bundle (A is a CW-complex). O

2.7.14 Corollary. FEvery fiber bundle over a contractible CW-complex is
trivial.

Proof: Since £ = (id4)*(&), and since id4 ~ 0, by 2.7.13, £ es trivial. O

2.7.15 NOTE. The proof of Theorem 2.7.12 required the lifting of a certain
homotopy. The theorems of Dold [3], recalled in 1.4.14, allow us to weaken
the assumptions. One may either assume the space A to be paracompact,?
or the fiber bundle £ to be numerable, i.e., such that it has an atlas whose
corresponding cover is numerable. In this latter case, the induced bundle
a§(€) and the functional bundle are numerable.

4Every CW-complex is paracompact, as shown in [8].
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2.8 UNIVERSAL BUNDLES

In 2.7 we saw that homotopic maps induce equivalent fiber bundles. We now
ask the opposite question. Namely, if there is a bundle £ over an adequate
space B such that every bundle over A is induced through amap a: A — B.
Moreover, we ask if it is possible to choose ¢ and B in such a way, that the
equivalence of the induced bundles implies that the maps through which they
are induced are homotopic.

2.8.1 Existence and Extension of Sections

Let £ = (F,G, B; F, A) be a fiber bundle and p : E — B the determined
fibration. Let B be a CW-complex, A C B a subcomplex and s : A — F
a section of p over A, that is, a map such that the composite p o s is the
inclusion 74 : A — B.

2.8.1 QUESTION. When can s be extended to a section s : B — FE of p
over B (i.e., a section s such that 5|4 = s)?

The following result answers this question giving a sufficient condition.

2.8.2 Theorem. If F' is (n — 1)-connected, i.e., if m;(F) =0 for alli < n
(< 00), and dim(B) < n, then every section s over a subcomplex A of B can
be extended to all of B.

For n = 0 the theorem is trivial, since in this case B is discrete. For
n > 1 one has mo(F') = 0; namely, F' is path connected. Thus 7;(F') is, up to
isomorphism, independent of the base point. Before passing to the proo, we
need some preparation.

2.8.3 REMARK. Let B* be the k-skeleton of B, k > 0, and B~' = (). Take
a section s,_1 of p: E — B over AUB* ! k>0, and e a k-cell of B — A
with characteristic map a : B¥ — B, where B* is the unit k-disk. Before
passing to the proof, we need some preparation.

We have the following situation:

k-1 sg—19(algk—1)

Bk = B.
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The composition s;_1 o (a|ge-1) is well defined because the section sj_; is
defined on «(S*71), since a(SF1) C B*1. In case that we can find the
lifting 7, we can extend sj,_; to a section s’ over AU B*~! U e* by giving it
by
J() = {S‘“‘_ﬂ(x) ifoeAuBT,
ra~Y(x) ifxee”

One can easily check that s’ is well defined and continuous, since « is an
identification, and that it is a section. We need conditions in order for r to
exist.

2.8.4 Lemma. In the diagram

B

P

&

<
bS]

E
g
A

let p = a*(p) be the fibration induced by p through o and (5,«) the corre-

sy

- >
e )

sponding fiber map (1.4.22). The assignment s — [ o5 defines a bijective
function

{sections of p} — {liftings of a}.

Proof: If r : A — F is a lifting of «, namely, if por = a, let 5, : A — E be
the section a — (a,7(a)), ((a,7r(a)) € E, since a(a) = pr(a)). The mapping
r — S, is the inverse of s — S o s. O

Now we come back to 2.8.3. Consider the diagram

E FE
. T
PR P
P sk—1(algk) l
Sk—l - Bk — B

where p = a*(p)

According to 2.8.4 the lifting s;_1 o (a|gr) of a0 corresponds to a section
t: SF=1 — E of p over S¥=1 (more precisely, to a section in the fibration
induced by « o, which can be interpreted as restriction of p).

a*(€) is a bundle over a contractible CW-complex; therefore, it is trivial
(2.7.14). Thus, also p is trivial. Consequently, there is a homeomorphism f
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that makes the following diagram commutative:

projs Ja
—_—

2.8.5 Lemma. The section t can be extended to a section over B* if and
only if proj,o fot:S*¥1 — F can be extended to BF.

Proof: Lett' : B¥ — E be an extension of t; then proj,o fot’ is an extension
of proj, o f ot. Conversely, let g : B¥ — F be an extension of proj, o f ot.
Let ¢ : B — E be given by #/(2) = f!(z,¢(z)). Clearly, ' is a section
that extends ¢. O

Proof of 2.8.2: We proceed by induction over (the dimension of) the skeletons.

There exists always an extension sy of s to A U B, since the 0O-cells of
B° — A constitute a discrete subspace. Let s,_; be a section over AU B*~1,
(k > 1), that extends s.

There exists a section s, over A U BF that extends s:
If k£ > dim(B), we simply set s = sj_1.

If £ < dim(B) < n, then, by assumption, m;_1(F') = 0. Thus, every map
Sk~ — F is nullhomotopic and can thus be extended to B*. By 2.8.3-2.8.5,
Sg—1 can be extended to every k-cell of B — A. Since B is a CW-complex,
the so extended map s;, : AU B¥ — E is well defined and continuous. This
proves the theorem. O

The following theorem generalizes 2.8.2.

2.8.6 Theorem. Assume that £ is a numerable bundle (for instance, if B is
paracompact), F' is contractible, and A C B. Assume, moreover, that there
is a continuous map T : B — [0,1] with A C 77*(1) such that a section s
over A can be extended to 771(0,1]. Then s can be extended to B.

For the proof see Dold [3, 2.7, 2.8]. O
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2.8.7 NOTATION. If ¢ is any bundle, in what follows we shall write ¢ as

an (upper or sub-) index to indicate the parts that define it. So we have
& = (F% B, G5 F A%, and pe : E — Be will denote the determined
fibration.

2.8.8 CONSTRUCTION. Let § and 7 be fiber bundles with B = A, B, = B,
fiber F' and structure group G. We want to construct a bundle o with the
property that all bundle maps & — 7 are in one-to-one correspondence with
the sections of E, — B, (in analogy to 2.7.11).

Let v = Apl(&,n) be the functional bundle (2.7.10) and w the principal
bundle determined by 7 (2.5.14). Let

E, 25 Ax B 4

be the fibration determined by a.
The bundle « is defined as follows:

F* = U Fy = E, (as topological spaces),

beB

B,=A

Fo = U f&,b) = {h:F¢ — F.' | h is admissible and b is arbitrary} ,
beB

G =@,

oy F*=FE, — F given by
(v:F — F) = (vt FE— F)),
v" = {yi lac US}.

We have to check again that all these elements give us a fiber bundle. On
the way, we shall describe the action of G on E, = F“.

First assume that v is admissible; then also vo .1 (v, € ¢°, a € Uf,), is
admissible (cf. 2.7.1). Now,

Uy toa(v) = vop o,
= vo(g5,(a))
= \*(g5,(a),v)

if we define the action A\* : G x E, — FE, by AX*(u,v) = vou™! (u*
considered as a map F' — F). Moreover, \* is continuous; namely, if
p: E, x G — E, is the right action of G corresponding to the principal
bundle w, then

-1

A (u,v) = p(v,ut).
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2.8.9 DEFINITION. The fiber bundle « is called the partial functional bundle
of (&,m). We denote it by Apl,(&,n).

The equation
(2.8.10) E.=UFr=UU7FL, =5
acA acAbeB

is a set equality, and the diagram

E,——F,
p'yl lpa
AxB——A

commutes.
2.8.11 Lemma. The spaces E, and E, have the same topology.

Proof: Let ¢* and " be local charts corresponding to the open sets U C A
and V' C B. Consider the diagram

UxVxGmUXp;l(v)C—>Uwa

(2.8.12) %lz i%
p; (U x V)——p }(U x B) == p,'(U).

The maps ® determine the topologies on the total spaces FE.
We already had the equalities
G=F' =F“,
O, (a,b,w) = ¢l ) (w) = owo (p5) 7",
Oy (b, w) = i (w) = pyow,
o (a,v) = pPov=wvo (8",

that show that the diagram is commutative. If we endow £, with the topol-
ogy determined by 7, we have to show that p,'(U) is open in E, and that
®,, is a homeomorphism over p,*(U) (this way, the a-topology on E,, will be
determined). The map p, = proj, o p, is continuous. Thus, p;*(U) is open.
Moreover, the map @,| Uxpzl(vy 18 @ homeomorphism over p; WU x V), see
Diagram (2.8.12). If ¢" varies along the atlas A", we obtain that the sets
U x p,*(V) build an open cover of U x E,, and that the sets p' (U x V)
build an open cover of p,*(U). Hence, we obtain the assertion of the lemma.
g
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2.8.13 NOTE. In 2.7.11 we assigned to every bundle map (f, f) : £ — 7
amap s : A — E, = E, which is obviously a section of p,. It is easy to
see that this assignment yields a bijection between bundle maps & — 71 and
sections of p,.

2.8.2 n-Universal Bundles

We characterize here bundles that are universal for fiber bundles over spaces
B of bounded dimension.

2.8.14 DEFINITION. Let n be a fiber bundle and w the associated principal
bundle. n will be called n-universal (n < oo) if m;(E,) = 0 for ¢ < n. The
determined fibration p, is also called n-universal.

2.8.15 Theorem. Letn be an n-universal fiber bundle, A a CW-complex of
dimension < n, Ay C A a subcomplex and & a fiber bundle over A. Then any
bundle map £|Ag — 1 can be extended to a bundle map & — 1.

Proof: Note that Apl, ({|Ao,n) = Aply(&,n)|Ag. With this remark and 2.8.13,
using the bundle map &|Ay — 7, we obtain a section sy : Ay — E,
(v = Aply(&, 7)) of p, over Ay. By assumption, m;(F*) = 0 for i < n, since
F* = E,. Theorem 2.8.1 guarantees that we can extend sy to a section
s: A — E,. From s, we obtain a bundle map (2.8.13) that extends the
given bundle map &|Ag — 7. O

2.8.16 DEFINITION. Let n be a fiber bundle. We may assign to each homo-
topy class [a] € [A, B,] an equivalence class of fiber bundles over A; namely

where [a] denotes the homotopy class of the map a and [{] denotes the
equivalence class of the bundle &.

By 2.7.12, this assignment is well defined (if A is a CW-complex). Denote
by kc(A) the set of equivalence classes of fiber bundles over A with fiber F
and structure group G, and let (n) : [A, B,] — kq(A) be the function just
defined.

2.8.17 Theorem. Let n be an (n + 1)-universal fiber bundle and A a CW-
complex such that dim(A) < n. Then the function Q(n) : [A, B,] — ka(A)
18 bijective.
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Proof: Q(n) is surjective: Let £ be any fiber bundle over A. In Theorem
2.8.15, choose Ay = 0; thus, it gives us a bundle map & — 1. From 2.7.8
and the definition of {2(n) one obtains the assertion.

Q(n) is injective: Let ap,oq : A — B, be maps such that «g(n) and
aj(n) are equivalent over idy. Take & = «f(n); the assumed equivalence
of this bundle with «f(n) gives us a bundle map (fi, ;) : £ — n. Take
fo = af, and let proj,; : A x I — A, ¢ = (proj,)*(¢), and i, : A — A x [
be such that i,(a) = (a,v), v = 0,1. We have bundle maps

(GED) (fusaw)
R R =1

since (i}, 1,) is an equivalence, (cf. 2.3.13), and from there, a bundle map

CI(A>{0}) U (A x{1}) — .

By Theorem 2.8.15, there is an extension (f, «) : ( — n of this last bundle
map, since dim(Ax ) = dim(A)+1 <n+1, Ax ({0}U{1}) is a subcomplex
of Ax I, and nis (n+ 1)-universal. In particular, o : A x I — B, is a map
such that a o4, = «,,, that is, ay and aq are homotopic. O

2.8.18 DEFINITION. If 7 is universal, namely oo-universal, or n-universal
for all n, then the space B, is called classifying space for the group G. It is
frequently denoted by BG.

2.8.19 REMARK. Let g : A — A be continuous and £ a bundle over A.
The bundle map & — ¢*(£) induces a function

g = k(g) - ka(A) — ka(A')
converting kg into a functor. If 7 is a fiber bundle, then the diagram

0
(A, B,] 2 ko (A)

g#l ig*

(', B,) 5 ho(A)

is commutative, that is, Q(n) is a natural transformation of functors. If 7 is
universal, then the functors [ , B,] and kg are naturally equivalent. Given
two universal G-bundles 1 and 7, we obtain a natural equivalence of functors

[ 7B?7] —>[ 7B77’]'

If both B, and B, are CW-complexes, from our previous theorems, we have
maps « : B,y — B, and 8 : B, — B,y such that ’ = o*(n) and n = 5*(1').
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Then one has n = f*a*(n) = (af)*(n) and ' = (Ba)*(n’), and since n and
7' are universal, o f ~idp, and 3o a ~ idp ,. Thus, B, and B,y have the
same homotopy type. This shows, in particular, that the classifying space

BG is well defined, up to homotopy type. For further generalizations of this
see Dold [3, §7.].

2.9 (CONSTRUCTION OF UNIVERSAL BUNDLES

In this section, we shall construct universal bundles in several instances.

2.9.1 Grassmann Manifolds

We construct here universal bundles for the groups G = Oy.

As we did in section 2.5, via the mappings

A0 10
A>—>(O 1), resp. B>—>(0 B)’

we shall consider the groups Oy, resp. O,_, as subgroups of O,. Thus,
also Op x O,,_y is a subgroup of O,,. From 2.5.9-2.5.12, taking £ = O,,
G =0y x O,,_g, H=0,,_;, we obtain the following result.

2.9.1 Proposition. The canonical projection
q: On/On—k — On/Ok X On—k

15 a locally trivial fibration. Corresponding to it there is a fiber bundle ) = 1y,
with fiber

(2.9.2) G/H = Oy
and structure group

(2.9.3) G/Hy = 0.

This is true, since O,,_j is the maximal normal subgroup of O x O,,_x
contained in O,,_. a

The action G/Hy x G/H — G/H corresponds, via the canonical iden-
tifications (2.9.2)—(2.9.3), to the group multiplication. Thus, 7 is a principal
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Oj-bundle and ¢ = p, is a principal fibration. One can easily check that
the right action of Oy on O, /0, associated to p, (cf. 2.5.1) is given by
([A], B) — [AB], where [A] € O,/0,_ represents the (left) coset of the

matrix A.

2.9.4 Theorem. The map q : O, /O, —> O, /O X Oy is an (n — k)-
universal principal fibration; that is, the fiber bundle 1,y is an (n — k)-
universal O-bundle.

Proof: Recall that O,,/O,_r = VS, k. By 2.5.18, m,(0,,/O,_x) = 0 for i <
n — k, thus the result. O

2.9.5 REMARK. We describe the fibration ¢ in a different way. For that,
consider the diagram

f

On/onfk V‘Sn,k

(2.9.6) qJ{ lpn,k
On/ok X On—k 7> Grn,k ;

where Gr,;, as a set, consists of the k-dimensional subspaces of R". If
(1,...,2) € VS, we denote by [z1,...,x,] the generated subspace, and
we define

DPrge(T1, . xp) = [21, ..., Tk -

We furnish Gr, , with the identification topology. The space Gt is
called the Grassmann manifold of k-planes in R™.

The map f is induced by the mapping
Avr— (Aey, ..., Aey),

(cf. 2.5.16) and the map f by the mapping
A— [Aeq, ..., Aeyl,

A € O,,. One can easily be convinced that Aleq, ..., ex] = [e1,...,ex] if and
only if A € O, x O,_;. With these definitions, Diagram (2.9.6) is com-
mutative. The map f is a homeomorphism; the map f is bijective and,
consequently, it is also a homeomorphism, since both ¢ and p,,  are identifi-
cations.

The pair (f, f) is a principal map if one defines the action

(2.9.7) VS, X O 25 VS,
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by
(1, ..., 28), A) — (21, .., 2%)A,

where the k-tuple (z1,...,z;) should be seen as a matrix with k& columns
x;; the columns of the product form an orthonormal k-frame that gener-
ates the same plane as (xy,...,x), and this is the k-frame we refer to by

(1, ...,x8)A.

Since the pair (f, f) is a principal map, by definition of the actions one
has
(ABey, ..., ABey) = (Aeq, ..., Aey)B,

and, obviously, both sides are the first & columns of the product matrix AB.

The (oo-)universal Og-bundles are obtained by passing to the colimit. Let
us consider the diagram

VS pe— VS p— - -

pn,ki pn-ﬁ—l,ki

Gy Grypy g p— - -

)

where the inclusions are induced by the canonical inclusion R"” =2 R" x {0} —
R™™!. One maps the k-frame (xy,...,x;) to its image under said inclusion.
For the Grassmann manifolds Gr,,; and Gr,41, the inclusion is similarly
induced. Thus, each square in the diagram commutes.

2.9.8 DEFINITION. Define

VS = colim VS, i ,

n—oo

Greor = colim Gry, 1,
n—oo

Doo = colimpy, i : VS — Grook -

n—o0

The space VS is the (co-dimensional) Stiefel manifold of k-frames in R>,

and the space Gry x is the (co-dimensional) Grassmann manifold of k-planes
in R*.

2.9.9 Theorem. The map pook : VSook —> Gl 1S a universal principal
Og-fibration.

Proof: We divide the proof in several parts.

(a) First we prove that p.  is continuous. The union topology in VS =
|U,, VS i is such that the canonical map from the topological sum [, VS, x
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into VS is an identification. Similarly for Grex (and for any colimit).
From the commutativity of the diagram

H VSTLJg I VSoo,k

Hpn,ki ipoo,k

H Gl"mk I Groo’k

one obtains the continuity of ps .

(b) The actions my,; given in (2.9.7) are compatible with the inclusions
VS, C VSnt1k. Namely, the diagram

VSn,k X Ok(—> V8n+1,k X Ok

mn,kl imnﬁ»l,k

>
Vsn,k VSn+1,k
is commutative, as one may easily verify. Define
Moo, = colimmy, i, : coim(VS,, ; X Of) — VSoc i -
n— o0 n—oo

As sets, there is an equality

COliHl(VSmk X Ok) = VSOOJQ X Ok .

n—oo

Besides, both spaces have the same topology, as one sees in the commutative
diagram
(H VSn,k) X Ok e VSooJc X Ok

|

H(V‘Sn,k X Ok) HCOliHl(VSn’k X Ok) s

because a is an identification, since Oy is compact. Thus Oy, acts on VS i
on the right.

(c) We now prove that py is locally trivial. Let us consider inside Gry,
the set U, of the planes E that are mapped onto R™ under the projection
R* x R"* — R* (see Figure 2.4).

One has that Uy, = Uyq1 N Gry . Uy is open in Gr, ; (cf. Milnor [11,
2.25 (a)]). Thus, Us, = U, Un,k is open in Gro . (Analogous considerations
hold for k-planes that are mapped surjectively onto any other product of &

factors R inside R", and not necessarily the first k& of them.) The fibration
Dn.k 18 trivial over U, ;. Namely, we shall construct a particular trivialization

. —1
Ong t Unge X Op — pp i Uni
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Rk

Figure 2.4

as follows (cf. 2.5.5). First we need a section
S Un,k — p;}gUn,k7

and we define
Onk([z1, ..., 2k], B) = (s[x1, ..., xx]) B;

the section is obtained as follows. Each plane E € U,y is generated by
exactly a k-tuple z1(F), ..., xx(E) of vectors of the form

.T1<E) = (]., 0, e 70, xk—l—l,ly e ,In’1>
QTQ(E) = (0, ]_, e ,O, xk-i-l,?? e ,CL'mQ)

Observe that the n-tuples (0,...,1,...,0,Zg414,-..,%n;) are the solutions
of a system of n — k linear equations with n unknowns. They are clearly
linearly independent.

The assignment F — (z1(E), ..., z,(E)) € R™ is continuous (cf. Milnor,
op. cit). Moreover, the orthonormalization (z1(E), ..., zx(E)) — (T1(E), ..., Zx(E))
given by the Gram-Schmidt process is also continuous (namely, one can give
explicit formulas for the orthonormalized basis; cf. for instance, the formulas
given by Langwitz [?, p.74]). We thus may define

s(E) = @(E), ..., 7w(E)) € VSps.

It is an easy matter to convince oneself that all maps ¢,, , for different values
of n are compatible and glue together to yield a map

1
Pook + Uso ks X O —> p 1 Uso i

and the map ¢, as a colimit of homeomorphisms, is also a homeomor-
phism. Of course, it is also a principal map over the identity map of U k.
Thus, pso i is trivial over Uy k.
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(d) We prove that m;(VS« ;) = 0 for every i. This follows from the next
lemma.

2.9.10 Lemma. Any compact set K C VS, lies inside some VS, .

Before proving this lemma, we come back to statement (d) in the proof
of 2.9.9.

Let f:S" — VS x represent any element of m; (VS x). Its image f(S)
is a compact set, and thus, by 2.9.10, it lies inside VS, for some n. Let n
be large enough that n — k > 4. Hence, f is nullhomotopic as a map into
VS, k, and thus also as a map into VS . This proves the statement.

Proof of 2.9.10: If the statement of the lemma were false, then there would
be a sequence pq, pa, ... of points of K such that p, & VS, for all n. But
since K is compact, the sequence {p; | i € N} has an accumulation point py.
Take any subset S C Q = J~{p:}. For every n, SNVS,, ; consists of only
finitely many points, and therefore, it is closed in VS and also in ). Thus,
(Q is discrete, which is a contradiction of the fact that py is an accumulation
point of the sequence. O

We now pass to the last part of the proof of 2.9.9.

(e) By 2.5.8, the Definition 2.8.14, and the previous parts (a)—(d) of the
proof, we have that p ; is a universal principal Oj-fibration. a

2.9.2 The Milnor Construction

Let G be an arbitrary topological group. We want to construct a univer-
sal principal G-fibration pg : EG — BG. First we shall give a formal
description of ps and then we shall explain the geometrical meaning of the
construction.

2.9.11 CONSTRUCTION. First we describe EG as a set.
Consider sequences

(tl,Ul,tg,Ug, ce 7ti7vi7 .. )

such that
tiefz[(),l], UZ'EG, i:1,2,3,...,

and t; # 0 only for finitely many values of ¢ and > .~ t; = 1. Two such
sequences (t1,v1,t2,v9,...) and (&}, v],t5, 5, . ..) are equivalent if
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(a) t; =t for every i, and

(b) for every i, v; = v, or t; =t, =0.
We denote by t1v; 4 tavs + - - - = z the equivalence class of

(tl,Ul,tQ,’Ug, .. ) .

(We just have to be careful to respect the ordering of the terms, and of
course, write the terms with coefficient t; = 0.) Let EG be the set of all
these equivalence classes z.

We shall now furnish EG with a topology.

There are (coordinate) maps

ti: FG — I,

vy +lavg + - - V> 1,
v 1 1710,1] — G,
t1v1 +tovg + - - - > ;.

Observe that the maps t; and v; are well defined. An element of EG is
determined by its coordinates, namely, by its images under the maps t; and
v;. We endow EG with the coarsest (smallest) topology that makes all these
maps continuous. The meaning of this method of generating a topology is
explained in the next lemma, that characterizes the topology and is easy to
prove.

2.9.12 Lemma. A map f : X — EG is continuous if and only if the
composed maps t; o f and v; o (f|w,0n-1(0,1]) are continuous. O

We now define a right action p: EG x G — EG.

This action is given by
p(tlvl =+ tQUQ + e ,U) = t1<’01u) + tQ(UQU) + e

This action p is continuous, as one easily proves using Lemma 2.9.12; namely,
the diagram

EG x G-~ EG

projll lti

EG I
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commutes. Thus ¢; o p = ¢; o proj; is continuous, and

p 10, 1] == £1(0,1] x G 2 1710, 1]
vixidi lvi
Gx G . G,

commutes, where p is the group multiplication. Thus v; o (p|p,1 =10 1]) is
continuous.

BG is obtained from EG by passing to the orbit space under the group
action p, that is, taking the quotient space under the equivalence relation

a,be EG; a~bs JueG with pla,u) =0,

(see 2.2.21).

Let pos : EG — BG be the quotient map. Then pg is a principal
fibration.

2.9.13 Theorem. pg is a locally trivial principal fibration. We denote by
N the corresponding fiber bundle.

Proof: Let us consider the sets W; = t;(0,1] and V; = pgW;. W; is open
in EG by the definition of the topology in EG. V; is open in BG, since
pa' (Vi) = Wi {Vi|i=1,2,...} is an open cover of BG. We shall prove
that pg is trivial over V.

We define maps @, : V; x G — W; by
(I)i (pG(tﬂ)l -+ t2U2 + - ),U) = tl(Ul’UJIU) + tg(UgU{llL) =+

We show that they are homeomorphisms.
®, is well defined.

Namely, if pg(tiv1 + -+ ) = pa(tivy +-- ) € V;, then one has t; = t/, and
there exists w € G such that v; = v;w for every j such that ¢; # 0. Thus

! Yu = vjv; 'y for such values of j.

[ /. I— _ —-1..—
v; = vyw and ViU u = vww Ty,
®; is bijective.

Namely,
(pg,vi) : Wi =t;1(0,1] — V; x G

is an inverse of ®; and is continuous.

®; is compatible with the action of G.
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Namely,

Qi (pa(tivy + -+ ), urug) = tl(Ulvl-_lmUz) +
= tl <U10;1U1 —+ .- )’UQ

= ®;(pa(tivy + -+ ), ur)usg .
®; is continuous.
Namely, ®|y; (e} is continuous, since
®i(pa(a),e) = pla,vi(a)™"), a €W,

and since
(I)i(xa u) = p(q)l(xa 6)7 u)a

®, is also continuous. a

We still have to prove that m;(EG) = 0 for every i. Before doing it, we
explain the construction of EG.

Counsider inside EG the subset
EkG:{t1U1++tkvk++t]U]+|tJ:0 lf j>k}}

For example, a point t,v; +tovy € E?G can be described by a triple (¢, v1, vs),
t =1t (1 —t=ty), since t; + to = 1, where the triples

(0,v1,v2) and (0, v}, vs)
are identified, as well as are the triples
(1,v1,v2) and (0, vy, vy).

In other words, E?G, as a set, is the join G x G (see page 10), up to the fact
that the topology of G * G might be finer (larger). Analogously, one may see
that, up to topology, E3G can be considered as (G * G) x G, and so on.

2.9.14 Theorem. m;(EG) =0 for every i > 0.

Proof: Defining
sk(tlvl + t21)2 -+ - ) = Zt]’,

we have a continuous map

sp: FG — 1I.
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Take U, = 3;1(0, 1]. Then, Uy C Uy for k > 1, and |, , U, = EG, since
for every t1v; +tova+--- € EG, Z;’il t; = 1. Because Uy, is open in E'G and
{Ux} is a cover of EG, each compact set in EG lies in some adequate U,,.

The image of the sphere S under a continuous map is compact and thus
lies in U,, for some n. Thus, the theorem will be proved, if we prove that
every Uy is contractible in FG.

We define a homotopy h : U, x I — EG by

tH—t)si(@) . if i<k
t] (e} h : (a’t) [EEEN Sk(a) ](a’) 1 j = Iy
(1 —1)t;(a) if j >k,

vj o h(a,t) — v;(a) if tjh(a,t) > 0.
One has that

Sty (ast)) = I DD 0y 4 (1)1 - sufa)

sk(a)

=1,

so that, indeed, h(a,t) € EG.

By 2.9.12, h is continuous. One has that h(a,0) = a and h(a,1) € E*G (=
s;.1(1)). We now attach to h another homotopy d : E*G x I — E*1G given
by

(1-Oti(a) 5 <k,
tiod: (a,t) — qt it j=~k+1,
0 if j >k+2;

; if j <k
vjod: (a,t) —> v;(a) 1]_ ’

e ifj>k+1.
One has that d(a,0) = a and that

d(a,1) = Ovi(a) + 0+ -+ 0vg(a) + le+0e 4+ 0+ - -
=0e+0e+---+0e+1le+0e+---;

in other words, d contracts E*G inside E¥*1(G in one point, and since h(a, 1) €
E*G we have the desired result. O

2.9.15 REMARK. In fact, EG is contractible. Cf. Dold [3, §8].
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If  : G — G’ is a continuous homomorphism between topological
groups, then we have a fiber map

(6,5) S pa — por

given by

e(tlvl + - ) = t10(v1) =+ t20(U2) +oee,
Ope(tivg + -+ ) = per (t10(v1) + t20(vy) + -+ ) .
0 is well defined.

In 2.4.10 we assigned to 6 a natural transformation
0, : kG — ]fgl s
(see 2.8.16 for the notation).

The next diagram
(A, BG] " kg(A)

| Jo

Let V; C BG be the open set defined in the proof of 2.9.13, and corre-
spondingly, V/ € BG’. One has that 5_1(1/;_1) = V.. Let [f] = [A, BG].
0.Q(ne)[f] is represented by a bundle with open cover {f~!(V;)} and coor-
dinate transformations

Frvynwv) Lviny, e Lo

and Q(ng )04 is represented by a bundle with cover {f ’15_1(\/{ )} and coor-
dinate transformations

/

FOVHN V) L v)NE () S Vi =5 @
where g;; and gl’-j are the coordinate transformations of ng and 7ng/, respec-
tively.

Since 571(‘/;-’ ) = Vi, both covers coincide. It is, therefore, enough to check
that 6 o gi; = g;; 0 0. But

6)giJ‘pG(tl'Ul + tovg + - - ) _ H(Uivj_l)

gz{gppG(tlvl o) = gngG' (t10(v1) + tovg + -+ -)
= 0(112-)6?(21]-)_1.



CHAPTER 3

SINGULAR HOMOLOGY OF FIBRATIONS

3.1 INTRODUCTION

3.2 SPECTRAL SEQUENCES

3.2.1 Additive Relations

We shall introduce here the concept of the subtitle, since it is a very conve-
nient formalism for studying spectral sequences.

3.2.1 DEFINITION. Let A and B be abelian groups (which we write addi-
tively). A relation f : A — Bis atriple f = (A, B, F') such that FF C Ax B
(cf. 2.3.23). We say that the relation f is additive if f is a subgroup of A x B.
If f is on the one hand a function of sets, and on the other, an additive re-
lation, then f is a group homomorphism.

In what follows, we shall only consider additive relations. Let f =
(A, B, F) and g = (B, C, H) be relations. We define the composition go f as
the triple (A, C, H), where

H={(a,c) e AxC|3be B with (a,b) € F, (b,c) € G}.

The relation g o f is additive again. Abelian groups, together with additive
relations, constitute a category. Given a relation f = (A, B, F'), we define its
inverse relation by

1= (B,A, FY), where F~!'={(b,a) € Bx A|(a,b) € F}.
This relation f~! is also additive. One has the following formulas:

(gof)yt=fTog™, (f)T=F.
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3.2.2 EXERCISE. Prove that given additive relations f : A — B and g :
B — C, then the relations go f : A — C and f~!: B — A are, indeed,
additive.

3.2.3 EXERCISE. Prove that, indeed, the abelian groups and the additive
relations constitute a category. (Hint: Observe that for an abelian group A,
the identity relation is idy = (A, A, A4), where Ay = {(a,b) € AxA|a=10b}
is the diagonal subgroup.)

3.2.4 NoTE. If f = (A, B, F) is additive, in general f~!o f # id,.

3.2.5 EXERCISE. Give an example of an additive relation f : A — B such
that f~'o f # id4. Analyze under what conditions one has f~'o f =idy; in
other words, characterize the isomorphisms in the category of abelian groups
and additive relations.

Let A be an abelian group and U C A a subset, and let f = (A, B, F') be
an additive relation. We define

f(U)={beB|3ac A with (a,b) € F'}
= proj,((U x B)N F).

If U ia a subgroup of A, then f(U) is a subgroup of B. One has the following
facts:

(a) If U1 C UQ, then f(Ul) C f(UQ)
(b) F(Ujes Ui) = Uje, F(U).

(c) If f is a function, then f~'(N,c, Uj) = N [~ (U)).

3.2.6 DEFINITION. Let f = (A, B, F) be an additive relation. We define
the following concepts:

The image of f by Im(f) = f(A).
The indeterminacy of f by Ind(f) = f(0).
The definition domain of f by Def(f) = Im(f1).

The kernel of f by Ker(f) = Ind(f™1).
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3.2.7 Proposition. There is a unique additive relation f that fits into the
next commutative diagram

A ! B

|

Del(f) - - = B/Ind(f)
with the following properties:

(a) f is a homomorphism.

(b) The mapping f + f establishes a one-to-one correspondence between
additive relations f : A — B and homomorphisms from a subgroup of
A into a quotient of B.

(¢) f induces canonically an isomorphism
7 : Def(f)/Ker(f) —s Im(f)/Ind(f).

The proof is routine and we leave it to reader. O

3.2.2 Exact Couples and their Spectral Sequences

There are several approaches to spectral sequences. We chose here the clas-
sical one through exact couples invented by Massey [10]. Before stating the
definition, we need some previous concepts.

3.2.8 DEFINITION. Let A={A4,,| (p,q) € ZxZ} and C ={C,, | (p,q) €
Z x 7.} be families of abelian groups. We define a homomorphism

h:A—C
of bidegree (r,s) as a family of homomorphisms
hpq : Apg = Cpirgss;

we denote this fact by bideg(h) = (r,s). A and C are called bigraded groups.
The elements of A,, are said to have bidegree (p,q). Let k : C — D be
another homomorphism of bidegree (u,v). We say that a sequence

A e 5D
is exact at C' if for every (p, q), the sequence
hy, Koptriqts
Apg =% Cprrgrs = Dprrvugrsto

is exact at Cpyrgts.
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3.2.9 DEFINITION. An exact couple is a triangle

A : A
(3.2.10) .
N, A

of bigraded abelian groups and homomorphisms such that
bideg(i) = (1, 1),
bideg(j) = (0,0),

that is exact at each vertex.

A piece of the exact couple (3.2.10) looks like follows

i

k J k
Cp7q+1 —— Ap—l,q+1 > C(:0—17q+1 > Ap—2,q+1

(3.2.11) Apg =2 Oy =2 A, 1,
Ap+1,q—1
Ap+q

The double arrows show the intertwined exact sequences. Let A,, be the
colimit of the sequence

e Ay g LN Api1g-1 LI
Thus we have a system of homomorphisms
gp,q:E:Ap,q — An, pg€Z, n=p+q,

with the following properties:

(a) The diagram

1s commutative.
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(b) Uerq:nIm(E t A, — A) = A,

(c) Ker(i: Ay — Ay = U2 Ker(i" : Apy — Apirg—r), (Where i° = id
and i" =io0di"! r > 1).

Recall that for each sequence of (abelian) groups, there exists a colimit, and
it is unique up to isomorphism (see [1]).

3.2.12 DEFINITION. Let G be a group and {F,G | p € Z} a sequence of
subgroups such that F,G C F,1G; we refer to {F,G} as a filtration of the
group G.

3.2.13 CONSTRUCTION. In what follows, for simplicity, we shall assume that

A,,=0 if p<O0.
We have now from the relation
- ._ j—1 i
f=ij':C,y, CAN Apy — Ay,

the groups
Im(f), Ind(f), Ker(f), and Def(f),
(as defined in 3.2.6).

By

and since Ind(f) C Im(f), we obtain a filtration of A,,,, because we have
proved

(3.2.14) Ind(f) = ijﬁm,

We also have

Ker(f) = Tnd (/) = (37") (0) = j (Ker (7))

(3.2.15) = (U (@) (0)> =Ji ()0
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by definition of colimit (see 3.2.9). Moreover, we have

(Ap-qu) =J (Ap,q)

Def(f) = Im(f™") = ji

(3.2.16) =k 0)=k"" ﬁ i"571(0)

= (£ 177 (0) = [ Ker (j (i) " k)

and

o0

mT_l mlnd Cpr—tgtr — Ap—r—1g1r — Ap_1,49)

r=0

:0,

since by assumption A,, = 0 if p < 0. These computations can be figured
out in a diagram similar to (3.2.11).

In the expressions for Ker(f) and Def(f) the relations j(i"~!) "'k play a
role.

3.2.17 DEFINITION. Take r > 1, r € Z, i* = id4.

d;,q = j(ir_l)_lk 1 Cpg — Cprgir—1,
Z, , = Def(d} ),
BT Ind(d;JrTq 7"+1)

ﬂ
U

—Z’”/ gy 1 <r<oo.

As we already did with 4, 7, k, occasionally we shall omit the indexes p, ¢, in
these objects, even though we shall not be dealing with the whole bigraded
group, but just of one member of it.

3.2.18 Proposition. The following equations hold:
Im(d") = Ind(d"™),
Ker(d") = Def(d"™"),
Im(f) C Ker(d").
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Proof: Consider the following immediate equalities:

1 Zr)

= k~1(0)
C k6@

=k~
=k~ 1<ZT 1) (Ap—r—l,q—l—r)
=k~
(

H77(0)
- Ker(d —r,q+r— 1)

(by the exactness)

(by the exactness)

! (Cp—r—l,q—H“)
(Cp T—l,q—l-r)

Zr_l)_lk(cnq)
- j(Apfr,qurfl)

O

Applying again the complete diagram as in (3.2.11), one can rewrite what
we just proved in the following chain of inclusions (since Ind(f) C Im(f) and

Def(f) D Ker(f)).

00— Im(d") Im(d?)< - -

Ind(d")> Ind(d?)<> Ind(d?)< -

In other words,

0=B'cB*cB*cC---

In particular, one has

Br+1

- Ker(d?) Ker(d")——C

> Def (d?)<> Def (d?)<> Def(d").

cZ3cz2?czt=C.

= Im(d") C Def(d") = Z",
B" =Ind(d") C Ker(d") =

r+1
Z,
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and thus d" (cf. 3.2.7) induces the following diagram:

Def(d") d C'/Ind(d")

|

E" = Def(d") /Ind(d") —~~ Det(d") /Ind(d") = E"

i

Def(d") /Ker(d") ———— Im(d") /Ind(d")

" . or "
Hence dnq : Ep7q — F

»—rqir—1 18 @ homomorphism.

3.2.19 Theorem. The pair (E”,d ) is a chain complex and its homology
satisfies
Hyo(E" d) = Epi'.

Proof: That d od = 0 follows simply from
Im(d' ) = Im(d") /Ind(d")
C Ker(d")/Ind(d") = Ker(d') .
On the other hand,

Hyq(E", Er) = Ker(a;q)/lm(c_lg—&-r,q—r—l-l)
> Ker(d),)/Tn(d) o)
= Def(d;})/Id(d;12, )
=20 1By = Epy'

by Definition 3.2.17 and by 3.2.18. ad

3.2.20 DEFINITION. A sequence (Er,aT) of chain complexes, together with

isomorphisms
H(Er, 87') o prtl

is called a spectral sequence.

3.2.21 REMARK. The isomorphism 3.2.7 (c¢) induced by an additive relation

f
Def(f)/Ker(f) — Tm(f)/Ind(f),

by using our computations in 3.2.13 and Definition 3.2.17 yield an isomor-
phism

(3-2-22> E;z?i; = szpw/ppflzqu )
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since F, Ay o/ Fp 1A, = Im(f)/Ind(f), as in (3.2.14), and

D9’

Def(f) = ﬁ Ker(d"t') = Z> | (see (3.2.16) and 3.2.18),

r=0

Ker(f) = G Ind(d"*') = B (see (3.2.15) and 3.2.18).

p,q’
r=0

3.3 THE HOMOLOGY SPECTRAL SEQUENCE OF A

SERRE FIBRATION

3.3.1 CONSTRUCTION. Let m : EE — B be a Serre fibration over a CW-
complex B. Denote by BP the p-skeleton and by EP? its inverse image under
7, 7 Y(BP), p > 0. In particular, set EP = () if p < 0. We have an exact

couple (see 3.2.9).

A d A
(3.3.2) X /
c,
given by the definitions
Apg = Hpiq(EP),

Cp,q = Hp+q(Epa Eq) )
i 0 Hypyg(EP) — Hypg(EPFY),
J Hysg(E") — Hyyo(EP EP7Y),

that are induced by the canonical inclusions, and
ko Hypg(B?, EPY) — Hypqr (BP7Y)
given by the boundary homomorphism 0.
The bidegrees of these homomorphisms clearly are:
bideg(i) = (1,—1),
bideg(j) = (0,0),
bideg(k) = (-1,0),
as in 3.2.9.
Take

pN|
s
|

H,(E), andlet 7:H,(E") — H,(E)
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be induced by the inclusion. Then H, (E), together with 7 (for every p) is a
colimit of the sequence

-4y H,(EP) -5 H,(EP*Y) = H,(EP™?) — ...

so that we have to prove the following.

Each element x € H,(F) lies inside the image of some i, and if some
element in H, (EP) lies inside the kernel of 4, then it also lies inside the kernel
of

i" . Hy(E?) — H,(E"*")
for r large enough.

Let x = [z], where z € Z,(F) is a cycle. The support |z| of the cycle z,
(z =% G, G A" — B, |z] = U, G(A™)) is compact; hence, also
7(]z]) is compact, and since B has the weak topology, there exists p such that
7(|z|) € BP, and consecuently |z| C EP and so z € Im(H,,(E") — H,(F)).

Analogously, one can conclude that if a cycle has support in EP and is a
boundary (in E); thus it is a boundary in EP*" for some r.

Finally, one has that (cf. 3.2.13) A,, =0 for p < 0.

3.3.3 NOTE. We shall use any abelian group as group of coefficients in ho-
mology.

3.3.4 REMARK. It is important to ponder what is happening with the for-
malism of Section 3.2 in the case of E = B, 7 = idg. We had d" = j(i" 1) 1k.
Thus d! = jk,

— 7] — — —
d' Herq(prBp 1) — Hp+q71(Bp 1) — Hp+q71<Bp laBp 2)-

Moreover,
Z;q = Def(d") = H,,(B?, Br 1y,
B,,=Ind(d") =0

Thus, we can identify the group E! with H,,(B?, B"~'), where d" corre-

p,q
sponds to d*.

On the other hand, in this case one has (see [1, 7.3.1]) that

G}ZEJPZ if g =0,

Hyo(BP, B"") = {0 if g0
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where €, ;, Z represents the free group generated by the p-cells of B (or,
instead of Z the coefficient group A); that is, it is the group of cellular p-
chains of B (with coefficients in A), and d' is the usual boundary operator.

Thus we obtain that

El2 ~ HP(B) lf q= 07
P 0 if g #£0,

Since d has bidegree (—r,7 — 1), one has that d = 0 for » > 2 and
hence we have that E> = EJ for all » > 2. One has also, from d and
3.2.18, that Def(d"t!) = Ker( ) Def(d"); hence Z? = Z*, analogously,
from Ind(d") = Im(d") = Ind(d"*'), we obtain B? = B*. It is now easy to
verify the formula (3.2.22) that ralates £ with the filtration of H.(B).

We want to compute now E', E? and d' for the exact couple (4.2.2). For
that, we need the following result.

3.3.5 Lemma. Let Ay, A1, By, and By be subspaces of B such that

Ay, C B,
N N
Al E Bl

and assume that Ag, resp. Ay, is a strong deformation retract of By, resp.
B1. Then the inclusion induces isomorphisms

Hy (77 (Ar), 771 (Ao)) = Ho(n ™ (By), 7 (Bo)) ;

besides,

To be able to prove this lemma, we need another one.

3.3.6 Lemma. Letm: X — Y be a Serre fibration. If A C B is a strong
deformation retract of B, then S(m='(A)) a chain deformation retract of
S(E), where S denotes the corresponding singular complex.

Proof: Since A is a strong deformation retract of B, there is a map
p:BxI—B
with the following properties:

o(0,0)=b ifbe B,
e(b,1) e A ifbe B,
ola,t)=a ifae€ A
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We now proceed in steps.

(a) Let v,(F) be the set of singular n-simplexes. We want to assign to each
0 € Y(E) a map

c: A, xI—FE, (0(z,t)=0x)),

with the following properties:

—

(i) 9i(0r) = (9i0):.

(ii) G = 0.
(iii) G(z) = o(x) for all t € I, if o € 7, (7 1(A)).
(iv) 76u(x) = p(mo(x),b).

From (iv) one has also that &;(z) € 7~1(A), that is, 51 € S(7'(4)).

With respect to the notation, we have that &; is a singular simplex of
Yn(E). Let 0,0 be the i-face of o. If we denote by ¢; : A, — A, the
canonical inclusion into the i-face, then 0,0 = g o ¢;.

(b) We now construct ¢ by induction on n. Consider the problem

h

An X {0} U €i<An71) X [407>/E
(3.3.7) e
A, xI- B
where
h(z,t) = p(mo(x),t) (guaranteed by (iv)),
ho(x,0) = o(x) (guaranteed by (ii)),
holei(y),1) = (Oio)(y,1)  (gnaranteed by (1)),

(5@}) has already been constructed, by the induction hypothesis. hq is well
defined:

—

ho(€i(y), 0) = (9;0)(y,0) ,
= 0;0(y) (by the induction hypothesis (ii))
=o(ei(y)) (by the definition of 9;0)
= ho(zi(y),0) .
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Diagram (3.3.7) is commutative:

mho(x,0) = o (z) Tho(ei(y), 1)

= p(ro(z),0)
= h(x,0);

(9.0)(y:1)
(190 (y), 1)
(o (eiy), 1)
(€i(y), 1) -

Il
?ﬁﬁﬁ

Since 7 is a Serre fibration, the problem has a solution and we obtain o that
fulfills (a), (i) - (iv).

(c) For every topological space W there is a chain homotopy that is natural
in W
F:S,(W)— S,.1(W x1I)
with the property
OF + FO = jy — ju,

where j¥ : W — W x [ is given by j¥(w) = (w,v), v = 0,1 (cf. [9, IL.8]).
In particular, the diagram

Sq(An—l) 4F> q+1(An—1 X I)

(&);&i l(aixid)#

Sq(An) —F q+1(An X ]>

1s commutative.

(d) We define homomorphisms

1 S(B) — Su(n71(A)),
h:Su(B) — Spii(B),

by
r(o)=a1, h(o)=04F(t,) (1, =1ida,),

if o is an n-simplex, and then by extending linearly.

Statement: r is a chain transformation, r(c) = o if 0 € S,(771(A)), and
h is a chain homotopy such that

(Oh+ hd)o =roc —o, o€ S,(B).
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Proof: 1t is a chain transformation:

or(o) = 0(a1)

= 040F (i),
ho(o) = h(>_(=1)'0:0)
= (- 1)1(010) 4 F (t-1)
= (-1 y(ei x id) F(in) (since by (a) (i) o = 5(e; x id))
=Y (—1)'G5Feip(tn1) (by (c))
— 5FO(u) (since 9i(1n) = ipin ).
Summarizing:
Oh(o) + hd(0) = 52(OF + FO) (1)
= 04Ty — 73 (tn)
— (o) — 0.

Proof of 3.3.5: By 3.3.6, we have

H,(mY(A,)) — H.(x"'(B,)), v=0,1.
The long homology exact sequences of the pairs

(77 (A1), 7 (Ao))  and (77 (Bu), 7' (Bo))

fit together as follows.

a1 (T ¢N(Ao)) H,(m _1(A1¢)N (Ao))eHn(WTN(Al))Q'“
w1 (17 H(Bo)) % Hy(m Y (B1), 7 (Ao)) = Hu(n 1 (By)) ~ -+
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Moreover, for the pair (77!(B,), 7 *(A,)) we have

[~=3

Hyia (771 (A))) —

Hopa(771(B,)) =% Ha(r1(B,), 771 (A,)) & Ha(7 7Y (A))) = Ha(r~(B,))

I
0,

3.3.1 Computation of the E!-term of the Spectral Se-
quence

Let m : E — B be a Serre fibration over the simplicial complex B; let s?,

Jj € Jp, be the closed p-simlpexes of B, e?; the open p-simplex of s%, m/ the
baricenter and $ the boundary of s7. Consider the diagram

(3.3.8)
D, H (7 (s7), 771 (857H)

Hy(x L (B?), m1(Br1)) < ; ;

(2)l l(iﬁ)

H(w ! (BP), 7w (BP — U{m?})) < ©.H, (x4 (s5), 7 (s} — m?))

J J J

o o

H,(Ur=H(eh), un—t (el —m})) THn(ﬂ_l(ef),w_l(ei —mY)).

All homomorphisms in this diagram are induced by inclusions. For instance,
(7) is an isomorphism in singular homology. By excision, (5) and (6) are
isomorphisms too, thus also (4) is an isomorphism. Finally, (2) and (3) are
isomorphisms by 3.3.5; hence also (1) is an isomorphism.

3.3.9 REMARK. As in 3.3.4, we can identify H, (7 '(B?), 7~ !(BF~ 1)) with
E} ., _,- By isomorphism (1) in Diagram (3.3.1), we have already reduced the
groups

Hy(n (), m 74 (s5))
and now we are going to examine them.
For a p-simplex s? of B, let 0;s? be the i-face, 7;s? = i 0;sP the union
of the remaining faces, and p;s? = 9y -+ - 0; - - - 9psP ! the ith vertex of sP. (See
Figure 3.1)

I~ means that the corresponding symbol is omitted.
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010354

O35 1 0001035

Figure 3.1

We adopt the abbreviation
ho(A, A") = H, (71 (A), 7 H(A))
and consider the diagram
hp(sP, $P) hp—1(87, 7;5")

|
(3.3.9) ) eTm

hp—1(0;sP, (0;s7)") % hp—1(8P — p;sP, 18P — p;sP)

IR

The subspace 7;sP is a strong deformation retract of sP, thus by 3.3.5,
hn(sP,m;s7) =0,
and from the long homology exact sequence of the triple
(N (sP), 7 (), 7 (mis”))

one obtains that 0 in (3.3.9) is an isomorphism. (1) is an isomorphism by
excision, and (2) is an isomorphism by 3.3.5. Define o by the commutativity
of the diagram, and take

B2 =ab-al ol ho(sP, 8) — hu_p(pps®) .

Figures 3.2 and 3.3 show the geometry of these considerations.

3.3.2 Translation of the Homology of the Fiber

3.3.10 Lemma. Let w : E — B be a Serre fibration and f : B — B a
continuous map. Then the induced fibration f*m is also a Serre fibration.

The proof is an exercise. O
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7‘18p
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sP

Figure 3.2

/\< sP — pisp

Figure 3.3

) @
— = s

Let w : I — B be a path. Consider the fibration 7 induced by = through

E E
[—— B.

The map @ induces a homeomorphism 7 1(¢) ~ 7~ !(w(t)) with whose help
we identify H, (7~ (w(t))) and H, (7 1(¢)).

3.3.11 DEFINITION. Let w : I — B be a path. The translation of the
homology of the fiber along w is the homomorphism

w,: Hy(m Y (w(0))) = H,(70)) W, H,(E') «—

& g,GE) 2 H (1)

~—

The homomorphisms (1) and (2) induced by the inclusion are isomor-
phisms by 3.3.10 and 3.3.5.
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3.3.12 Theorem. The translation of the homology of the fiber has the fol-
lowing properties:

(a) w, =1id if w is constant.

(b) (OJ10J2)* = W2k O Wix-

(¢) wo ~ wirel(l) = woe = Wiy
In other words, the translation of the homology of the fiber is a functor from
the fundamental grupoid of B into the category of abelian groups (and iso-
morphisms).
Proof: (a) In this case, (1) = (2).

(b) Let m 2 : E1o — I be the fibration induced through wyws and take
the paths

hi:I—1 he: I —1
L te— 2 ()
2) 2 2)
and the fibrations induced through them

h;
E’i E12

]

[ﬁ I,

hi

then the fibration ; is induced by 7 through w; = (wyws)h;. The following
diagram commutes.

(wiw2)«
Hy (7w (0)) Ho(Era) < Hy (7 (wiws (1))
hox
o
Hy (L (w1(0))) —= Ho( TEl) Hn(TEz) —— Hy(m Y (ws(1)))
Ho(m w1 (1)) Hnw(wg(om%

The homomorphisms hy, v hs, are bijective by 3.3.5, thus the diagram con-
sists of nothing else but isomorphisms. Hence, we obtain the assertion.

(c) Let h : I x I — B be such that h(s,0) = wo(s), h(s,1) = wi(s),
h(0,t) = we(0) = wi(0), A(1,t) = we(l) = wi(l). Let 7 : G — [ x I



3.3 THE HOMOLOGY SPECTRAL SEQUENCE OF A FIBRATION 135

be induced by 7 through h, and let kg : Ey — G be given by ko(s,z) =
((s,0),z) (it lands in G!). From the commutative diagram
H (77 (wo(0))) —— Hn(Eo) ~—— Ha (77 (wo(1)))
| |

\ 3%6ik0* |
v ¥

Hy(m7H({(0,0)})) = = = Ha(G) =< = = Ha(7({(1,0)}))
that consists only of isomorphisms, one has that wg, can be defined through

the dotted arrows. Analogously we may conclude for w;, and thus the ho-
motopy between

7 Hwe(0)) — 771(0,0) — G and 7 (w1 (0)) — 7 1(0,1) — G

grants us the assertion. O

3.3.13 DEFINITION. The fibration 7 is said to be orientable if w, depends
only on the end points of w.

3.3.14 EXERCISE. Prove that if 7 fulfills the assumptions of 1.5.9 on the
translation of the fiber, then (p,). = wy.

By the considerations made in 3.3.2, we may come back to the computa-
tion of the E'-term of the spectral sequence.

Assume that B is path connected and take by € B and F' = 7 1(by). For
each point of the form p,s? we choose a path w from p,s” to by and together
with the isomorphism S? from 3.3.9, we obtain the isomorphism

(3.3.15) B =w,0ag0...0ab: Hy(m ' (sP),771(sP)) — H,_,(F).

Take f7 : (77 '(s)), 771 (8%)) — (=="(BP), 7~ '(B""")). Together with 3.3.1,

’Y(Z a;87) = D (F1)(By) " (ay)

J

by defining

we obtain an isomorphism
(33.16) 1 Cy(B; Hosy(F)) — Holw (B7), 7 (B77Y)).

We write an element of the group C,(B, H,—,(F)) of simplicial chains of B
with coefficients in H,,(F') as a linear combination . a;s} (with a finite
number of coefficients different from zero and a; € H,_,(F)). In 5P we omit
the index j. We have proved the following result.

3.3.17 Theorem. For a Serre fibration m : E — B on a path-connected
simplicial complex B, one has

E;,q = C;,q = HPH(WA(BP)’ 7T71<Bp71)) = Cp(B; Hy(F)),

where the isomorphism is given by . O
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3.3.3 Computation of the E?-term of the Spectral Se-
quence

We define in {C,(B; H,(F)) | p € Z} a boundary operator d by 70 = d'7.
We now want to determine 9. First we decompose h,(B?, BP~!) in a direct
sum analogous to (3.3.1). In the diagram

. 1)
hn (s, 8%) hn (85, 8% —mY)

ff/ \hg’* (2)

ha(BP, B? — ¢ ha(BP, B? —m?)

Gjx (3)

all homomorphisms are induced by inclusions. (1) and (3) are isomorphisms
by 3.3.5, (2) is one by excision, and thus h%, is also one, and we obtain

» 0 itk #j,
gk* J* = hp f kf .

J* 1 =7
(the second is an isomorphism). Thus the homomorphisms ¢}, determine

o(BP, BP71) as a direct sum; that is, we can give (uniquely) an element in

h
hn(BP, BP~") by its images under the homomorphisms g7, .

Take d(as}) = > pes arsh . We have to compute the coefficients ay.
From the definition of 0 we have that

D ) =10(a)

and thus, applying gﬁfl, we have
(B (@) = gl O ST (a))
(3.3.17) =g ’y@(as )
- gl* ldl ; (513) ( )

The following is a commutative diagram.

a5, 37) Bt (577307
1o}
S L =B
hn_1(8§) hn—l (S§7 TiS?)
2 !
1 (1)
h1(BP7Y)
TN
hn(BP, BP~1) hn1(BP~Y, BP™2) ————— h,_(BP~!, BP! — el
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where of is as in 3.3.9, and this, as well as (2), are considered only when
st = ;5. All other homomorphisms are induced by inclusions or are
connecting homomorphisms of the corresponding homology sequence.

From this we have that, if s/~ is not a face of st (see figure 3.4), then &7
lies in BP~! —¢eP~"; hence (1) is the trivial homomorphism and so g 'd! =
0, and by the computation 3.3.17, we have a; = 0, because hf*_l as well as
BP~1 are isomorphisms.

<3

o
5

Figure 3.4

Let s/ ' = 9;s%, be the i-face of s7. Thus

hytaf(87)7" (a) = gi U (BT (a)
= (B a);

hence, a; = 8,10 (8,) 7" (a) = &'(a), and

d(as?) Z &P (a)(0;s?),

where &/ is an automorphism of H,(F)).

Now we determine the automorphism &, and for that we suppose again
that the fibration 7 : E — B is orientable (3.3.13).

First, by the definition of 3, (3.3.15), we have that 1o = (P, that is,
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&) = id. We shall analyze now & = %(8')! in the diagram

/

hgi1(st, st st hy(s')
N

\\ /
N80 0o = )

ag

/

BO

We have considered s' as a path from 9ys' to d;s', and s! is the translation
along s' (see 3.3.2).

We shall prove that f oo} = —g o a}. Namely, if z is a (¢ + 1)-cycle of

7 1s! modulo 771§, then dz decomposes as the sum z, + 2; of two g-cycles

such that the support of z; lies in 77 19;s'. faj(z) is thus represented by zq
and gai(z) by z;. Hence one has

(go1 + fab)[z] = [z0 + 2] = [02] = 0.
And so,

& =l (Bh) 7
= Fad(fad) " fur?
= —50041(9@1) fw*_l
= _Bos*w*
= —id (by the orientability).

Now, by induction on p, we prove

Before passing to the inductive proof we recall the following facts about
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boundary operators applied to sP.

sP=10,...,p]
B;s? =1[0,....7,...,p
Ao0is? =[1,...,%, ..., 1]
Oos® = [1,...,p]
=[0,....(p—1)]
0i—100s” = [1,...,4,...,p]
= 0y0;sP

Now we pass to the proof. For p = 1 it has been already proved above.
Take p > 1. 0 is a boundary operator. Consider

p—1

0 = 89(as?) iZgﬂ '€P(a)(8;0;57)

=0 75=0

.

The fact that & = id has been already proved. For i > 1 one has
80613p = 6,-_1805‘]) 7£ 8j8k8p if (], k‘) 7& (0, Z), (’L - 1, 0) .
The double sum can be zero only if

-1 -1
51];3: (Il)J ff:_fffl fz 1

and by the induction hypothesis, we obtain from this the assertion. Thus we

have proved that
P

O(as’) = > (=1)'a(9;s") ;
=0
that is, that 0 is the ordinary boundary homomorphism. In other words, this
states that v (3.3.16) is a chain isomorphism. Hence we have the following
theorem, known as the Leray—Serre theorem.

3.3.18 Theorem. Let 7 : E — B be a homologically simple (orientable)
Serre fibration over a CW-complex B. Then (E} El) is, through v (3.5.16),

*,q7
isomorphic as a chain complex to (C\(B; Hy(F)),0). Therefore, v induces
an 1somorphism

EZ, = H,(B: H,(F)). .

The spectral sequence EJ  is known as the Leray-Serre spectral sequence
of the Serre-fibration 7 : K — B.
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3.3.4 Computation of the £"-Terms for Large r

By the last theorem, we have that E;q = Cy(B;Hy)(F)) =0forp<0orq<0.
We say that the spectral sequence is concentrated in the first quadrant, and
hence,
E,=0 i p<0 or ¢<0, r>1.
If we consider the differential
d E,,— E, 1

the group on the right-hand side is zero for » > p and thus the differential
d is also zero. From the diagram that defines d in 3.2.17, we obtain that
d =0 is equivalent to

Ker(d"),,, = Def(d"),q -

Correspondingly, we have that for the differential
d E;Jrr,qfrﬂ — E;,q
the group on the left-hand side is zero for » > ¢+ 1 and thus
Ind(d")pq = Im(d"),, -
From these two equalities, together the chains of inclusions in 3.2.17 and
Definition 3.2.12, we have
ol 2 +1 _ opt2
Cog=2py D2y, D "D lyy =277 ="+
_pl 2 12 _ pat3 _
0=B,, CB,,C---CB/"=Bl"="-
ze =2z, =200 =2, if r>p
B, =B, =B’ =By, if r>q+1
B =25/By =E, if r>max{p,q+1}.
We recall again that H,(FE) is filtered by the groups
F,H,(E) =Tm(H,(r " (B")) — H,(E))
(see 3.3.1). We thus have
0=F H,(F)C FbH,(E)C---C F,H,(F)=H,(F),

where
FH,(E)/Fy  Ho(E) = B = Epnyp
for r large enough. In particular, we have £}, = 0 for p > n, so that,

indeed, one has the mentioned filtration as indicated.
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3.4 APPLICATIONS

3.4.1 GENERAL ASSUMPTIONS. In this section we shall always assume that
7 : F — B is a homologically simple (orientable) Serre fibration over a
path-connected CW-complex B.

We shall apply the results of Section 3.3.

3.4.1 Spherical Fibrations

We analyze here Serre fibrations with a sphere as fiber.

Assume that m : E — B satisfies the general assumptions 3.4.1, and
that
F=r1b)~S""t, m>2, (b€B).

Then
El, =~ H,(B;Hy(F)=0 if ¢ #0,m—1.

Hence, for these values of ¢, £ , = 0, r > 2, and moreover,

E?,=FE? | =H,(B;Q)

p,0 — “p,

if G(& Ho(S™') = H,,_1(S™1)) is the coefficient group of the homology.
We have that
d :E,,—E, ..

is nonzero, at most in case that

d":Ely— EV

p—m,m—1 ;

otherwise, the domain or codomain would be the trivial groups. Thus we
have

E2:E3:"':Em,
Em+1:Em+2:---:EOO.

From 3.2.18, we have the following exact sequence

—m

m 5m m d m m —m
0— Hp’O(E d ) Ep70 Ep—m,m—l - pfm,mfl(E .d ) —0
Il I I Il
m—+1 2 2 m-+1
Ep,O Ep,O Ep—m,m—l Ep—m,m—l

I I I I
B, Hy(B;G)  H, (B;G) E>

p—mm—1 "
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If we now consider the filtered homology of the total space E (see Subsection
3.3.4)

0C FoH,(F)C FH,(F) C---C F,H,(E) =H,(F),
and since

FH.(E)/F, Hy(E)=Ey, ,=0 if n—p#0m-1,
i.e., p#n,n—m+ 1, this filtration looks as follows:
O=--=F,nwH,(E)CF, pu1H,(F)=---=F, 1H,(F) C H,(F).

Thus we have the exact sequence

0 Fo1(Hn(E)) Hy(E) — Hy(E)/Fy 1 Ho(E) —=0
Fn—m—l—lHn(E)/Fn—m n(E) ESOO
. |

S ISP

The arrows - - > are so that the triangles commute; the arrows - >
indicate the first of the exact sequences and the arrows > indicate the
second. Then, it is an easy matter to check the exactness of the top horizontal
sequence.

3.4.2 Theorem. Under the general assumptions 3.4.1 on m : E — B,
there 1s an exact sequence

oo — Hy(E) ™ Hy(B) — Hy_p(E) — H, 1(E) =5 -+ |

that is known as the Gysin sequence.

Proof: After all done in 3.4.1, it is enough to check that the homomorphism

H,(E) — E;% — H,(B)
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is indeed induced by .

Let us consider the commutative square

EFE—"=B

i iid

B—>id B

as a fiber map from 7 to idg. If we denote with a tilde the spectral sequence
associated to the fibration idp (cf. 3.3.4), by the naturality of the spectral
sequence, we have the following commutative diagram:

H,(F) B B2~ H,(B; H(F))

T

p(B) — Epy ==L,y —— H,(B;G),
where (7). is induced by the homomorphism Hy(F) — Hy(by) = G an can
be considered as the identity, since F' ~ S™~! is connected. Therefore, it

remains to convince oneself that bottom line in the diagram is the identity
of H,(B) = H,(B;G), which follows immediately from the definitions. O

We now consider the special case E ~ S'~!. We assume moreover that

H,(B)=0for p>r>0and H.(B) # 0. From the exactness of

p
0= Hym(B) — H,(B) — Hyymr(E) — Hyyp1(B) =0

it follows that the homomorphism in the middle is an isomorphism; but from
H,(B) # 0 and E ~ S!~! one has that r + m = [. From the Gysin sequence
for 1 < p <l —1 one obtains also that

Hy(B) = Hyn(B).

If p—m > 1 we may continue lowering the dimensions. There are two possible
cases; namely, if m divides p we finish with Hy(B) = G.

On the other hand, we reach H,(B) with 0 < ¢ < m. From the exactness
of
0=H,(F) — Hy(B) — H;_pn,(B) =0

one obtains that H,(B) = 0. (Observe that g <m=1—r <Il—1ifr >1;
for » = 0 we have in any case that H,(B) = 0 for ¢ > 0). Thus we have the
following.



144 3 HoMoLOGY OF FIBRATIONS

3.4.3 Theorem. Let m: S'™! — B be a fibration that satisfies the general
assumptions 3.4.1, with fiber S™' (m > 2), and H,(B) = 0 if p is large
enough (for instance, if B is a finite-dimensional CW-complex). Then | =
(s + 1)m for some s € Z and

0 otherwise.

G ifp=0m,2m,..., sm,
Hp(B>:{

O

As a special case we we can compute the homology of the complex and
quaternionic projective spaces. Namely, since we have fibrations

St — s+t 5 CP",
$? — §*"*? — HP",

we conclude the following.

3.4.4 Corollary.

G ifp=0,24,....2
HP(CPTL) — pr '7 Y Y ) n?
0 otherwise.
G ifp=0,4,8,....4
HP(HPn) _ pr .7 3 Oy Uz
0 otherwise. -

3.4.5 REMARK. For RP" the problem is that the corresponding fibration
S? — S — RP"

has disconnected fiber. See [1] for the corresponding computation.

3.4.2 Fibrations with Spherical Base Space

We shall now study fibrations of the form 7 : E — S™, m > 2.
One has
H,(F) ifp=0,m,

E2 =~ H(S™ H,(F)) =
P » o(F)) {O otherwise.

Therefore, again all terms E) = 0 for p # 0, m and r > 2 and the
differentials can only be nonzero in the case

M m m
d : Em’q — E07q+m71 ,
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Figure 3.5
as shown in Figure 3.5.
So again we have
EQZESZ"':Em
EerlIEerQI"':EOO.

Moreover, the following sequence is exact:

0— H, (E™,d") E". d By —= Hogrm1 (E™,d") —0
Il [l [l Il

m+1 2 2 m+1
Em,q Em,q EO,q—&-m—l EO,q—&-m—l
Il I I I
) o0
Em,q HQ(F) HlH-m—l(F) EO,q+m—1 :

On the other hand, from F,H,(E)/F,_ 1H,(E) = E,_, = 0 for p # 0,m

p,n—p
one has that the filtration “collapses” as follows:

0cC FbH,(E)=F,,1H,(F) C F,H,(E)=---=F,H,(F) = H,(F),
and from there, we obtain the exact sequence
0— P r(Ho(E)) — Hy(E) —= Ho(B)/Fypy Hy(E) — 0
Egs, E>
Analogously to 3.4.1 we glue both sequences together to obtain

e q+m(E)———>H(F)4—>Hq+m,1r(F) ————— = Hyym1(E) >+

N S

00 00
E EO,q+m—1

m?q

NS

0 0 0 0.
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3.4.6 Theorem. Under the general assumptions 3.4.1 on w : E — S™,
there is an exact sequence

-~ Hyym(E) — Hy(F) — Hyym 1 (F) = Hyyp1(E) —> -+,

where 1 : F' — FE is the inclusion of the fiber in the total space. This sequence
1s known as the Wang sequence.

Proof: After all done above, it is enough to check that the homomorphism
Hopm—1(F) — EGypm1 — Hopm-1(E)

is indeed induced by 4. Let {by} C B be a 0-simplex and consider
F E
B

{bo}——
as a fiber map from 7’ to w. If we denote with a tilde the spectral sequence
of 7 we have, by the naturality, the commutative diagram

H

H.(F) — Ho({bo}; H,(F)) —= E2, == E35, — H,(F)
H,(F) — Ho(Y; H.(F)) —— E}, Eg H,.(E)
H,(F) E, EQTt —— H.(E).

From it, it is easy to convince oneself that the top row yields the identity. O

3.4.7 EXAMPLE. Let E be the path space in S™ that start in by € S™. =«
E — S™ maps each path to its end point. This is the so-called path fibration
and can be proved to be a Hurewicz fibration with fiber 771(by) = Q2S™, the
loop space of S™ (cf. 1.4.18 or [1, 3.3.17] and see Figure 3.6).

It is easy to prove that E is contractible. Thus H,(E) = 0 for n > 0.
The Wang sequence yields (for m > 2)

G ifqg~0 mod (m—1),

0 otherwise.

H,(QS™;G) = {
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vlv
L

y v

Figure 3.6

3.4.8 EXAMPLE. Let m: S™ — S* be a homologically trivial Serre fibration
with fiber S*, k > 1, n > 1. The Gysin sequence with coefficients in Z and
p =k +n+ 1 looks as follows

+ > Hypp1 (S*) —= Hi(S*) —— Hyyon (S™) — -+,
0
thus Hy.,,(S™) # 0; therefore,
(3.4.9) k+n=m.
On the other hand, the Wang sequence for ¢ = n — k + 1 looks as follows

s Hy 1 (S) —— Hy(S") —— H,p(S™) —— - -

0

Thus H,,_;+1(S™) # 0; therefore,
(3.4.10) n—k+1=0;

from (3.4.9) and (3.4.10) it follows that n = k — 1 and m = 2k — 1.
For k = 2,4,8 we have fibrations
St — §* — 8%,
S?— 8" — S,

ST — S* — S§%,

known as Hopf fibrations (see [5, 6]).
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3.4.3 Fibrations in Small Dimensions

3.4.11 GENERAL ASSUMPTIONS. Besides the general assumptions of 3.4.1
(m is a homologically simple Serre fibration over a CW-complex) we shall
assume that 7 : F — B satisfies

H,(B;Z)=0 if0<p<r,
H(F;Z)=0 if0<qg<s.

By the universal coefficients formula (see [1, 7.4.8]) we have

E,, = Hy(B; Hy(F; G))
= H,(B;Z) ® H(F;G) @ Tor(H,_1(B;Z), H,(F,Q))
0 if O<p<r or 0<g<s.

Figure 3.7

Thus the nonzero terms of the spectral sequence are distributed according
to Figure 3.7. Again, we omit writing the coefficients. For the elements of the

term E7 , we call p + g their total degree. In what follows, we shall consider

only elements of total degree n < r 4+ s. Thus, a differential d" for k > 2 will
be nonzero at most in the case

" . n n
d Eyg— Eg,_1.
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We have
2 3 _ n
En,O - En,O - = En,O
n+1 __ n+2 _ o)
En,O - En,O - = En,O
2 . . n
EO,nfl - = EO,nfl
n+1 __ _ 00
EO,n—l - = EO,n—l )

and analogously to the previous subsections, we obtain the exact sequence

—=n

n+1 n d n n+1
0 En,O En,O EO,n—l EO,n—l 0.
E> E? E2 E5e
n,0 n,0 0,n—1 0,n—1

H,(B) H, 1(F)
On the other hand, F,H,(E)/F,-1H,(E) = E>,_ =0 for p # 0,n. So one

p,n—p

has
0C FoH,(E)=---=F, 1H,(F) C H,(E)

and the exact sequence
0 — Eg;, — Hu(E) — By — 0.

Overlapping the exact sequences, as above, we obtain

3.4.12 Theorem. Forn <r+ s there is an exact sequence

oo — Hy(F) 25 Ho(E) = Hy(B) - Hy_ 1 (F) —> - --

The fact that H,(F) — H,(F) and H,(F) — H,(B) are induced by
1 and 7, respectively, can be proved in an analogous form to the previous
subsections. O

The homomorphism 7 is called the transgression and has a geometric
interpretation (see, for instance, [?, 10.6]).

3.4.13 REMARK. We saw in the first chapter that a Serre fibration yields
an exact sequence of homotopy sets. This last theorem shows that, at least
for some dimensions, one also has an exact sequence in homology. For the
Hopf fibration S! SRAN SN S?, the sequence

Hy(SY) — Hy(S?) — Hy(S?)

is not exact. This shows that the inequality n < r 4+ s cannot be improved
in general.
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CHAPTER 4

(GENERALIZED COHOMOLOGY OF
FIBRATIONS

In this chapter, we present different spectral sequences, according to the
type of fibration we are dealing with (Leray-Serre-Whitehead; Rothenberg-
Steenrod).

4.1 INTRODUCTION

In this section, we introduce the concept of a generalized cohomology theory
and the properties that will be relevant for the spectral sequences that we
construct. Then we introduce the concept of a system of local coefficients for
ordinary cohomology.

4.1.1 Generalized Cohomology Theories

4.1.1 DEFINITION. Let Top, be some category of pairs (X, Y') of topological
spaces and maps of pairs. Let, moreover, Ab be the category of abelian
groups and homomorphisms. A cohomology theory h* on Tops is a collection
of contravariant functors and natural transformations indexed by ¢q € Z,

he: Topy —s Ab  and  6%: h%o R — Rt

these last called connecting homomorphisms, where R : Tops — Tops is
the functor that sends a pair (X,Y’) to the pair (Y;0) and the map of pairs
f (XY — (X,Y) to f|y, satisfying the following axioms:

Homotopy. If fo ~ fi : (X', Y') — (X,Y) is a homotopy of pairs, then
fo=f:h(X,)Y) — hI(X")Y)
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for all ¢ € Z.

Excision. For every pair of spaces (X,Y) and a subset U C Y satisfying
U C A, the inclusion j : (X —U,Y —U) — (X,Y) induces an isomorphism

hI(X,Y) = hi(X —UY —U)

for all ¢ € Z.

Exactness. For every pair of spaces (X, A) we have a long exact sequence
TR, Y) S he(X) D h(V) 2L RT(XL YY)

where ¢ : (X,0) — (X,Y) and j : (Y,0) < (X, 0) are the inclusions, and we
write h?(X) instead of h?(X, ().

4.1.2 EXAMPLES.

(a) The singular cohomology functors with coefficients in G, (X,Y)
HY(X,Y;G) constitute a cohomology theory for every abelian group G
in the category Topy of all pairs of spaces. (Here, H1(X,Y;G) = 0 if
g<0.)

(b) The K-theory functors (X,Y) — K9(X,Y’) form a cohomology theory
in the category of pairs of paracompact spaces and closed subspaces.
(See [1, 9.5.9, (9.5.8), and 9.5.10].)

4.1.3 REMARK. There is also the dual concept of a homology theory h, on
Tops, which is a collection of covariant functors and natural transformations
indexed by ¢q € Z,

hy:Tops — Ab  and  9,:hy —> hg_10 R,

these last called connecting homomorphisms, where as before, R : Topy —
Tops maps a pair of spaces to the second space of the pair, and they satisfy
the same axioms as the cohomology with the obvious modifications.

Some examples we have of this are the ordinary homology groups with
coefficients in an abelian group G as introduced in Section ??, and given by
(X, A) = H) (X, A;G).

We shall sometimes require two further axioms for a generalized coho-
mology theory h*.
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Weak homotopy equivalence. Given a weak homotopy equivalence f :
(XY — (X,Y) (see [1, 5.1.17]), then f*: h?(X,Y) — RI(X")Y”) is an
isomorphism for all g € Z.

Additivity. For every collection {(X,,Y))}ea of pairs of topological spaces,
the inclusions 4y : (X3, Y3) <> [[,ea(Xp, Y,) induce an isomorphism

(43) = b (]_[ (Xm&)) — [ rx, 7).

A A€A

In what follows we analyze a very interesting example of how, given a
generalized cohomology theory, one can produce a new cohomology theory
associated to a given Hurewicz fibration.

4.1.4 DEFINITION. Let 7 : E — B be a (fixed) Hurewicz fibration and
A C B. For any map of pairs (X,Y) — (B, A), let (Ex, Ey) be the pair
such that Ex — X and By — Y are the fibrations induced over X and Y,
respectively, through the given map (no confusion should arise if a different
map of pairs is taken, since as a “pair” over B it is different and thus should
be denoted differently). Set

h*(X,Y)=h"(Ex, Ey).

4.1.5 Theorem. h* is a cohomology theory on the category Topgs of pairs
of spaces over B and maps over B.

Proof: We check first that h* is a functor, and hence we have to see how it
applies to maps. Let f: (X', Y') — (X,Y) be a map over B, namely, such

that the triangle
N
B

commutes. Then f induces a map of pairs [ : (Ex/, Ey') — (Ex, Ey) such
that the square

X/

(Ex:, By/) —= (Ex, By)

| |

(X", Y") (X,Y)
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~

commutes, and is given by f(2',¢e) = (f(2'), ), where (2/,¢) € Exs C X' X E.
Define the homomomorphism f* : A*(X,Y) — h*(X’,Y”") induced by f
by
f* : h*<Ex,Ey) — h*(EX/,Ey/) .

One easily verifies that this is a functorial construction.

We prove now that the functors h* fulfill the axioms of a cohomology
theory.
Homotopy. If H : fo~ f1 : (X' Y') — (X,Y) is a homotopy over B, then
fo = I

Namely, consider the diagram, where for simplicity we omit writing the
second member of each pair of spaces

This proves the homotopy. (Under the assumption that 7 : £ — B is a
Hurewicz fibration, one may assume that H is any homotopy and not only
a homotopy over B.)

Exactness. Given a pair of spaces (X,Y), there is a long exact sequence
S RUXLY) — RU(X) — RUY) < RHX,Y) — -

Namely, the given sequence is in fact the following:
.o+ — hi(Ex, Ey) — h%(Ex) — h%(Ey) = h"*(Ex, By) — -+ ,

which is obviously exact. Note that, in particular, this provides the definition
of 6.

Excision. If U CY, then the inclusion induces an isomorphism

h(X,Y) = hi(X —UY —U)
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for all q.
Namely, £y C Ey and clearly

E_UcEUcEﬁcEy .

Thus the assertion follows from the excision axiom for h*. O

4.1.6 REMARK. If h* satisfies the additivity axiom, then also h*.
Namely, If (X,Y) =[[,(X),Yy) — B, then
(EXa EY) = H(X)n YA) 3
A

thus the axiom for h* follows from the corresponding one for h*.
The next is a useful result.

4.1.7 Lemma. Letw: E — B be a fibrationand f : X — B,g:Y — B
be spaces over B. Let moreover X' C X, Y' CY and ¢ : (X, X') — (Y, Y)
be a map over B that is also a relative homeomorphism, that is, it is a map of
pairs such that p|x_x : X — X' — Y =Y is a homeomorphism. Then the
induced map ¢ : (Ex, Ex/) — (Ey, Ey+) is also a relative homeomorphism.

Proof: Recall that

Ex ={(z,e)| flx) = ()} and By ={(y,¢) | g(x) = n(e)}.

Then ¢(z,e) = (p(x),e). It : Y =Y’ — X — X" is the inverse homeomor-
phism of ¢|x_x/, then the map

”LZIEy—Ey/—>EX—EX/
given by J(y,e) = (¥(y),e) is well defined, since y € Y — Y’ and is the
inverse of ¢|py_p,, - O

Using 1.4.20 and 4.1.7 we have the following.

4.1.8 Theorem. Let m : E —> B be a Hurewicz fibration and f : X —
B, g : Y — B be spaces over B. Let moreover X' C X, Y C Y be
cofibrations, and ¢ : (X, X') — (Y, Y") a map over B that is also a relative
homeomorphism. Then

@:h (YY) — h*(X, X"

18 an isomorphism.
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Proof: Since by 1.4.20, Ex, C Ex and Ey, C Ey are cofibrations, it follows
that

(X, X') = h*(Ex, Ex/) = h*(Ex/Ex')

and N
R*(Y,Y'") = h*(Ey, Ey:) 2 h*(Ey/Ey/),

where the isomorphisms are induced by the corresponding quotient maps.
Moreover, by 4.1.7, we have that ¢ : (Ex, Ex/) — (Ey, Ey+) is a relative
homeomorphism. We have a commutative diagram

h*(Ey/Ey/) %) h*(Ex/EX/)

El lg

h*(EY7 EY’) 7 h*(EXa EX’) )

where the map ¢ : Ex/Ex, — Ey/Ey is the homeomorphism induced by
the relative homeomorphism ¢. Thus one has that ©* on the bottom is also
an isomorphism. a

4.1.2 Systems of Local Coefficients

4.1.9 DEFINITION. Let B be a topological space. A system of local coeffi-
cients on B is a contravariant functor

G:1I;(B) — Ab,

where I1;(B) denotes the fundamental groupoid of B (1.5.5) and .4b is the
category of abelian groups (and isomorphisms). In other words, a system of
local coefficients maps every point b € B to an abelian group G(b), and every
path w : b ~ ¥ to a group isomorphism G(w) : G(b') — G(b), in such a way
that if wy =~ wq, then G(wy) = G(wy).

4.1.10 EXAMPLE. Let m: E — B be a Serre fibration. Define
Q : Hl(B) — Ab by g(b) = Hn(ﬂ-_l(b)) )

and if w : b ~ b, then let G(w) be the composite

Wt HY V() 2 HY(F (1) D HO(EY) —

HTL
&Hn(%’—l(())) = H"(n (D)),

—

where T : B/ — [ is the fibration induced by 7 over w : I — B. As in
Definition 3.3.11, the homomorphisms (1) and (2) induced by the inclusions
are isomorphisms.
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We call this the ordinary system of local coefficients induced by the fibra-
tion 7 : F — B on B.

4.1.11 DEFINITION. Let h* be a generalized cohomology theory and 7 :
E — B a Hurewicz fibration, with a path lifting map

I':ExgB' ={(e,w) € Ex B'|n(e) =w(0)} — E'.
Given any path w : b ~ ¥/, define a map
a(w) : 7 1) — 77 Hb)

by a(w)(e) = I'(e,w)(1).
4.1.12 EXERCISE. Prove the following facts:

(i) fwy = w: b=V, then a(wy) ~ afwy) : 7 1) — 7 1(V).

(i) fw:b~b and ' : ¥ =V, then a(ww') ~ a(w') o a(w) : 7 1(b) —
T V).

4.1.13 EXERCISE. Prove that there is a category of systems of local coeffi-
cients on a space B.

4.1.14 EXERCISE. Prove that a map f: B — B’ induces a covariant func-
tor from the category of systems of local coefficients on B’ to the category
of systems of local coefficients on B. Prove that this correspondence is (con-
travariantly) functorial.

From Exercise 4.1.12 we conclude that there is a system of local coeffi-
cients as follows.

4.1.15 Theorem. Let h* be a generalized cohomology theory and m : £ —
B be a Hurewicz fibration. Then the mapping

[w] — aw)” AP (B) — (D))

determines a system of local coefficients. We call this the hP-system of local
coefficients induced by the fibration w# : E — B on B, and denote it by
h?(F). 0

4.1.16 EXERCISE. Prove that if h* is ordinary cohomology, then the system
of local coefficients h?(F) is the system of local coefficients G given in 4.1.10.
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4.1.3 Singular Homology and Cohomology with
Local Coefficients

4.1.17 DEFINITION. Fix a system of local coefficients G on a space X, and
denote by A,(X) the set of singular p-simplexes on X, and by e; the leading
vertex of AP o : AP — X. Define

Sp(X;G)

= {functions s : Ap(X) — U,cx G(2) | s(a) € G(a(ey)), s(a) # 0 for only
finitely many singular maps a € A,(X)}

= @aem(x) G(aleo))-

We call the elements of S,(X; G) the singular p-chains on X with coefficients
in G. A p-chain s is said to be elementary if s(«) # 0 for only one p-simplex
a € A,(X). Thus a general p-chain s with coefficients in G can be written
as a finite formal sum of elementary p-chains

5 = Zgiai, where g; € G(a;(e)) -

This explains the second equality.
Dually we define
SP(X;9)
= {functions s : A,(X) — U,cx G(2) | s(a) € G(a(e))}
= HaeAp(X) Q’(a(eo)).
We call the elements of SP(X;G) the singular p-cochains on X with coeffi-

cients in G.

In order to describe a boundary operator on S,(X;G), we observe that
the usual singular boundary operator behaves as follows with respect to the
leading vertex eg:

B — a(ep) 1fz # 0,
aler) ifi=0.

In the case of local coefficients, the coefficients on certain simplex depend
on the leading vertex, so we have to include a change of leading vertex. Let
a: AP — X be a p-simplex and take the path

wa(t) = alteg + (1 —t)eq)

from a(eg) to a(e;). Define

(4117) 88 = 8 <Z giOéi> = Z (g(wai)(gi)ﬁoozi + Z(—l)jgﬁjai> .

J=1
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The homomorphism 0 is a differential; namely, we have the following.
4.1.18 Lemma. 0o 0 =0.

Proof: Just observe that wg,, = w, if © > 1 and wp, o = WoyaWa, and do the
computations. O

4.1.19 DEFINITION. We define the (singular) homology of X with local co-
efficients in G to be

H.(X;G) = H(5.(X;G),0).

This is a generalization of singular homology with regular coefficients as
shown in the following.

4.1.20 Proposition. If the system of local coefficients G is trivial or con-
stant with value G, then H.(X;G) = H.(X;G).

Proof: 1f G is trivial, then there exists a group isomorphism ®, : G(z) — G
for each x such that given any path w in X, the diagram

g

G(w(1)) )

“ s G(w(0)
S

commutes. Thus, the isomorphisms ®, determine an isomorphism of chain
complexes S,(X;G) — S.(X; G). If the system of local coefficients is con-
stant, then G(x) = G for every € X, and G(w) = 14 for every path w in X.
In this case, S.(X;G) = S.(X;G) and Formula 4.1.17 reduces to the regular
boundary operator and so H.(X;G) = H.(X; G). O

We now describe a boundary operator in S*(X; G) as follows.

p+1

(4.1.21) (—1)P55(a) = G(wa)(s(Bpa)) + Z(—ws(aﬂ) ,

for a € A,41(X) and s € SP(X).

Similarly to 4.1.18, one can prove the following.

4.1.22 Lemma. dod = 0. O
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4.1.23 DEFINITION. We define the (singular) cohomology of X with local
coefficients in G to be

H*(X;G) = H(S"(X;6),0).
As in 4.1.20, we have the following.

4.1.24 Proposition. If the system of local coefficients G is trivial or con-
stant with value G, then H*(X;G) = H*(X;G). O

If A C X and G is a system of local coefficients on X, then we may
consider the restriction G|4 of G to A by taking the composition of the
functor G with the morphism of fundamental groupoids II;(A) — II;(X).
The inclusion S,(A;G|4a) — S.(X;G) has a cokernel that we denote by
Si(X, A; G).

4.1.25 DEFINITION. The (singular) homology of the pair (X, A) with local
coefficients in G is given by
H.(X,A;G) = H.(S«(X, A;G)),
and the short exact sequence of chain complexes
0 — Su(A4;G|a) — S.(X;G) — S.(X,A4;,G) — 0
provides the long exact sequence in homology of a pair
c = Hyy (X, A;G) =2 Hy(A;Gla) = Hy(X;G) = Hy(X, A;G) — -+ .

This is the Exactness axiom for homology with local coefficients.

More generally than above, given any map f : Y — X and a system of
local coefficients G on X, we may induce a system of local coefficients f*G on
Y by composing the functor G with the groupoid morphism f, : II; (V) —

IL(X). Thus f*G(y) = G(f(y)) for y € Y, and f*G(8) = G(f o 5) for any

path 8 in Y. This induces a homomorphism
fo H(Y5 f°G) — H.(X;G).

Similarly, a morphism of systems of local coefficients on X & : G — H,
namely a natural transformation of functors, or explicitely, a family of ho-
momorphisms

o, : G(r) — H(x)
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such that for any path « : xg >~ z; the diagram

G(w0) —2> G(a1)

q>l lé“

H(wo) WH(%)

commutes, induces a homomorphism

d H.(X;G) — H.(X;H).

4.1.26 EXERCISE. Let G be a system of local coefficients on X and let ¢ :
Z — Y, f:Y — X be continuous maps. Prove that the induced systems
of local coefficients (f o g)*G and g* f*G are equal. Prove, moreover, that the
diagram

H.(Z;g*f*G) Joa)- H.(X;G)
x /
H.(Y; f*G)

commutes. This is the Functoriality axiom for homology with local coeffi-
cients.

4.1.27 EXERCISE. Let G be a system of local coefficients on X, and let
fo, f1 1 Y — X be homotopic maps. Prove that the induced systems of
local coefficients f;G and f;G are isomorphic, say by an isomorphism of
systems of local coefficients ® : f;G — f;G. Prove, moreover, that the
homomorphisms induced by f; and f; in homology with local coefficients in
G coincide up to the isomorphism, namely, that the diagram

H.Y; f39)
—~
& H.(X;G)
—7.
H.(Y; f1G)

commutes. This is the Homotopy axiom for homology with local coeffi-
cients.

4.1.28 EXERCISE. Let G be a system of local coefficients on X and let A C

X. Let moreover U C A. Prove that the inclusion of pairs (X —U, A—U)
(X, A) induces an isomorphism

H.(X -UA-U;G) — H.(X,AG).
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(Hint: Compare with the proof of [14, 4.6.5].) This is the Excision axiom
for homology with local coefficients.

4.1.29 EXERCISE. Observe that a system of local coefficients G on a singular
space * is nothing but an abelian group G' = G(x). Prove that

G ifp=0,
0 ifp#0.

This is the Dimension axiom for homology with local coefficients.

Hy(%;G) = {

The previous exercises show that homology with local coefficients satisfies
axioms similar to the Eilenberg—Steenrod axioms (cf. Subsection 4.1.1 or see
[1]). There is one more axiom that also plays an important role; namely, we
have the following.

4.1.30 EXERCISE. Take pairs of spaces (X,, A, ), with the indexes « varying
in any set ®. Let ig : (X3, A45) € [[,co (Xa, Aa), B € ®, be the canonical in-
clusion of each of the pairs into their topological sum. If G is a system of local
coefficients on the the topological sum and G, = .G is the induced system
on each summand, then prove that the inclusions provide an isomorphism

@Hp (Xa,Aa;ga) i Hp (H (XavAa) ; g) .

acd acd

This is the Additivity axiom for homology with local coefficients.

Take again A C X and assume that G is a system of local coefficients
on X. Let G|4 be the restriction of G to A. The projection S*(X;G) —
S*(A;G|a) has a kernel that we denote by S*(X, A;G).

4.1.31 DEFINITION. The (singular) cohomology of the pair (X, A) with local
coefficients in G is given by

H*(X,A;G) = H(S*(X, A4;G)),
and the short exact sequence of cochain complexes
0— S*(X,A;G) — S*(X;G) — S*(A;G|a) — O
provides the long exact sequence in cohomology of a pair
o HP(X,A;G) — HP(X;G) — HP(A;G|a) —= HPPY(X, A;G) — - -

This is the Exactness axiom for cohomology with local coefficients.
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Similarly to Exercise 4.1.30, one can solve the following.

4.1.32 EXERCISE. Under the same assumptions of Exercise 4.1.30, prove
that the inclusions provide an isomorphism

HP (]_[ (XQ,AQ);Q) =TT H? (X, Aai Ga)

aced acd

This is the Additivity axiom for cohomology with local coefficients.

4.1.33 EXERCISE. Give a proper formulation of the remaining axioms cor-
responding to the Eilenberg—Steenrod axioms for cohomology with local co-
efficients and prove them.

A slightly more general treatment of singular homology and cohomology
with local coefficients can be read in [17].

4.1.4 Cellular Homology and Cohomology with
Local Coefficients

Assume that (X, A) is a relative CW-complex and let
A=X"'cX'cX'c--.cXPcX"c. .

be its skeletal filtration, that is, for each p > 0 there are characteristic maps
@ : (AP, AP) — (XP, XP~1) such that the induced map

XP1y ]_[ AP s XP
pePp

is an identification.

4.1.34 DEFINITION. Suppose that (X, A) is a relative CW-complex and G

a system of local coefficients on X. If we denote by X? the p-skeleton of
(X,A), p>0,and X' = A, we define the cellular complex of (X, A) with
local coefficients in G by

C%()(MA;Q)ZZZEQA)(pa)(p_l;g)7

and

0:Cp(X,A;G) — Cpq1(X, 4;G)
is the boundary operator of the triple (X7, XP~1 XP~2).
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4.1.35 Proposition. Assume that {¢, : (A2, AP) — (XP, XP")} is a
collection of p-cells for (X, A). Then
(Pax) : @ Hy (AR, AZ; Ga) — Hy(X?, X G) = Cp(X, 4;G)
acd,(X,A)

determines a direct sum decomposition of C,(X, A;G), where AP is a copy
of AP and G,, denotes the local coefficient group G(pa(eg)).

Proof: The totality of the maps ¢, determine a relative homeomorphism

(4.1.36) e |1 (Ag, Ag) s (X7, XY

aed,(X,A)
between CW-pairs. Thus it induces an isomorphism in homology. Since
singular homology with local coefficients is additive (see Exercise 4.1.30), we
have that the inclusions of the summands into the topological sum induce an
isomorphism

(4.1.37) Hp(Ag,Ag;sozg)%Hp I1 (A’;A’;);s@*g

aeq)? XvA) aeq)p(va)

On the other hand, since AP is contractible, the system of local coefficients on
AP induced by G through ¢, is trivial. Hence, the result follows combining
Equations (4.1.36) and (4.1.37), after applying 4.1.20. O

It is useful to describe 0 : Cp(X, A; G) — Cp—1(X, A; G) in terms of the
direct sum decomposition given in the last result. In order to do it, we need
the concept of incidence isomorphism, that can be defined as follows.

Suppose that A? ~!is the ith face of the simplex AP, fact that we denote
by AP™" < AP, The maps of pairs

(4.1.38) (Agfl,Affl) N (AP,AP - (Af” . Agﬂ)) — <AP,A”)
induce isomorphisms
i, (Ap, Ap) 2 H,, (Ap, (Af‘l - Af-l)) P S (Af‘l, Ag?-l) ,

where the connecting homomorphism 0 on the left-hand side is an isomor-
phism by the exact sequence of the triple (AP, AP, (AP~! — Af 1)), since both
the first and the third spaces of it are contractible, while j, on the right-hand
side is an isomorphism by excision. We define

(A7, A = o0,
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Let ¢ : AP — XP? be the characteristic map for a p-cell of the CW-
complex X, and A? ~! be the ith face of AP. Then ¢ provides a map of
pairs ¢ : (AP, AP7Y — (XP, XP71). If ¢(eq) is the image of the leading
vertex of AP, let e} denote the image of the leading vertex of A?. Since
AP is convex, we get a straight path ¢ — ¢(teg + (1 — t)e}) in X which we
denote by A(AP, AP"! ). On the other hand, we denote by (AP, AP™! )
the isomorphism A(A?, AP™ 0)* - G(p(ey)) — G(w(el)). Then we have the
following.

4.1.39 Theorem. The boundary homomorphism of the cellular complex of
a pair of spaces (X, A), 0: Cp(X,A;G) — Cp1(X, A;G), can be expressed
in terms of the direct sum decompositions given in Theorem 4.1.35

0 @H (A2, AD) ® Go — €D Hy(AL ALY @ G
B

Ou®g)= Y [ALAF(u) @ (A% AT ¢)(g).

A§_1<A2
Dually to the previous considerations we have the following.

4.1.40 DEFINITION. Given a relative CW-complex (X, A) and a system of
local coefficients G on X, we define the cellular cocomplez of (X, A) with local
coefficients in G by

CP(X’ A7 g) - Hp(Xp7 Xp_l; g) )

and take
o C’pfl(X,A; g) — CP(X,A;G)

to be the coboundary operator of the triple (X7, XP~1 X?~2),
Similarly to 4.1.35, we have the following.

4.1.41 Proposition. Assume that {¢, : (A2, AP) — (XP, XP"1)} is a
collection of p-cells for (X, A). Then

(gn) 1 CP(X,A;Q) = HP(X? X771 0) —  [[  HP (AR, A%:G.)

acAp(X,A)

determines a direct product decomposition of C*(X, A;G), where G, denotes
the local coefficient group G(pa(ep))- 0
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In order to describe § : CP71(X, A;G) — CP(X, A;G) in terms of the
direct product decomposition just given, we need the dual concept of coin-
cidence isomorphism as follows.

Again the maps of pairs (4.1.38) give rise to isomorphisms
Hr! (A’."l, AP-l) Lo (AP, Av — (M-l - AH)) BNy (AP, Ap)
and we define
[AP, AP = 5o 51
If we take (AP, AP™' ) : G(w(en)) — G(w(e))) as before, we have
4.1.42 Theorem. The coboundary homomorphism of the cellular cocomplex

of a pair of spaces (X, A), § : CP"H X, A;G) — CP(X, A;G), can be ex-
pressed in terms of the direct product decompositions given in Theorem 4.1.41

o [[H a5 A @ Gy — [ H (AL, AR @ G,
ﬁ «

by
(1) " 6a((us @ gp)s) = D> (AR AL (ug) @ (AL, ALY )" (gs)

NB)’1<A’;
in each factor HP(AP, AP) ® G,. Observe that the sum on the right-hand

side is always finite.

4.1.43 Theorem. Let h* be any cohomology theory and let F' be any topo-
logical space. For fixed q, there are isomorphisms

e 1 (807, 807) 1) 25 a0 (89, A @ ().

Proof: Recall the inclusions (4.1.38) and take the topological product with
F' to obtain inclusions

(307,877 25 (30,80 = (877 = 7)) P (o0.80) .
We proceed inductively on p. Consider p = 1 and the diagram

- hFI((AY, AY) x F)
Ojp
/ J/51

H'(ALAY) @ hi(F),

hi(F)
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where ¢ on the top corresponds to the triple (A!, A', A) x F, while the one
on the bottom corresponds to (A', A', A% (observe that A° is a singular
space consisting of the origin). Since the tilted arrows are isomorphisms, we
may define & just to make the diagram commutative. It is obviously an
isomorphism.

Assume &P~ already constructed, then take the diagram

50]’}71

WPI((ATTL AT < F) hPHI((AP, AP) X F)

g’ll lgp

HPH (AL AT @ hY(F) HP(AP, A7) @ h(F)

doj* @1

where & on the top corresponds to the triple (A?, A? (AP~1 — AP71)) x F,
while the one on the bottom to (A?, AP, (AP~ — AP™")). Since the horizontal
arrows are isomorphisms, so as also is the left arrow, we may define &? to be
an isomorphism such that the diagram commutes. O

4.2 THE LERAY-SERRE SPECTRAL SEQUENCE
FOR GENERALIZED COHOMOLOGY

We modify slightly the construction 3.3.1 given in Chapter 3. We assume
that h* is a generalized cohomology theory.

4.2.1 CONSTRUCTION. Let m : E — B be a Hurewicz fibration over B,
where (B, A) is a relative CW-complex. Denote by BP the p-skeleton and by
EP? its inverse image under 7, 7~1(BP), p > 0. In particular, set E~' = 771A
if p < 0. We have an exact couple (see 3.2.9).

(4.2.2) ‘\ /
C** ’

given by the definitions

AP4 — hp+q(Ep) ’
P — hp+q(Ep7 EQ) ’
7 hp-i-q(Ep—i-l) N hp-l—q(Ep) ,
g WPYU(EP EPTY) — RPTI(EP)
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that are induced by the canonical inclusions, and
k: hPTat(EPYy — pPTI(EP EPTY)

given by the boundary homomorphism 9.

Dually to 3.3.1, the bidegrees of these homomorphisms clearly are:

bideg(i) = (—1,1),
bideg(j) = (0,0).
bideg(k) = (1,0)

now with the opposite signs as in 3.3.1.

Dually as in 3.2.17, take r > 1, r € Z, i° = id 4.

drd — k(ir_l)_lj - OPY Cp-H“,q—T-H ’
224 = Def(dz),

BP9 = Ind(dP a1y

00
Pq P,q
Z5 = (20,
r=1
00
Pq P,q
= U,
r=1

EPe = 7P9/BP . 1<r<oo.

Similarly to Section 3.2, we have that d?? : CP? — CP*™4~"+1 induces

a homomorphism

1. pra —y prtra-r+l :
and one has the following result dual to 3.2.19.

4.2.3 Theorem. The pair (ET,ET) 18 a cochain complex and its cohomology
satisfies

HW](E?“?ET) = Ef—fl )

that is, (E,,d,), r =1,2,..., is a spectral sequence.



4.2 THE GENERALIZED LERAY-SERRE SPECTRAL SEQUENCE 169

4.2.1 Computation of the Fi-term of the
Spectral Sequence

Take a characteristic map ¢ : AP — BP and take the fibration induced by
7 through ¢, namely, take the diagram

T@&E’P

|l

A‘DTBP.

Since AP is contractible, by 1.4.30, there is a (well-defined up to fiber homo-
topy) trivialization
Qy AP x F¢(60) — T@,

where as above Fi.,) represents the fiber 7! (¢(ep)). Consider the composite

b+ WP, PNy L (T, 1) S (AP, AP) X Fly))
i> HP (AP, Ap) ® hq(F@(eo))) )
where Tso is the restriction of 7, to the boundary AP of AP, and €? is the

isomorphism given in Theorem 4.1.43. Since by 1.4.26 the map of pairs
ap o (AP AP) X Fuey)) — (T, T,) is a (fiber) homotopy equivalence, the

*

» 1s also an isomorphism.

homomorphism «

In what follows, we prove that the homomorphism

k= (k) WPH9(EP, EPY) [ HP(AY, AP)@h?(Fy) = CP(B, A; 19(F))

pedp

is an isomorphism. For that, it is enough to see that the maps ¢* determine
an isomorphism

K o= () WP EPT) — [ WTUT,, 1))

peD)

We have the following.

4.2.4 Lemma. The homomorphism

K= (g rER BT — [ WU, T)

PEPp

s an isomorphism.



170 4 GENERALIZED COHOMOLOGY OF FIBRATIONS

Proof: According to Definition 4.1.4, we have to prove that

R = (g") : h(B", B"Y) — ] har,Ar)

ped,

is an isomorphism. The map

(¢): T (a7, A7) — (B, B")

pEDp

is a relative homeomorphism, since it induces a homeomorphism

[] A»— B? — B .

pEDp

Given that both, the inclusion J] cq AP — ] peD,
BP~! < BP are cofibrations, by 4.1.8 we have an isomorphism

AP and the inclusion

(@) : h(B”, B"") — b7 | [ (A%, AP)

peD®)

But since the cohomology theory h* is additive, then so is also h* (see
4.1.6); hence the homomorphisms induced by the inclusions i, : (AP, AP) —
[1,co,(A”, AP) yield an isomorphism

w| T ar Ary | = I r(ar,Av).

pEDp pEPp

Thus the homomorphism induced by (¢) in cohomology, namely ', is an
isomorphism. 0

4.2.5 Theorem. Let m : E — B be a Hurewicz fibration. If (B, A) is
a relative CW-complex and EP? is the spectral sequence associated to the
filtration of E induced by the skeletal filtration of (B, A), then one has for
the Ei-term an isomorphism

k: EP?T — CP(B, A; hi(F)),

where CP(B; h1(F)) is the cellular cocomplex of B with local coefficients de-
termined by hi(7=*(b)), b € B. 0
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4.2.2 Computation of the F)-term of the
Spectral Sequence

In what follows, we prove that the isomorphism

k= (ky) : WPYUEP, BN — [ HP (AP, A")®h!(Fy)) = CP(B, A; h(F))

S

commutes with the corresponding coboundary homomorphisms (see 4.1.40).

We have the following result.

4.2.6 Lemma. The following is a commutative diagram:

(P, EPY) e CP(B, A; 1(F)

| [

hp+q+1(Ep+17 Ep) _k Cp+1(B, A; hq(}“)) ,

where 0 on the left-hand side is the connecting homomorphism for the triple
(EPTL EP EP~1Y) and § on the right-hand side represents the coboundary op-
erator of the cellular cochain complex of the pair (B, A) with local coefficients
in hi(F) (see 4.1.40).

Proof: We have to prove the commutativity of the diagram

prta(Ev, Br1) [, H/(A%, AL) @ h(F, o)
(4.2.7) 5l l(_ma

Wt BV BP) — [T, HPP (AR AR @ h(Fpy o))

0

where the homomorphism ¢ on the right-hand side is as given in Theorem
4.1.42, while the horizontal arrows are given by composing x with the iso-
morphism given in Proposition 4.1.41; F () denotes the fiber of m over the
image of the leading vertex under the corresponding characteristic map.

We take the following diagrams:

o)

hta(EP, EPL) WP (T15(AG, Af) x Foset)

; Js

pptatl(Epl Ep) i Rt ([T, (AL AP X F, (o)
, « o7 Y « al€ '
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Since both vertical arrows are given by connecting homomorphisms, that are
natural, and inclusion maps, the commutativity of this diagram is quite clear.

o

([ 1o(A%, AR) x F, o)) [T PHa((AG, AR) X Fy5)

| B

WL (AR AR X Figy) = L 50 (A4, AL x o).

This diagram commutes by naturality arguments, since both coboundary
homomorphisms § are given by the same formula.

€P+q

[1, h+a((A%, AL) x Fpe) . [1; HP (AL, AL) @ h(F )

| o

[T, R (AR, AL X P i) oo TL 7 (AR AZF) x B(F ).

§p+q+1

where the isomorphisms & are given in 4.1.43. This last diagram commutes
because the definiton of the coboundary homomorphism on the right-hand
side is given using the coincidence isomorphisms defined in page 166 previous
to Theorem 4.1.42, that correspond precisely to the way that the coboundary
homomorphism on the left-hand side is defined, and the sign comes from
Theorem 4.1.42.

Putting these three diagrams together, we obtain the commutativity of
Diagram (4.2.7), as desired. 0

From Lemma 4.2.6, we obtain immediately the main result of this para-
graph.

4.2.8 Theorem. Let m : E — B be a Hurewicz fibration. If (B, A) is
a relative CW-complex and EP? is the spectral sequence associated to the
filtration of E induced by the skeletal filtration of B, then one has for the
Es-term an isomorphism

K" EYY — HP(B, A; h(F)),

where H?(B; hi(F)) is the cellular cohomology of (B, A) with local coefficients
determined by h4(7~1(b)), b € B. 0
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